Operations Research I: Models & Applications Linear Programming

Ling-Chieh Kung

Department of Information Management National Taiwan University

Introduction

- Let's study **Linear Programming** (LP).
 - It is used a lot in practice.
 - ▶ It also possesses useful mathematical properties.
 - ▶ It is a good starting point for all OR subjects.
- ► We will study:
 - ▶ What kind of practical problems may be solved by LP.
 - How to formulate a problem as an LP.

Road map

► Terminology.

- ▶ The graphical approach.
- ▶ Three types of LPs.
- ▶ Simple LP formulations.
- ▶ Compact LP formulations.

Linear Programs

- Linear Programming is the process of formulating and solving linear programs (also abbreviated as LPs).
- ▶ An LP is a **mathematical program** with some special properties.
- ▶ Let's first introduce some concepts of mathematical programs.

Basic elements of a program

▶ In general, any mathematical program may be expressed as

- $\begin{array}{ll} \min & f(x_1, x_2, ..., x_n) & (\textbf{objective function}) \\ \text{s.t.} & g_i(x_1, x_2, ..., x_n) \leq b_i & \forall i = 1, ..., m & (\textbf{constraints}) \\ & x_j \in \mathbb{R} & \forall j = 1, ..., n. & (\textbf{decision variable}) \end{array}$
- There are m constraints and n variables.
- \triangleright $x_1, x_2, ..., and x_n$ are real-valued decision variables.
- ▶ We may write

$$x = \left[\begin{array}{c} x_1\\ \vdots\\ x_n \end{array}\right] = (x_1, \dots, x_n)$$

as a **vector** of decision variables (or a decision vector).

- $f : \mathbb{R}^n \to \mathbb{R}$ and $g_i : \mathbb{R}^n \to \mathbb{R}$ are all real-valued functions.
- Mostly we will omit $x_j \in \mathbb{R}$.

Transformation

▶ How about a maximization objective function?

- $\blacktriangleright \max f(x) \Leftrightarrow \min f(x).$
- ▶ How about "=" or " \geq " constraints?

▶
$$g_i(x) \ge b_i \Leftrightarrow -g_i(x) \le -b_i$$
.
▶ $g_i(x) = b_i \Leftrightarrow g_i(x) \le b_i$ and $g_i(x) \ge b_i$, i.e., $-g_i(x) \le -b_i$.

► For example:

Sign constraints

- ▶ For some reasons that will be clear in the next week, we distinguish between two kinds of constraints:
 - **Sign constraints**: $x_i \ge 0$ or $x_i \le 0$.
 - **Functional constraints**: all others.
- For a variable x_i :
 - It is **nonnegative** if $x_i \ge 0$.
 - It is **nonpositive** if $x_i \leq 0$.
 - ▶ It is **unrestricted in sign** (urs.) or **free** if it has no sign constraint.

Feasible solutions

- ▶ For a mathematical program:
 - A **feasible solution** satisfies all the constraints.
 - An infeasible solution violates at least one constraint.
- ► For example:

Feasible region and optimal solutions

- The feasible region (or feasible set) is the set of feasible solutions.
 The feasible region may be empty.
- An optimal solution is a feasible solution that:
 - Attains the largest objective value for a maximization problem.
 - Attains the smallest objective value for a minimization problem.
 - ▶ In short, no feasible solution is better than it.
- ▶ An optimal solution may not be unique.
 - ▶ There may be **multiple** optimal solutions.
 - ▶ There may be **no** optimal solution.

Binding constraints

▶ At a solution, a constraint may be **binding**:¹

Definition 1

Let $g(\cdot) \leq b$ be an inequality constraint and \bar{x} be a solution. $g(\cdot) \leq b$ is binding at \bar{x} if $g(\bar{x}) = b$.

- An inequality is **nonbinding** at a point if it is strict at that point.
- An equality constraint is always binding at any feasible solution.

Some examples:

- $x_1 + x_2 \le 10$ is binding at $(x_1, x_2) = (2, 8)$.
- $2x_1 + x_2 \ge 6$ is nonbinding at $(x_1, x_2) = (2, 8)$.
- $x_1 + 3x_2 = 9$ is binding at $(x_1, x_2) = (6, 1)$.

