Programming Design Complexity and Graphs

Ling-Chieh Kung

Department of Information Management National Taiwan University

Outline

- Complexity
- The "big O" notation
- Terminology of graphs
- Graph algorithms

Complexity

- Given a task, we design algorithms.
 - These algorithms may all be correct.
 - One algorithm may be **better** than another one.
 - To compare algorithms, we compare their **complexity**.
- Time complexity and space complexity:
 - Time: We hope an algorithm takes a **short time** to complete the task.
 - Space: We hope an algorithm uses a small space to complete the task.
- Let's see some examples.

Space complexity

- Given a matrix A of $m \times n$ integers, find the row whose row sum is the largest.
- Two algorithms:
 - For each row, find the sum. Store the *m* row sums, scan through them, and find the target row.
 - For each row, find the sum and compare it with the currently largest row sum. Update the currently largest row sum if it is larger.

Space complexity: algorithm 1

• Let's implement algorithm 1:

```
const int MAX COL CNT = 3;
const int MAX ROW CNT = 4;
int maxRowSum(int A[][MAX COL CNT],
               int m, int n)
{
  // calculate row sums
  int rowSum[MAX ROW CNT] = {0};
  for(int i = 0; i < m; i++)
    int a RowSum = 0;
    for(int j = 0; j < n; j++)</pre>
      aRowSum += A[i][j];
    rowSum[i] = aRowSum;
  }
```

```
// find the row with the max row sum
int maxRowSumValue = rowSum[0];
int maxRowNumber = 1;
for(int i = 0; i < m; i++)
{
    if(rowSum[i] > maxRowSumValue)
    {
      maxRowSumValue = rowSum[i];
      maxRowNumber = i + 1;
    }
  }
return maxRowNumber;
}
```

Space complexity: algorithm 2

• Let's implement algorithm 2:

```
int maxRowSum(int A[][MAX COL CNT],
               int m, int n)
{
  int maxRowSumValue = 0;
  int maxRowNumber = 0;
  for(int i = 0; i < m; i++)
    int a RowSum = 0;
    for(int j = 0; j < n; j++)</pre>
      aRowSum += A[i][j];
    if (aRowSum > maxRowSumValue)
      maxRowSumValue = aRowSum;
      maxRowNumber = i + 1;
  return maxRowNumber;
}
```

Graph algorithms

Space complexity: comparison

- The two algorithms use different amounts of space:
 - Algorithm 1: Declaring an array and three integers.
 - Algorithm 2: Declaring three integers.
- Algorithm 2 has the lower space complexity.

Time complexity

- In general, people care more about time complexity.
 - When we say "complexity," we mean time complexity.
- Intuitively, the complexity of an algorithm can be measured by executing the algorithm and **counting the running time**.
 - Maybe you want to do this several times and calculate the average.
- However, we need to remove the impact of machine capability.
- We may count the **number of basic operations** instead.
 - Basic operations: declaration, assignment, arithmetic, comparisons, etc.

Time complexity: example

- Consider the previous example.
- Let's count the number of basic operations algorithm 1.
- For the first part of algorithm 1, we have 5mn + 10m + 2 basic operations.

	Decl.	Assi.	Arith.	Comp.	int rowSum[MAX_ROW_CNT] = $\{0\}$; // (1)
(1)	т	т	0	0	<pre>for(int i = 0; i < m; i++) // (2) {</pre>
(2)	1	m + 1	m	m	int aRowSum = 0; $//$ (3)
(3)	m	m	0	0	for (int $j = 0; j < n; j++) // (4)$ aRowSum += A[i][j]; // (5)
(4)	m	m(n + 1)	mn	mn	rowSum[i] = aRowSum; // (6)
(5)	0	mn	mn	0	}
(6)	0	m	0	0	// the remaining are skipped

Graph algorithms

Time complexity: principle

- Wait... this is so tedious! And there is **no need to** be that precise.
- Consider algorithm 1:
 - -5mn + 10m + 2 is roughly 5mn if n is large enough.
 - The bottleneck is the first part (the second part has only one level of loop).
 - The total number of operations is roughly 5mn.
- Moreover, that constant 5 does not mean a lot:
 - It does not change when we get more integers (m or n increases).
- As we care the complexity of an algorithm the most when **the instance size is large**, we will ignore those constants and minor (non-bottleneck) parts.
 - We only focus on how the number of operations **grow** at the **bottleneck**.

