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Introduction

> Let’s study Linear Programming (LP).

> It is used a lot in practice.
> It also possesses useful mathematical properties.
> It is a good starting point for all OR subjects.

> We will study:

» What kind of practical problems may be solved by LP.
» How to formulate a problem as an LP.

:
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:

Linear Programs

» Linear Programming is the process of formulating and solving linear
programs (also abbreviated as LPs).

» An LP is a mathematical program with some special properties.

» Let’s first introduce some concepts of mathematical programs.
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Basic elements of a program

» In general, any mathematical program may be expressed as

min  f(z1, 22, ..., Tpn) (objective function)
st gi(x1, 22, 2n) <b; Vi=1,...,m (constraints)
z; €R Vj=1,..,n. (decision variable)

» There are m constraints and n variables.
» 11, xa, ..., and x, are real-valued decision variables.
> We may write

1

x = = (%1, .oy Tn)
Tn

as a vector of decision variables (or a decision vector).
> f:R®™ = R and g; : R" — R are all real-valued functions.
» Mostly we will omit z; € R.
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:
Transformation
» How about a maximization objective function?
» max f(z) < min — f(z).
» How about “=" or “>” constraints?
> gi(z) > bi & —gi(z) < —bs.
> gi(z) = b; & gi(z) < b; and gi(z) > by, ie., —gi(x) < —b;.
» For example:
max T — I min —xq To
st. —2x1 + a2 > =3 = s.t. 21, To < 3
Ty + 4xs = 5. 1 4dry < B
—I 4dry < 5.
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Sign constraints

» For some reasons that will be clear in the next week, we distinguish
between two kinds of constraints:

> Sign constraints: x; > 0 or z; < 0.
» Functional constraints: all others.
» For a variable z;:
» It is nonnegative if x; > 0.
» It is nonpositive if z; < 0.
> It is unrestricted in sign (urs.) or free if it has no sign constraint.

:
OR I: Linear Programming 7 /60




Terminology Graphical approach Three types of LPs Simple formulation Compact formulation

00000800000 0OO0000O00 0000000 0000000000000 0OO0O0O00000 000000000
:

Feasible solutions

» For a mathematical program:

» A feasible solution satisfies all the constraints.
» An infeasible solution violates at least one constraint.

» For example:

min 2x; + X2 » Feasible?
s.t. 1 < 10 >zl =(2,3).
Ty + 2z < 12 > 2% = (6,0).
£ — 2z > -8 > 23 = (6,6).
X1 Z 0
xTo Z 0.
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Feasible region and optimal solutions

> The feasible region (or feasible set) is the set of feasible solutions.
» The feasible region may be empty.
> An optimal solution is a feasible solution that:

> Attains the largest objective value for a maximization problem.
> Attains the smallest objective value for a minimization problem.
» In short, no feasible solution is better than it.

» An optimal solution may not be unique.

» There may be multiple optimal solutions.
» There may be no optimal solution.
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Binding constraints

» At a solution, a constraint may be binding:!

Definition 1
Let g(-) < b be an inequality constraint and T be a solution. g(-) < b is

binding at T if g(Z) = b.

» An inequality is nonbinding at a point if it is strict at that point.
» An equality constraint is always binding at any feasible solution.

> Some examples:
> z1 + x2 < 10 is binding at (z1,22) = (2, 8).
> 211 + x2 > 6 is nonbinding at (z1,z2) = (2,8).
> z1 + 3x2 =9 is binding at (z1,22) = (6,1).

IBinding/nonbinding constraints are also called active/inactive constraints.

:
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Strict constraints?

» An inequality may be strict or weak:

> It is strict if the two sides cannot be equal. E.g., z1 + x2 > 5.
> It is weak if the two sides may be equal. E.g., 1 + z2 > 5.

> A “practical” mathematical program’s inequalities are all weak.
» With strict inequalities, an optimal solution may not be attainable!
> What is an optimal solution of
min =z
s.t. = >07

» Think about budget constraints.