¹Binding/nonbinding constraints are also called **active**/inactive constraints.

Strict constraints?

- ► An inequality may be **strict** or **weak**:
 - lt is strict if the two sides cannot be equal. E.g., $x_1 + x_2 > 5$.
 - It is weak if the two sides may be equal. E.g., $x_1 + x_2 \ge 5$.
- ► A "practical" mathematical program's inequalities are **all weak**.
 - ▶ With strict inequalities, an optimal solution may not be attainable!
 - What is an optimal solution of

min x

s.t. x > 0?

- ▶ Think about budget constraints.
 - ▶ You want to spend \$500 to buy several things.
 - ▶ Typically, you cannot spend more than \$500.
 - ▶ But you may spend exactly \$500.

Linear Programs

- ▶ A mathematical program
 - $\begin{array}{ll} \min & f(x) \\ \text{s.t.} & g_i(x) \leq b_i \quad \forall i = 1, ..., m, \end{array}$

is an LP if f and g_is are all linear functions.
Each of these linear functions may be expressed

$$a_1x_1 + a_2x_2 + \dots + a_nx_n = \sum_{j=1}^n a_jx_j,$$

where $a_j \in \mathbb{R}, j = 1, ..., n$, are the **coefficients**. • We may write $a = (a_1, ..., a_n)$ and $f(x) = a^T x$.

- ► An example:
 - min $x_1 + x_2$ s.t. $x_1 + 2x_2 \le 6$ $2x_1 + x_2 \le 6$ $x_1 \ge 0, x_2 \ge 0.$

as

Linear Programs

 In general, an LP may always be expressed as

min
$$\sum_{j=1}^{n} c_j x_j$$

s.t. $\sum_{j=1}^{n} A_{ij} x_j \le b_i \quad \forall i = 1, ..., m.$

A_{ij}s: constraint coefficients.
 b_is: right-hand-side values (RHS).
 c_is: objective coefficients.

- Or by **vectors**:
 - min $c^T x$ s.t. $a_i^T x \le b_i \quad \forall i = 1, ..., m.$ $\triangleright a_i \in \mathbb{R}^n, b_i \in \mathbb{R}, c \in \mathbb{R}^n.$
 - $\triangleright x \in \mathbb{R}^n.$
- Or by matrices:

$$\begin{array}{ll} \min \quad c^T x\\ \text{s.t.} \quad Ax \le b. \end{array}$$

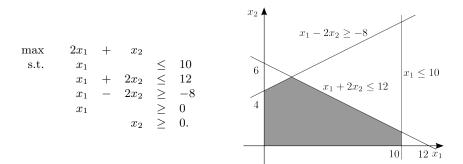
$$\blacktriangleright A \in \mathbb{R}^{m \times n}, \ b \in \mathbb{R}^m.$$

Road map

- Terminology.
- ► The graphical approach.
- ▶ Three types of LPs.
- ▶ Simple LP formulations.
- ► Compact LP formulations.

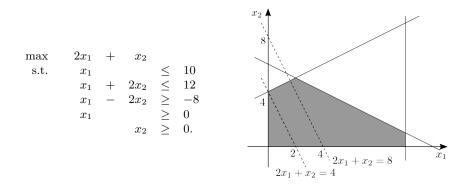
- ► For LPs with only two decision variables, we may solve them with the graphical approach.
- Consider the following example:

- Step 1: Draw the feasible region.
 - ▶ Draw each constraint one by one, and then find the intersection.



Step 2: Draw some **isoquant lines**.

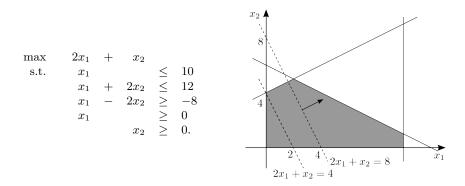
- A line such that all points on it result in the same objective value.
- Also called **isoprofit** or **isocost** lines when it is appropriate.
- ▶ Also called **indifference lines** (curves) in Economics.



OR I: Linear Programming

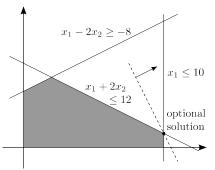
▶ Step 3: Indicate the direction to push the isoquant line.