Complexity Terminology of graphs

Time complexity: example

- Let's analyze algorithm 2.
- The bottleneck is the two **nested loops**.
- The complexity is roughly *mn*:
 - This is how the execution time would grow as the input size increases.
- To formalize the above idea, let's introduce the "big O" notation.

```
int maxRowSum(int A[][MAX COL CNT],
              int m, int n)
{
  int maxRowSumValue = 0;
  int maxRowNumber = 0;
  for(int i = 0; i < m; i++)
    int aRowSum = 0;
    for(int j = 0; j < n; j++)</pre>
      aRowSum += A[i][j];
    if (aRowSum > maxRowSumValue)
      maxRowSumValue = aRowSum;
      maxRowNumber = i + 1;
 return maxRowNumber;
```

Outline

- Complexity
- The "big O" notation
- Terminology of graphs
- Graph algorithms

The "big O" notation

Mathematically, let *f*(*n*) ≥ 0 and *g*(*n*) ≥ 0 be two functions defined for *n* ∈ N.
 We say

 $f(n) \in O(g(n))$

if and only if there exists a positive number c and a number N such that

 $f(n) \leq cg(n)$

for all $n \ge N$.

- Intuitively, that means when *n* is large enough, g(n) will dominate f(n).
- If f(n) is the number of operations that an algorithms takes to complete a task, we say the algorithm's time complexity is g(n).
 - We write $f(n) \in O(g(n))$, but some people write f(n) = O(g(n)).

Examples

- Let $f(n) = 100n^2$, we have $g(n) = n^3$, i.e., $f(n) \in O(n^3)$.
 - We may choose c = 100 and N = 1: $100n^2 \le 100n^3$ for all $n \ge 1$.
 - We may choose c = 1 and N = 100: $100n^2 \le 1n^3$ for all $n \ge 100$.
- Let $f(n) = 100\sqrt{n} + 5n$, we have g(n) = n:
 - We may choose c = 6 and N = 10: $100\sqrt{n} + 5n \le 6n$ for all $n \ge 10000$.
- Let $f(n) = n \log n + n^2$, we have $g(n) = n^2$.
- Let f(n) = 10000, we have g(n) = 1.
- Let f(n) = 0.0001n², we cannot have g(n) = n:
 For any value of c, we have 0.0001n² > cn if n > 10000c.
- Let $f(n) = 2^n$, we cannot have $g(n) = n^{100}$.

Growth of functions

- In general, we may say that functions have **different growth speeds**.
- If a function grows faster than another one, we say the former "dominates" the latter or the former is "an upper bound" of the latter.

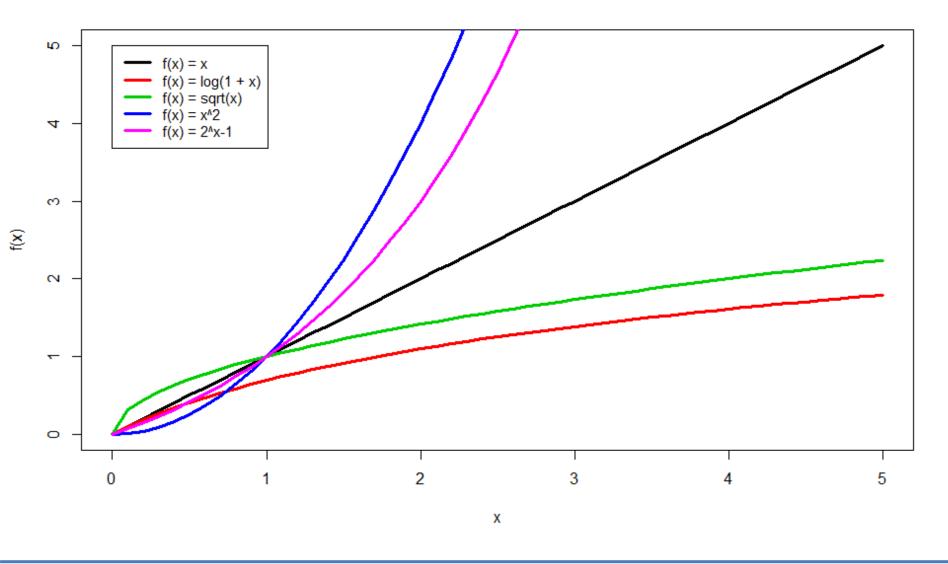
n	5	10	50	100	1000
log n	2.32	3.32	5.64	6.64	9.97
\sqrt{n}	2.24	3.16	7.07	10.00	31.62
n	5	10	50	100	1000
$n\log n$	11.61	33.22	282.19	664.39	9965.78
n^2	25	100	2500	10000	1000000
2^n	32	1024	1.13×10^{15}	1.27×10^{30}	1.07×10^{301}
<i>n</i> !	120	3628800	3.04×10^{64}	9.33×10^{157}	Too big!!