» You want to spend $500 to buy several things.
» Typically, you cannot spend more than $500.
» But you may spend exactly $500.

:
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Linear Programs

» A mathematical program » An example:
min  f(x) min 7 + Ts
st gi(x) <b; Vi=1,..,m, st. w1 +215<6
201 + 22 <6

is an LP if f and ¢;s are all linear functions.

» Each of these linear functions may be expressed 21 20,22 2 0.

as

n
a171 + a2 + - + anTn = E a;x;,
i=1

where a; € R, j =1,...,n, are the coefficients.

> We may write a = (a1, ..., a,) and f(z) = o’ x.
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Linear Programs

» In general, an LP may always be
expressed as

n
min E Cj:Ej
Jj=1

s.t. ZA,‘]‘.’IZJ‘ S bz Vi = ]., ey .

j=1

> A;;s: constraint coefficients.
> b;s: right-hand-side values (RHS).
> cjs: objective coefficients.

» Or by vectors:
min
s.t. alT:v <b;, Vi=1,..
» a; e R", b; R, ceR".
> e R™
» Or by matrices:

min ¢’z

s.t. Az <b.

> AcR™*" beR™.

OR I: Linear Programming
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Graphical approach

» For LPs with only two decision variables, we may solve them with the
graphical approach.

» Consider the following example:

max 2x1 + 1o
s.t. Iy < 10
1 + 2:172 S 12
xr, — 21‘2 Z -8
1 Z 0
T2 2 0.
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Graphical approach

> Step 1: Draw the feasible region.
» Draw each constraint one by one, and then find the intersection.

max 2r1  + T2
s.t. x1 < 10
o 4 2@ < 12 71 =10
2 — 21y > -8 Ty + 220 < 12
X1 Z 0
T2 Z 0.
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Terminology Graphical approach  Three types of LPs  Simple formulation Compact formulation
00000000000 000@00000 0000000 0000000000000 0O00000000 000000000

Graphical approach

» Step 2: Draw some isoquant lines.
> A line such that all points on it result in the same objective value.
» Also called isoprofit or isocost lines when it is appropriate.
> Also called indifference lines (curves) in Economics.

max 2r1  + To
s.t. x1 < 10
r1 + 2z < 12
X1 — 2%2 Z —8
X1 Z 0
z2 > 0.

\ 4\\‘2I1+I2=8

2{1}1 +‘{L’2=4
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Graphical approach

» Step 3: Indicate the direction to push the isoquant line.

> The direction that decreases/increases the objective value for a
minimization/maximization problem.

max 2x1 4+ a2
s.t. X1 < 10
r1 4+ 2z < 12
1 — 2z > -8
Ty Z 0
T2 Z 0.

\\‘ 4\\‘2371 + 20 = 8
21‘1 + x99 = 4

OR I: Linear Programming 18 /60
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Graphical approach

» Step 4: Push the isoquant line to the “end” of the feasible region.

» Stop when any further step makes all points on the isoquant line
infeasible.

x1§10

optional
solution

OR I: Linear Programming 19 /60
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Graphical approach

> Step 5: Identify the binding constraints at an optimal solution.

nonbinding

X +2.’L‘2 S 12

nonbinding

OR I: Linear Programming 20 /60
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Graphical approach

> Step 6: Set the binding constraints to equalities and then solve the
linear system for an optimal solution.
» In the example, the binding constraints are z; < 10 and x1 + 2x2 < 12.
» We may solve the linear system

10
12

1
z1 + 2z

in any way and obtain an optimal solution (z7,z3) = (10, 1).
» For example, through Gaussian elimination:

1010_)1010_}1010
1 2|12 0 2| 2 0 1|1

» Step 7: Plug in an optimal solution obtained into the objective
function to get the associated objective value.

» In the example, 227 + 25 = 21.

OR I: Linear Programming 21 /60
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Where to stop pushing?