The direction that decreases/increases the objective value for a minimization/maximization problem.

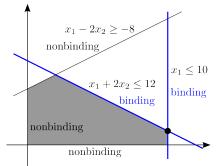


▶ Step 4: Push the isoquant line to the "end" of the feasible region.

Stop when any further step makes all points on the isoquant line infeasible.



▶ Step 5: Identify the binding constraints at an optimal solution.



- Step 6: Set the binding constraints to equalities and then solve the linear system for an optimal solution.
 - ▶ In the example, the binding constraints are $x_1 \leq 10$ and $x_1 + 2x_2 \leq 12$.
 - ▶ We may solve the linear system

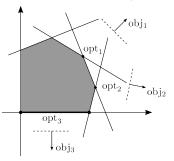
in any way and obtain an optimal solution $(x_1^*, x_2^*) = (10, 1)$. For example, through Gaussian elimination:

$$\left[\begin{array}{cc|c} 1 & 0 & 10 \\ 1 & 2 & 12 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & 0 & 10 \\ 0 & 2 & 2 \end{array}\right] \rightarrow \left[\begin{array}{cc|c} 1 & 0 & 10 \\ 0 & 1 & 1 \end{array}\right]$$

- Step 7: Plug in an optimal solution obtained into the objective function to get the associated objective value.
 - In the example, $2x_1^* + x_2^* = 21$.

Where to stop pushing?

- ▶ Where we push the isoquant line, where will be stop at?
- ▶ Intuitively, we **always** stop at a "**corner**" (or an edge).



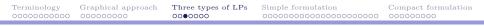
Is this intuition still true for LPs with more than two variables? Yes!
A more rigorous definition of "corners" exists.

Road map

- Terminology.
- ▶ The graphical approach.
- ► Three types of LPs.
- ▶ Simple LP formulations.
- ▶ Compact LP formulations.

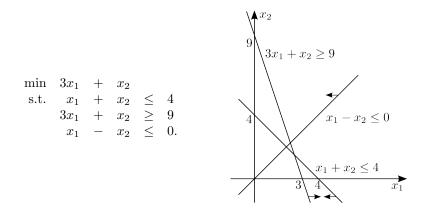
Three types of LPs

- ▶ For any LPs, it must be one of the following:
 - Infeasible.
 - ▶ Unbounded.
 - ▶ Finitely optimal (having an optimal solution).
- ▶ A finitely optimal LP may have:
 - ► A unique optimal solution.
 - Multiple optimal solutions.



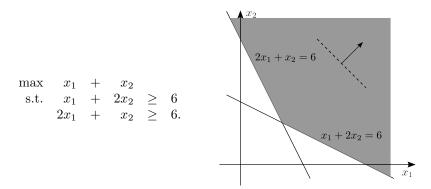
Infeasibility

• An LP is **infeasible** if its feasible region is empty.



Unboundedness

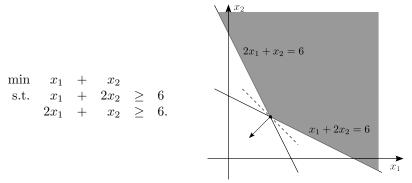
• An LP is **unbounded** if for any feasible solution, there is another feasible solution that is better.





Unboundedness

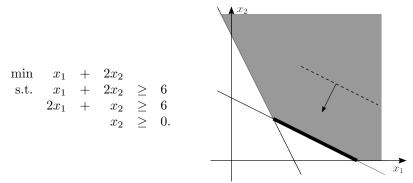
- Note that an unbounded feasible region does not imply an unbounded LP!
 - ▶ Is it necessary?



▶ If an LP is neither infeasible nor unbounded, it is **finitely optimal**.

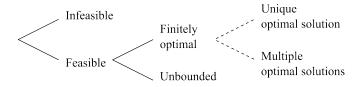
Multiple optimal solutions

• A linear program may have **multiple** optimal solutions.



If the slope of the isoquant line is identical to that of one constraint, will we always have multiple optimal solutions?

Summary



▶ In solving an LP (or any mathematical program) in practice, we only want to find **an** optimal solution, not all.