Complexity

Terminology of graphs

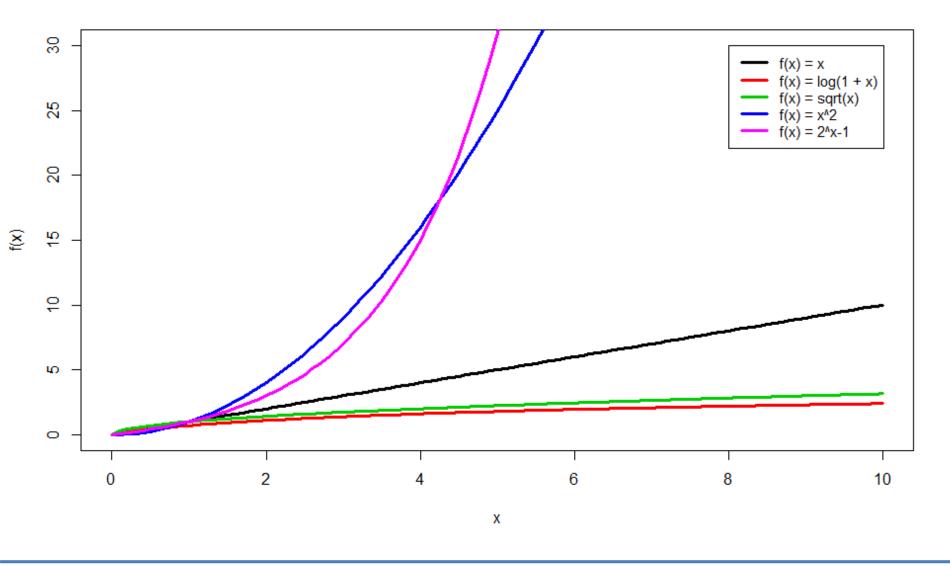
Graph algorithms

Growth of functions



Graph algorithms

Growth of functions



Programming Design – Complexity and Graphs

Ling-Chieh Kung (NTU IM)

The "big O" notation for algorithms

- For an algorithm, we use the "big O" notation to denote its complexity.
 - If the number of basic operations is f(n), we first find a valid g(n) such that $f(n) \in O(g(n))$.
 - We then say that the algorithm's complexity is O(g(n)), or just g(n).
- Note that for each f(n), we have many valid g(n). As these g(n) are all upper bounds of f(n), we typically use **the smallest one** that we may find.

Example 1

- Going back to the previous example, algorithm 2's complexity is O(mn).
 - The execution time is proportional to the matrix size.
 - It should be fine for the matrix to have millions of elements.

```
int maxRowSum(int A[][MAX COL CNT],
              int m, int n)
{
  int maxRowSumValue = 0;
  int maxRowNumber = 0;
  for(int i = 0; i < m; i++)
    int a RowSum = 0;
    for(int j = 0; j < n; j++)</pre>
      aRowSum += A[i][j];
    if (aRowSum > maxRowSumValue)
      maxRowSumValue = aRowSum;
      maxRowNumber = i + 1;
 return maxRowNumber;
```

Example 2

- Recall our examples for listing all prime numbers that are below *n*.
- What is the most naïve algorithm's complexity?
 - Consider isPrime() first.

```
bool isPrime(int x)
{
  for(int i = 2; i < x; i++)
    if(x % i == 0)
    return false;
  return true;
}</pre>
```

The number of operations depends on the value of x! 18 is easy but 17 is hard.

```
#include <iostream>
using namespace std;
bool isPrime(int x);
int main()
  int n = 0;
  cin \gg n;
  for(int i = 2; i <= n; i++)</pre>
    if(isPrime(i) = true)
      cout << i << " ";
  return 0;
```

Worst-case time complexity

- In many cases, the number of operations of running an algorithm depends on not only the **number of input values** but also **contents of input values**.
- People talk about two kinds of time complexity:
 - Average-case time complexity: the expected number of operations required for a randomly drawn input. The probability distribution matters.
 - Worst-case time complexity: the maximum possible number of operations required for a randomly drawn input.
- The "big O" notation typically deals with worst-case complexity.