» Where we push the isoquant line, where will be stop at?

> Intuitively, we always stop at a “corner” (or an edge).

» Is this intuition still true for LPs with more than two variables? Yes!

» A more rigorous definition of “corners” exists.

OR I: Linear Programming 22 /60
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Three types of LPs

» For any LPs, it must be one of the following:
» Infeasible.
» Unbounded.
» Finitely optimal (having an optimal solution).
» A finitely optimal LP may have:

» A unique optimal solution.
» Multiple optimal solutions.

OR I: Linear Programming 24 /60
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Infeasibility

> An LP is infeasible if its feasible region is empty.

min 3x; —+
s.t. r +
31’1 +

r1 —

)
T2
T2
T2

IN IV A

Ne

A\ T2

3x1+22>9

$1—$2§0

I1+$2§4

LN

OR I: Linear Programming
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Unboundedness

» An LP is unbounded if for any feasible solution, there is another
feasible solution that is better.

max r1 + T2
s.t. r1 + 2z
2z +  x9

VIV
o
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Unboundedness

» Note that an unbounded feasible region does not imply an
unbounded LP!

> Is it necessary?

(=]

st. x1 + 229
21+  xo

Vv
o

» If an LP is neither infeasible nor unbounded, it is finitely optimal.

OR I: Linear Programming 27 /60
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Multiple optimal solutions

» A linear program may have multiple optimal solutions.

T2

min 1 + 2x9

st. x + 2z > 6
207 4+ x2 > 6
T2 Z 0.

\

» If the slope of the isoquant line is identical to that of one constraint,
will we always have multiple optimal solutions?

T

OR I: Linear Programming 28 /60
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Summary

Unique
--” optimal solution

Infeasible
Finitely T
optimal ~ ~-_ N )
Feasible - Mu} tiple )
Unbounded optimal solutions

» In solving an LP (or any mathematical program) in practice, we only
want to find an optimal solution, not all.

> All we want is to make an optimal decision.

OR I: Linear Programming 29 /60
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Introduction

» It is important to learn how to model a practical situation as an LP.
» Once you do so, you have “solved” the problem.

» This process is typically called LP formulation or modeling.

» Here we will give you some examples of LP formulation.

» Practice makes perfect!

» Then we formulate large-scale problems with compact formulations.

OR I: Linear Programming 31 /60
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A product mix problem

» We produce several products to sell.
» Each product requires some resources. Resources are limited.

» We want to maximize the total sales revenue with available resources.

OR I: Linear Programming 32 /60
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:

Problem description

» We produce desks and tables.

» Producing a desk requires three units of wood, one hour of labor, and 50
minutes of machine time.

» Producing a table requires five units of wood, two hours of labor, and 20
minutes of machine time.

» We may sell everything we produce.
» For each day, we have

» Two hundred workers that each works for eight hours.
» Fifty machines that each runs for sixteen hours.
» A supply of 3600 units of wood.

» Desks and tables are sold at $700 and $900 per unit, respectively.
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Define variables

» What do we need to decide?
> Let

21 = number of desks produced in a day and

x2 = number of tables produced in a day.

> With these variables, we now try to express how much we will earn
and how many resources we will consume.

OR I: Linear Programming 34 /60
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Formulate the objective function

» We want to maximize the total sales revenue.
» Given our variables x1 and x5, the sales revenue is 70027 + 900z5.
» The objective function is thus

max 700x1 + 900z5.

OR I: Linear Programming 35 /60
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:

Formulate constraints

» For each restriction or limitation, we write a constraint:

Consumption per

Resource Total supply
Desk Table
Wood 3 units 5 units 3600 units
Labor 200 workers x 8 hr/worker
hour 1 hour 2 hours — 1600 hours
Ma.chme 50 minutes 20 minutes 50 machines x 16 hr/machine
time = 800 hours

» The supply of wood is limited: 3z; 4+ 5x2 < 3600.