All we want is to make an optimal decision.

Road map

- Terminology.
- ▶ The graphical approach.
- ► Three types of LPs.
- ► Simple LP formulations.
- ▶ Compact LP formulations.

Introduction

- It is important to learn how to model a practical situation as an LP.
 Once you do so, you have "solved" the problem.
- ▶ This process is typically called **LP formulation** or **modeling**.
- ▶ Here we will give you some examples of LP formulation.
 - Practice makes perfect!
- ▶ Then we formulate large-scale problems with **compact formulations**.

A product mix problem

- ▶ We produce several products to sell.
- Each product requires some resources. **Resources are limited**.
- ▶ We want to maximize the total sales revenue with available resources.

Problem description

- ▶ We produce desks and tables.
 - Producing a desk requires three units of wood, one hour of labor, and 50 minutes of machine time.
 - Producing a table requires five units of wood, two hours of labor, and 20 minutes of machine time.
- We may sell everything we produce.
- ▶ For each day, we have
 - ▶ Two hundred workers that each works for eight hours.
 - ▶ Fifty machines that each runs for sixteen hours.
 - ► A supply of 3600 units of wood.
- ▶ Desks and tables are sold at \$700 and \$900 per unit, respectively.

Define variables

▶ What do we need to decide?

► Let

- x_1 = number of desks produced in a day and x_2 = number of tables produced in a day.
- ▶ With these variables, we now try to **express** how much we will earn and how many resources we will consume.

Formulate the objective function

- We want to maximize the total sales revenue.
- Given our variables x_1 and x_2 , the sales revenue is $700x_1 + 900x_2$.
- ▶ The objective function is thus

max $700x_1 + 900x_2$.

Formulate constraints

► For each **restriction** or **limitation**, we write a constraint:

Resource	Consumption per		Total supply
	Desk	Table	Total supply
Wood	3 units	5 units	3600 units
Labor hour	1 hour	2 hours	$200 \text{ workers } \times 8 \text{ hr/worker} \\ = 1600 \text{ hours}$
Machine time	50 minutes	20 minutes	$50 \text{ machines} \times 16 \text{ hr/machine} \\ = 800 \text{ hours}$

- ▶ The supply of wood is limited: $3x_1 + 5x_2 \leq 3600$.
- The number of labor hours is limited: $x_1 + 2x_2 \le 1600$.
- ▶ The amount of machine time is limited: $50x_1 + 20x_2 \le 48000$.
 - Use the same unit of measurement!

Complete formulation

Collectively, our formulation is

▶ In any case:

- **Clearly** define decision variables **in front of** your formulation.
- Write **comments** after the objective function and constraints.

Solve and interpret

- ▶ An optimal solution of this LP is (884.21, 189.47).
- ▶ So the interpretation is... to produce 884.21 desks and 189.47 tables?
- ▶ "Producing 884.21 desks and 189.47 tables" seems weird, but in fact:
 - ▶ We may produce 884.21 desks and 189.47 tables per day in average (i.e., roughly 88,420 desks and 18,947 tables per 100 days).
 - ▶ We may **suggest** to produce, e.g., 884 desks and 189 tables.²
 - ▶ It still **supports** our decision making.
 - It may not really be optimal, but we spend a very short time to make a good suggestion.
 - "All models are wrong, but some are useful."

 2 Why not 885 desks and 190 tables or the other two ways of rounding?

Produce and store!

- When we are making decisions, we may also consider what will happen in the **future**.
- ▶ This creates **multi-period** problems.
- ▶ In many cases, products produced today may be **stored** and then sold in the future.
 - Maybe daily capacity is not enough.
 - ▶ Maybe production is cheaper today.
 - Maybe the price is higher in the future.
- So the production decision must be jointly considered with the inventory decision.