Example 2

- The most naïve algorithm's complexity:
 - Checking whether x is prime is O(x).

```
bool isPrime(int x)
{
   for(int i = 2; i < x; i++)
        if(x % i == 0)
        return false;
   return true;
}</pre>
```

- Checking all values below n is

```
O(1 + 2 + \dots + n) = O(n^2).
```

• The most naïve algorithm's complexity is $O(n^2)$.

```
#include <iostream>
using namespace std;
bool isPrime(int x);
int main()
  int n = 0;
  cin \gg n;
  for(int i = 2; i <= n; i++)</pre>
    if(isPrime(i) = true)
      cout << i << " ";
  }
  return 0;
```

Example 3

• We have a better algorithm:

```
bool isPrime(int x)
{
   for(int i = 2; i * i <= x; i++)
        if(x % i == 0)
        return false;
   return true;
}</pre>
```

- For **isPrime()**, the complexity is $O(\sqrt{x})$.
- For the whole algorithm, the complexity is $O(\sum_{k=1}^{n} \sqrt{k})$. How large is this?

Terminology of graphs

Example 3: analysis

• Obviously, we have

$$\sum_{k=1}^n \sqrt{k} = \sqrt{1} + \cdots \sqrt{n} \le \sqrt{n} + \cdots + \sqrt{n} = n\sqrt{n} = n^{3/2}.$$

- Therefore, we have $O(n^{3/2})$ for the better algorithm.
 - This is better than $O(n^2)$. This algorithm is indeed **theoretically** better.
 - Is it the **smallest** upper bound?

Complexity

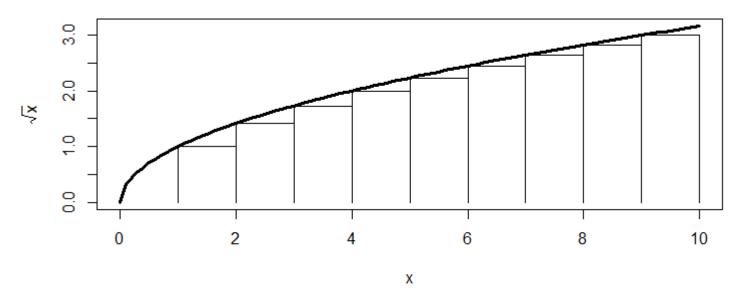
Terminology of graphs

Example 3: analysis

• Thanks to calculus, we have

$$\sum_{k=1}^{n} \sqrt{k} \le \int_{1}^{n+1} x^{1/2} dx = \frac{2}{3} x^{3/2} \Big|_{1}^{n+1} = \frac{2}{3} \left[(n+1)^{3/2} - 1 \right].$$

• If n = 9:



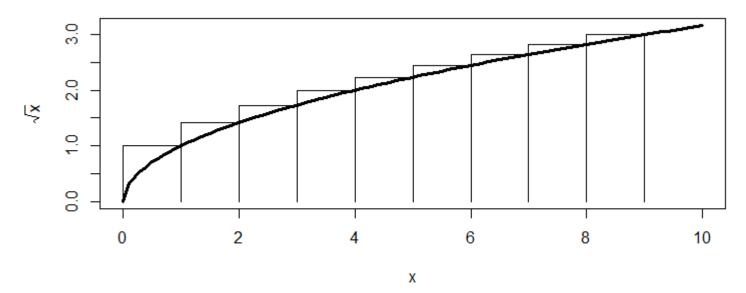
Terminology of graphs

Example 3: analysis

• Thanks to calculus, we have

$$\sum_{k=1}^{n} \sqrt{k} \ge \int_{0}^{n} x^{1/2} dx = \frac{2}{3} x^{3/2} \Big|_{0}^{n} = \frac{2}{3} n^{3/2}.$$