» The number of labor hours is limited: z1 + 222 < 1600.

» The amount of machine time is limited: 50x7 + 2025 < 48000.
» Use the same unit of measurement!
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: :

Complete formulation

» Collectively, our formulation is

max 700x; + 900z,

s.t. 3x; + S5zo < 3600 (wood)
x + 2zo < 1600 (labor)
501 + 20xe < 48000  (machine)
Iy Z 0
ZTo Z 0.

» In any case:

» Clearly define decision variables in front of your formulation.
> Write comments after the objective function and constraints.

: :
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:

Solve and interpret

> An optimal solution of this LP is (884.21,189.47).

» So the interpretation is... to produce 884.21 desks and 189.47 tables?
> “Producing 884.21 desks and 189.47 tables” seems weird, but in fact:
» We may produce 884.21 desks and 189.47 tables per day in average
(i-e., roughly 88,420 desks and 18,947 tables per 100 days).
> We may suggest to produce, e.g., 884 desks and 189 tables.?
> It still supports our decision making.

It may not really be optimal, but we spend a very short time to make a
good suggestion.

> “All models are wrong, but some are useful.”

2Why not 885 desks and 190 tables or the other two ways of rounding?
|
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Produce and store!

» When we are making decisions, we may also consider what will happen
in the future.

» This creates multi-period problems.

» In many cases, products produced today may be stored and then sold
in the future.

» Maybe daily capacity is not enough.
» Maybe production is cheaper today.
» Maybe the price is higher in the future.

» So the production decision must be jointly considered with the
inventory decision.

OR I: Linear Programming 39 /60
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Problem description

» We produce and sell a product.

» For the coming four days, the marketing manager has promised to
fulfill the following amount of demands:

> Days 1, 2, 3, and 4: 100, 150, 200, and 170 units, respectively.
» The unit production costs are different for different days:

» Days 1, 2, 3, and 4: $9, $12, $10, and $12 per unit, respectively.
» The prices are all fixed. So maximizing profits is the same as

minimizing costs.
> We may store a product and sell it later.

> The inventory cost is $1 per unit per day.?
» E.g., producing 620 units on day 1 to fulfill all demands costs

$9 x 620 + $1 x 150 + $2 x 200 + $3 x 170 = $6, 640.

3Where does this inventory cost come from?
: :
OR I: Linear Programming 40 /60
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Problem description: timing

» Timing:
production sales
| | >
dayt—1 | day t P day t+1 time
beginning ending
inventory inventory

» Beginning inventory + production — sales = ending inventory.
» Inventory costs are calculated according to ending inventory.
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:

Variables and objective function

> Let

x; = production quantity of day ¢,t =1, ...,4.
y; = ending inventory of day ¢,t =1, ..., 4.

> It is important to specify “ending”!

» The objective function is

min 9z + 1229 + 1023 + 1224 + y1 + Y2 + Y3 + Y4

OR I: Linear Programming 42 /60
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Constraints

> We need to keep an eye on our inventory:
z1 —-100 @2 —150 @3 —200 a4 —170

I O S O S O D O

|
[
0 Y1 Y2 Y3 Y4

> Day 1: 1 — 100 = y;.

> Day 2: y1 + z2 — 150 = yo.

» Day 3: y2 + x3 — 200 = ys.

> Day 4: ys + x4 — 170 = y4.
» These are typically called inventory balancing constraints.
» We also need to fulfill all demands at the moment of sales:

> xq1 > 100, y1 + 2 > 150, y2 + x3 > 200, and y3 + x4 > 170.

» Also, production and inventory quantities cannot be negative.

:
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The complete formulation
» The complete formulation is

min  9z; + 1229 + 1023 + 1224 +y1 + Y2 + Y3 + Ya
s.t. a1 —100 =19y

y1 +x2 — 150 = yo

y2 + 3 — 200 = y3

ys + x4 — 170 = y4

x1 > 100

y1 +x2 > 150

Yo + x3 > 200

ys + x4 > 170

Ty >0 Vi=1,...,4.