Problem description

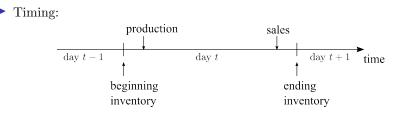
- ▶ We produce and sell a product.
- ▶ For the coming four days, the marketing manager has promised to fulfill the following amount of demands:
 - ▶ Days 1, 2, 3, and 4: 100, 150, 200, and 170 units, respectively.
- ▶ The unit production costs are different for different days:
 - ▶ Days 1, 2, 3, and 4: \$9, \$12, \$10, and \$12 per unit, respectively.
- The prices are all fixed. So maximizing profits is the same as minimizing costs.
- We may store a product and sell it later.
 - ▶ The **inventory cost** is \$1 per unit per day.³
 - E.g., producing 620 units on day 1 to fulfill all demands costs

 $9 \times 620 + 1 \times 150 + 2 \times 200 + 3 \times 170 = 6,640.$

³Where does this inventory cost come from?

OR I: Linear Programming

Problem description: timing



- Beginning inventory + production sales = ending inventory.
- ▶ Inventory costs are calculated according to **ending inventory**.

OR I: Linear Programming

Variables and objective function

► Let

 x_t = production quantity of day t, t = 1, ..., 4. y_t = ending inventory of day t, t = 1, ..., 4.

▶ It is important to specify "ending"!

▶ The objective function is

min $9x_1 + 12x_2 + 10x_3 + 12x_4 + y_1 + y_2 + y_3 + y_4$.

Constraints

We need to keep an eye on our inventory: $x_1 -100 \quad x_2 -150 \quad x_3 -200 \quad x_4 -170$

• Day 1:
$$x_1 - 100 = y_1$$
.

• Day 2:
$$y_1 + x_2 - 150 = y_2$$
.

- Day 3: $y_2 + x_3 200 = y_3$.
- Day 4: $y_3 + x_4 170 = y_4$.

▶ These are typically called **inventory balancing** constraints.

▶ We also need to fulfill all demands at the moment of sales:

▶ $x_1 \ge 100, y_1 + x_2 \ge 150, y_2 + x_3 \ge 200, \text{ and } y_3 + x_4 \ge 170.$

▶ Also, production and inventory quantities cannot be negative.

The complete formulation

▶ The complete formulation is

$$\begin{array}{ll} \min & 9x_1 + 12x_2 + 10x_3 + 12x_4 + y_1 + y_2 + y_3 + y_4 \\ \text{s.t.} & x_1 - 100 = y_1 \\ & y_1 + x_2 - 150 = y_2 \\ & y_2 + x_3 - 200 = y_3 \\ & y_3 + x_4 - 170 = y_4 \\ & x_1 \ge 100 \\ & y_1 + x_2 \ge 150 \\ & y_2 + x_3 \ge 200 \\ & y_3 + x_4 \ge 170 \\ & x_t, y_t \ge 0 \quad \forall t = 1, ..., 4. \end{array}$$

Simplifying the formulation

- ▶ May we simplify the formulation?
- ▶ Inventory balancing and nonnegativity imply demand fulfillment!
 - E.g., in day 1, $x_1 100 = y_1$ and $y_1 \ge 0$ means $x_1 \ge 100$.
- ▶ So the formulation may be simplified to

 $\begin{array}{ll} \min & 9x_1 + 12x_2 + 10x_3 + 12x_4 + y_1 + y_2 + y_3 + y_4 \\ \text{s.t.} & x_1 - 100 = y_1 \\ & y_1 + x_2 - 150 = y_2 \\ & y_3 + x_3 - 200 = y_3 \\ & y_3 + x_4 - 170 = y_4 \\ & x_t > 0, y_t > 0 \quad \forall t = 1, ..., 4. \end{array}$

Identifying redundant constraints (removing them does not alter the feasible region) helps reduce the complexity of a program.

Simplifying the formulation

- One may further argue that there is no need to have ending inventory in period 4 (because it is costly but useless).
- ▶ So the formulation may be further simplified to

 $\begin{array}{ll} \min & 9x_1 + 12x_2 + 10x_3 + 12x_4 + y_1 + y_2 + y_3 \\ \text{s.t.} & x_1 - 100 = y_1, y_1 + x_2 - 150 = y_2 \\ & y_3 + x_3 - 200 = y_3, y_3 + x_4 - 170 = 0 \\ & x_t \ge 0 \quad \forall t = 1, ..., 4 \\ & y_t \ge 0 \quad \forall t = 1, ..., 3. \end{array}$

▶ However, this is not always suggested (at this stage).