• If n = 9:



Example 3: analysis

• Now we have

$$\frac{2}{3}n^{3/2} \le \sum_{k=1}^{n} \sqrt{k} \le \frac{2}{3} \left[(n+1)^{3/2} - 1 \right],$$

- Therefore, $O(\sum_{k=1}^{n} \sqrt{k}) = O(n^{3/2})$ should be a good estimate.
- Now we know why studying calculus! XD

Example 4

• For listing all prime numbers below *n*, our best algorithm is:

```
Given a Boolean array A of length n

Initialize all elements in A to be true // assuming prime

for i from 2 to n

if A_i is true

print i

for j from 1 to \lfloor n/i \rfloor // eliminating composite numbers

Set A[i \times j] to false
```

- The outer loop has O(n) iterations.
- For the *i*th iteration of the outer loop, the inner loop has O(n/i) iterations.
- Let's ignore the selection statement for simplicity ("in the worst case").
- The overall complexity is $O(n/2 + n/3 + \dots + n/n)$. How large is it?

Terminology of graphs

Example 4: analysis

• We have

$$n\left(\frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}\right) \le n \int_{1}^{n} \frac{1}{x} dx = n \ln n.$$

- Therefore, $O(n/2 + n/3 + \dots + n/n) = O(n \ln n)$.
 - $n \ln n < n \sqrt{n}, \text{ good!}$
- In fact, the inner loop will be initiated only if we encounter a prime number.
- The true complexity is

$$O\left(\frac{n}{2} + \frac{n}{3} + \frac{n}{5} + \frac{n}{7} + \frac{n}{11} + \cdots\right).$$

- Even smaller than $O(n \ln n)$.

Remarks

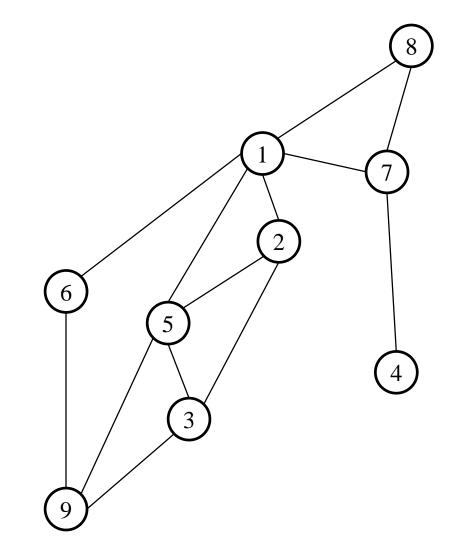
- Analyzing an algorithm's complexity is critical in algorithm design.
 - We focus on how the number of operations grow as the input size increases.
- We use the "big O" notation:
 - We ignore tedious details, non-bottlenecks, and constants.
 - We focus on the worst case.
- There are some algorithms whose complexity cannot be easily analyzed.
 - E.g., those constructed by recursion.
- There are other measurements (small o, theta, big omega, small omega).
 - Expect them in your future courses!

Outline

- Complexity
- The "big O" notation
- Terminology of graphs
- Graph algorithms

Graphs/networks

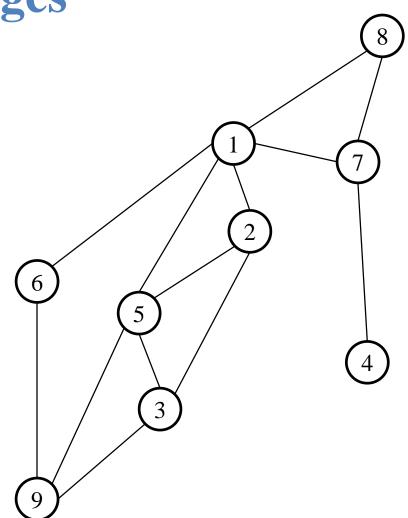
- In graph theory, we talk about graphs/networks.
- A graph has **nodes** (**vertices**) and **edges** (**arcs/links**).
 - A typical interpretation: Nodes are locations and arcs are roads.
- This graph has 9 nodes and 13 edges.
- Two nodes are **adjacent** if there is an edge between them.
 - We say they are **neighbors**.
 - A node's degree is its number of neighbors.