: :
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:

Simplifying the formulation

» May we simplify the formulation?

» Inventory balancing and nonnegativity imply demand fulfillment!
> E.g.,inday 1, z1 — 100 = y; and y; > 0 means z; > 100.
» So the formulation may be simplified to

min 9y + 1222 + 1023 + 1224 +y1 +y2 +¥3 + ¥4
s.t. x1— 100 = y1

y1 +x2 — 150 = yo

ys +x3 — 200 =y3

ys + x4 — 170 = g4

>0,y >0 Vi=1,...4.

> Identifying redundant constraints (removing them does not alter the
feasible region) helps reduce the complexity of a program.

:
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:

Simplifying the formulation
» One may further argue that there is no need to have ending inventory
in period 4 (because it is costly but useless).

> So the formulation may be further simplified to

min  9z1 + 1229 4+ 1023 4+ 1224 + y1 + Y2 + y3
st. x1 —100 = y1,y;1 + 22 — 150 = 9o
ys + a3 — 200 =y3,y3 + 24 — 170 =0
>0 Vi=1,...,4
>0 Vi=1,..,3.

» However, this is not always suggested (at this stage).

» It is not required because a solver will see this.
> It is too difficult if the instance scale is large.

» In summary, simplification is good but in most cases unnecessary.

:
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:

Personnel scheduling

» We are scheduling employees in a department store.
» Each employee must work for five consecutive days and then take
rests for two consecutive days.
» The number of employees required for each day:

Mon Tue Wen Thu Fri Sat Sun
110 80 150 30 70 160 120

» There are seven shifts: Monday to Friday, Tuesday to Saturday, ...,
and Sunday to Thursday.

» We want to minimize the number of employees hired.
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Personnel scheduling

> We may find a feasible solution easily.
» For example, we may assign 150 employees to work from Monday to
Friday and 160 to work from Saturday to Wednesday:

Mon Tue Wen Thu Fri Sat Sun

Demand 110 80 150 30 70 160 120

Shift 1 150 150 150 150 150
Shift 6 160 160 160 160 160

Total 310 310 310 150 150 160 160

» This solution is feasible but seems to be bad.

:
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:

Decision variables and objective function

» Let Monday be day 1, Tuesday be day 2, etc.

» Let x; be the number of employees who starts to work from day ¢ for
five consecutive days.

P> x; is the number of employees assigned to shift .

» The objective function is thus:

min x1 + 2o + x3 + x4 + x5 + 6 + 7.
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Constraints

» Demand fulfillment:
»> 110 employees are needed on Monday:

x1 4+ T4+ x5 + 6 + 27 > 110.
» 80 employees are needed on Tuesday:

z1 4+ x2 + x5 + 26 + 7 > 80.
» 120 employees are needed on Sunday:

T3 + x4 + 5 + x6 + x7 > 120.

» Nonnegativity constraints:

;>0 Vi=1,..,T.
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Complete formulation

» The complete formulation is

min 1 + %2 + T3 + x4 + T + w®e + a7
st. 1 + gy + x5 + x¢ + xr > 110
1 + x2 + x5 + xs + x7 > 80
r1 + x2 + w3 + re + xr > 150
r1 + ®2 + 23 + a2 + 7 > 30
1 + ®m 4+ x3 + ® + x5 > 70
xo + x3 + x4 + T + w6 > 160
3 + ®a + 5 + xe + wr > 120
;>0 Vi=1,..,7
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Road map

Terminology.