- ▶ It is not required because a solver will see this.
- ▶ It is too difficult if the instance scale is large.

▶ In summary, simplification is **good** but in most cases **unnecessary**.

Personnel scheduling

- ▶ We are scheduling employees in a department store.
 - Each employee must work for five consecutive days and then take rests for two consecutive days.
 - ▶ The number of employees required for each day:

Mon	Tue	Wen	Thu	Fri	Sat	Sun
110	80	150	30	70	160	120

- There are seven shifts: Monday to Friday, Tuesday to Saturday, ..., and Sunday to Thursday.
- We want to minimize the number of employees hired.

Personnel scheduling

- ▶ We may find a feasible solution easily.
 - For example, we may assign 150 employees to work from Monday to Friday and 160 to work from Saturday to Wednesday:

	Mon	Tue	Wen	Thu	Fri	Sat	Sun
Demand	110	80	150	30	70	160	120
Shift 1	150	150	150	150	150		
Shift 6	160	160	160			160	160
Total	310	310	310	150	150	160	160

▶ This solution is feasible but seems to be bad.

Decision variables and objective function

- ▶ Let Monday be day 1, Tuesday be day 2, etc.
- Let x_i be the number of employees who starts to work from day i for five consecutive days.
 - x_i is the number of employees assigned to shift *i*.
- ▶ The objective function is thus:

 $\min x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7.$

Constraints

- ▶ Demand fulfillment:
 - ▶ 110 employees are needed on Monday:

$$x_1 + x_4 + x_5 + x_6 + x_7 \ge 110.$$

▶ 80 employees are needed on Tuesday:

$$x_1 + x_2 + x_5 + x_6 + x_7 \ge 80.$$

$$x_3 + x_4 + x_5 + x_6 + x_7 \ge 120.$$

▶ Nonnegativity constraints:

$$x_i \ge 0 \quad \forall i = 1, \dots, 7.$$

Complete formulation

▶ The complete formulation is

\min	x_1	+	x_2	+	x_3	+	x_4	+	x_5	+	x_6	+	x_7		
s.t.	x_1	+					x_4	+	x_5	+	x_6	+	x_7	\geq	110
	x_1	+	x_2	+					x_5	+	x_6	+	x_7	\geq	80
	x_1	+	x_2	+	x_3	+					x_6	+	x_7	\geq	150
	x_1	+	x_2	+	x_3	+	x_4	+					x_7	\geq	30
	x_1	+	x_2	+	x_3	+	x_4	+	x_5					\geq	70
			x_2	+	x_3	+	x_4	+	x_5	+	x_6			\geq	160
					x_3	+	x_4	+	x_5	+	x_6	+	x_7	\geq	120
	$x_i \ge 0 \forall i = 1,, 7.$														

Road map

- Terminology.
- ▶ The graphical approach.
- ▶ Three types of LPs.
- ▶ Simple LP formulations.
- ► Compact LP formulations.

Compact formulations

- ▶ Most problem instances in practice are of large scales.
 - ▶ The number of variables and constraints are huge.
- ▶ Many variables may be grouped together:
 - E.g., x_t = production quantity of day t, t = 1, ..., 4.
- ▶ Many constraints may be grouped together:
 - E.g., $x_t \ge 0$ for all t = 1, ..., 4.
- ▶ In modeling large-scale instances, we use **compact formulations** to enhance readability and efficiency.
- We use the following three instruments:
 - ▶ Indices (i, j, k, ...).
 - ▶ Summation (\sum) .
 - ▶ For all (\forall) .

Compact objective function

- ▶ The production-inventory problem:
 - ▶ We have several periods. In each period, we first produce and then sell.
 - Unsold products become ending inventories.
 - We want to minimize the total cost.
- ▶ Indices: Because things will repeat in each period, it is natural to use an index for periods. Let $t \in \{1, ..., 4\}$ be the index of periods.
- ▶ For the objective function:

$$\min 9x_1 + 12x_2 + 10x_3 + 12x_4 + y_1 + y_2 + y_3 + y_4,$$

if we denote the unit production cost on day t as C_t , t = 1, ..., 4, we may rewrite it as

$$\min \sum_{t=1}^{4} (C_t x_t + y_t).$$

Compacting the constraints

▶ The original constraints:

 $x_1 - 100 = y_1, y_1 + x_2 - 150 = y_2, y_2 + x_3 - 200 = y_3, y_3 + x_4 - 170 = y_4.$

- Let's denote the demand on day t as D_t , t = 1, ..., 4:
 - For $t = 2, ..., 4 : y_{t-1} + x_t D_t = y_t$.
 - We cannot apply this to day 1 as y_0 is undefined!
- ▶ To group the four constraints into one compact constraint, we add an additional decision variable y_0 :

 y_t = ending inventory of day t, t = 0, ..., 4.

▶ Then the set of inventory balancing constraints are written as

$$y_{t-1} + x_t - D_t = y_t \quad \forall t = 1, ..., 4.$$

• Certainly we need to set up the initial inventory: $y_0 = 0$.

The complete compact formulation

▶ The compact formulation is

min
$$\sum_{t=1}^{4} (C_t x_t + y_t)$$

s.t. $y_{t-1} + x_t - D_t = y_t \quad \forall t = 1, ..., 4$
 $y_0 = 0$
 $x_t, y_t \ge 0 \quad \forall t = 1, ..., 4.$

- Do not forget those for-all statements! Without them, the formulation is wrong.
- ▶ Nonnegativity constraints for multiple sets of variables may be combined to save some " ≥ 0 ".
- One convention is to:
 - Use **lowercase** letters for variables (e.g., x_t).
 - Use **uppercase** letters for parameters (e.g., C_t).

Parameter declaration

▶ When creating parameter sets, we write something like

denote C_t as the unit production cost on day t, t = 1, ..., 4.

- ▶ Do not need to specify values, even though we have those values.
- Need to specify the range through indices.
- ▶ Parameter declarations should be at the beginning of the formulation.
- Parameters and variables are different.
 - ▶ Variables are those to be determined. We do not know there values before we solve the model.
 - Parameters are given with known values.
 - ▶ Parameters are **exogenous** and variables are **endogenous**.

Compact formulation for product mix

• Consider the product mix problem.

- Let n be the number of products and m be the number of resources.
- Let j and i be the indices for products and resources, respectively.
- We denote the unit sales price of product j as P_j , resource supply limit as R_i , and unit of resource i required for producing one unit of product j as A_{ij} , where i = 1, ..., m, j = 1, ..., n.
- Let x_i be the production quantity for product i, i = 1, ..., n.

▶ The compact formulation is

$$\max \sum_{j=1}^{n} P_{j} x_{j}$$

s.t.
$$\sum_{j=1}^{n} A_{ij} x_{j} \leq R_{i} \quad \forall i = 1, ..., m$$
$$x_{j} \geq 0 \quad \forall j = 1, ..., n.$$

Compact formulation for product mix

- Alternatively, let's define $J = \{1, ..., n\}$ as the set of products and $I = \{1, ..., m\}$ be the set of resources.
- ▶ The compact formulation is

$$\max \quad \sum_{j \in J} P_j x_j$$
s.t.
$$\sum_{j \in J} A_{ij} x_j \le R_i \quad \forall i \in I$$

$$x_j \ge 0 \quad \forall j \in J.$$

Problems vs. instances

- A **problem** is an abstract description of a task to be completed or a question to be solved.
 - ▶ When we express everything with symbols, we have a problem.
- An **instance** is a concrete specification of a problem.
 - ▶ When we plug in concrete values into symbols, we obtain an instance.
- A compact formulation like

$$\max \quad \sum_{j \in J} P_j x_j$$
s.t.
$$\sum_{j \in J} A_{ij} x_j \le R_i \quad \forall i \in I$$

$$r_i \ge 0 \quad \forall i \in J$$

describes a problem.

▶ A numeric formulation like

$$\begin{array}{ll} \max & 700x_1 + 900x_2 \\ \text{s.t.} & 3x_1 + 5x_2 \leq 3600 \\ & x_1 + 2x_2 \leq 1600 \\ & 50x_1 + 20x_2 \leq 48000 \\ & x_1 \geq 0, x_2 \geq 0 \end{array}$$

specifies an instance.