Complexity

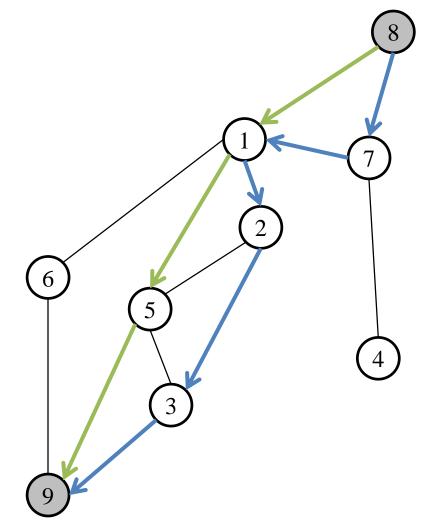
Directed/undirected edges

- Edges may be **directed** or **undirected**.
 - For an edges from u to v, we denote it as (u, v) if it is directed or [u, v] if it is undirected.
 - A graph is a directed graph if its edges are directed.
- In this graph, we have edge [1, 6] (or [6, 1]), but we do not have edge [5, 6].
- This is an undirected graph.

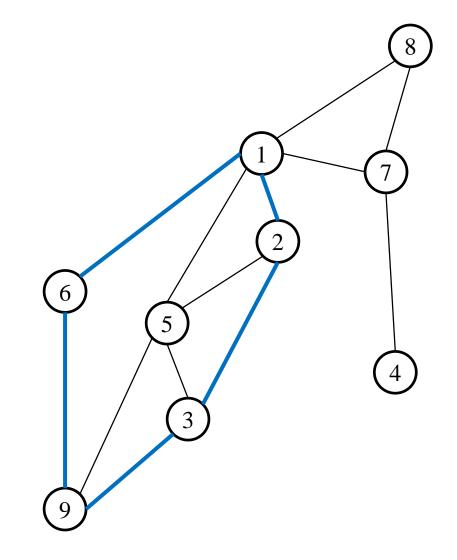


Paths

- A path (route) from node s to node t is a set of directed edges (s, v₁), (v₁, v₂), ..., and (v_{k-1}, v_k), and (v_k, t) such that s and t are connected.
 - s is called the source and t is called the destination of the path.
 - Sometimes we write a path as $(s, v_1, v_2, ..., v_k, t)$.
 - Direction matters!
- There are at least two paths from node 8 to node 9: (8, 1, 5, 9) and (8, 7, 1, 2, 3, 9).

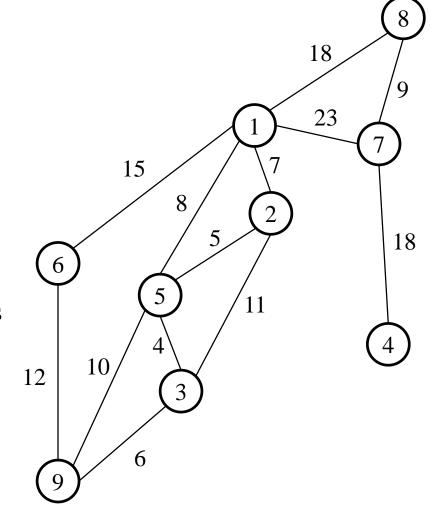


- A cycle (equivalent to circuit in some textbooks) is a path whose destination node is the source node.
 - A path is a simple path if it is not a cycle.
 - A graph is an acyclic graph if it contains no cycle.
- There is a cycle (1, 2, 3, 9, 6).



Weights

- An edge may have a **weight**.
 - A weight may be a distance, a cost per unit item shipped, etc.
 - A weighted graph is a graph whose edges are weighted.
- In this network, we may use edge weights to represent distances.
 - The distance of the path (8, 1, 5, 9) is
 36. That of (8, 7, 1, 2, 3, 9) is 56.
- A node may also have a weight.



Graph algorithms

Storing a graph in an adjacency matrix

- To write a program that deals with a graph, we must have a way to store the graph in our program.
- Two typical data structures are **adjacency matrices** and **adjacency lists**.
- Adjacency matrix:
 - For a graph with *n* nodes, we construct an $n \times n$ array *A*.
 - If the graph is unweighted, make the array a Boolean array. Let $A_{ij} = 1$ if there is an edge (i, j) (or [i, j] if undirected). Let $A_{ii} = 1$ for either case.
 - If the graph is weighted, make the array an integer/float/double array. Let A_{ij} be the weight of the edge (i, j) (or [i, j] if undirected). Use a specially chosen value $(-1, \infty, \text{etc.})$ to indicate the nonexistence of edges.