The graphical approach.
Three types of LPs.
Simple LP formulations.

vvyVvyVvVvyy

Compact LP formulations.
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Compact formulations

» Most problem instances in practice are of large scales.
» The number of variables and constraints are huge.
» Many variables may be grouped together:
> E.g., x; = production quantity of day ¢,t =1, ...,4.
» Many constraints may be grouped together:
> Eg,xz: >0forallt=1,...,4.
» In modeling large-scale instances, we use compact formulations to
enhance readability and efficiency.
> We use the following three instruments:
» Indices (i, k,...).
> Summation (>)).
> For all (V).
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Compact objective function

» The production-inventory problem:

» We have several periods. In each period, we first produce and then sell.
» Unsold products become ending inventories.
» We want to minimize the total cost.

» Indices: Because things will repeat in each period, it is natural to
use an index for periods. Let ¢t € {1,...,4} be the index of periods.

» For the objective function:

min 927 + 1229 + 1023 + 1224 + y1 + y2 + y3 + y4,

if we denote the unit production cost on day t as Cy, t = 1,...,4, we
may rewrite it as

4
min Z(C’txt + ).

t=1
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Compacting the constraints

» The original constraints:

> —].00=y17 Y1 +x2—150:y2, Y2 +I3—200=y3, y3+$4—170=y4.
» Let’s denote the demand on day ¢t as Dy, t =1,...,4:

> Fort=2,..,4:yi—1+x¢ — Dt = ys.

»> We cannot apply this to day 1 as yo is undefined!

» To group the four constraints into one compact constraint, we add an
additional decision variable yq:

y¢ = ending inventory of day t,t =0, ..., 4.
» Then the set of inventory balancing constraints are written as
yp1+o— D=y Vi=1,..4

» Certainly we need to set up the initial inventory: yo = 0.
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The complete compact formulation

» The compact formulation is

4
Z (Crxe +y1)
s.t. Yi—1 1+ Tt _Dt =Yt Vit = 1,...,4
Yo =20

T, Yt > 0 Vt= 1, ,4

» Do not forget those for-all statements! Without them, the formulation

is wrong.
» Nonnegativity constraints for multiple sets of variables may be combined

to save some “> 0.
» One convention is to:

> Use lowercase letters for variables (e.g., x).
> Use uppercase letters for parameters (e.g., Cy).

:
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Parameter declaration

» When creating parameter sets, we write something like

denote Cy as the unit production cost on day t,t =1, ..., 4.

» Do not need to specify values, even though we have those values.

> Need to specify the range through indices.
» Parameter declarations should be at the beginning of the formulation.
» Parameters and variables are different.

» Variables are those to be determined. We do not know there values

before we solve the model.
» Parameters are given with known values.
> Parameters are exogenous and variables are endogenous.
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:

Compact formulation for product mix
» Consider the product mix problem.

» Let n be the number of products and m be the number of resources.

» Let j and ¢ be the indices for products and resources, respectively.

» We denote the unit sales price of product j as Pj, resource supply limit
as R;, and unit of resource ¢ required for producing one unit of product j
as Ajj, wherei=1,...,m, j=1,...,n.

» Let x; be the production quantity for product i, i =1,...,n.
» The compact formulation is

n
max E Pjx;
j=1

n
s.t. ZAU‘J}]' < RZ Vi = 1, ey M
j=1

;>0 Vji=1,..,n.
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:

Compact formulation for product mix

> Alternatively, let’s define J = {1,...,n} as the set of products and
I ={1,...,m} be the set of resources.

» The compact formulation is
max Z P G5
JjeJ

s.t. ZAijl'j <R, Yiel
JjeJ

:
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Problems vs. instances

> A problem is an abstract description of a task to be completed or a
question to be solved.

» When we express everything with symbols, we have a problem.
» An instance is a concrete specification of a problem.

» When we plug in concrete values into symbols, we obtain an instance.

» A compact formulation like » A numeric formulation like
max Z Pz max 700x7 + 900z4
jeJ s.t. 3x1 + Sz < 3600
s.t. ZAijij S Rl Vi € I z1 + 21)2 S 1600
jed 50x1 + 2025 < 48000
I]ZO V_]EJ 1 >0,20 >0
describes a problem. specifies an instance.

:
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