1 1 0

0 1

Adjacency matrix: example 1

0 1

0 1 1

י0

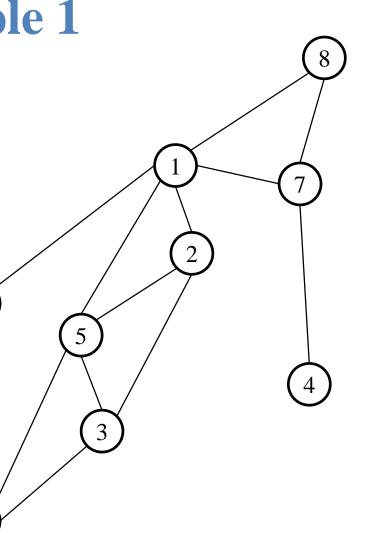
g

For this unweighted graph, the adjacency matrix is

0 0 0 0 1 1

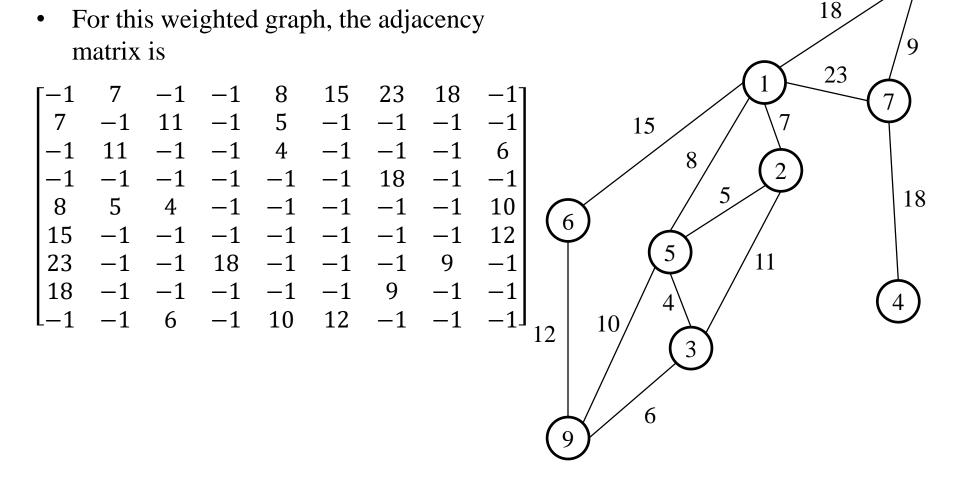
1 1 0 1 0 0

1 0 0



Complexity

Adjacency matrix: example 2



8

The "big O" notation

Adjacency matrix

- An adjacency matrix is simple and straightforward.
- However, it is **space inefficient** if the graph has only **few edges**.
- To remedy this, we may use an adjacency list.
 - For each node, we record its neighbors and (if weighted) distances to it neighbors.
 - We will introduce this until we introduce pointers.

Outline

- Complexity
- The "big O" notation
- Terminology of graphs
- Graph algorithms

Graph algorithms

- As graphs can represent many things (logistic networks, power networks, social networks, etc.), there are many interesting issues.
 - How to find a shortest path from a node to another node?
 - How to link all nodes while minimizing the weights of selected edges?
 - How to check whether there is a cycle?
 - How to find the node with the maximum degree (number of neighbors)?
 - How to select the minimum number of nodes such that all nodes are either selected or adjacent to a selected node?
- Algorithms that solve these issues on graphs are **graph algorithms**.
- Below we give some examples demonstrating how to use an adjacency matrix.

Maximum degree

- How to find the **node** with the **maximum degree** (number of neighbors)?
- Given an adjacency matrix for an unweighted graph:
 - For each row (which means a node), find the number of 1s.
 - Compare all rows to see which row is the winner.
- This is exactly the algorithm of finding the row with the largest row sum!

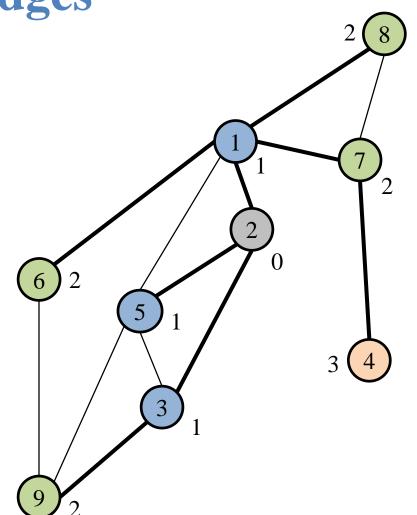
Ling-Chieh Kung (NTU IM)

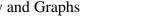
Terminology of graphs

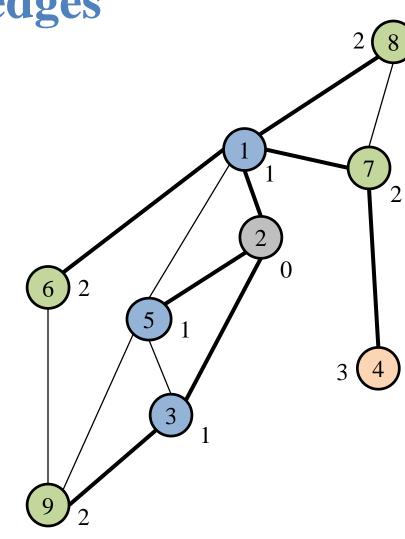
Complexity

Minimum number of edges

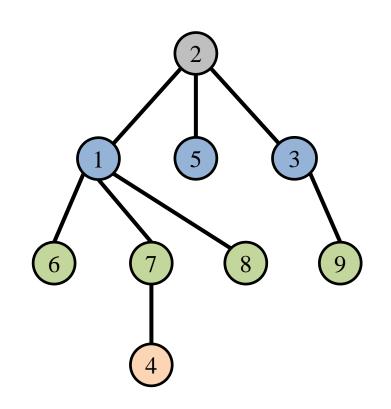
- Given an undirected unweighted graph G = (V, E), where V is the set of nodes and *E* is the set of edges, and a node *s*, please find the minimum numbers of edges one needs to move from s to all other nodes.
- In this graph, if s = 2, the value beside each node is the minimum number of edges one needs to move from node 2 to that node.







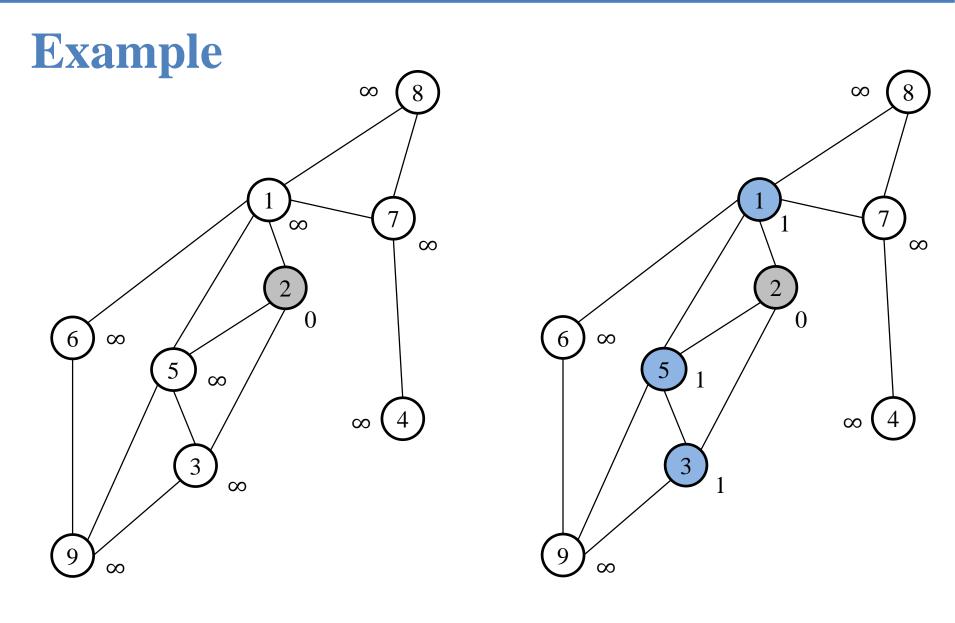
Those "shortest paths" (thick lines in the ۲ graph) together form a spanning tree.



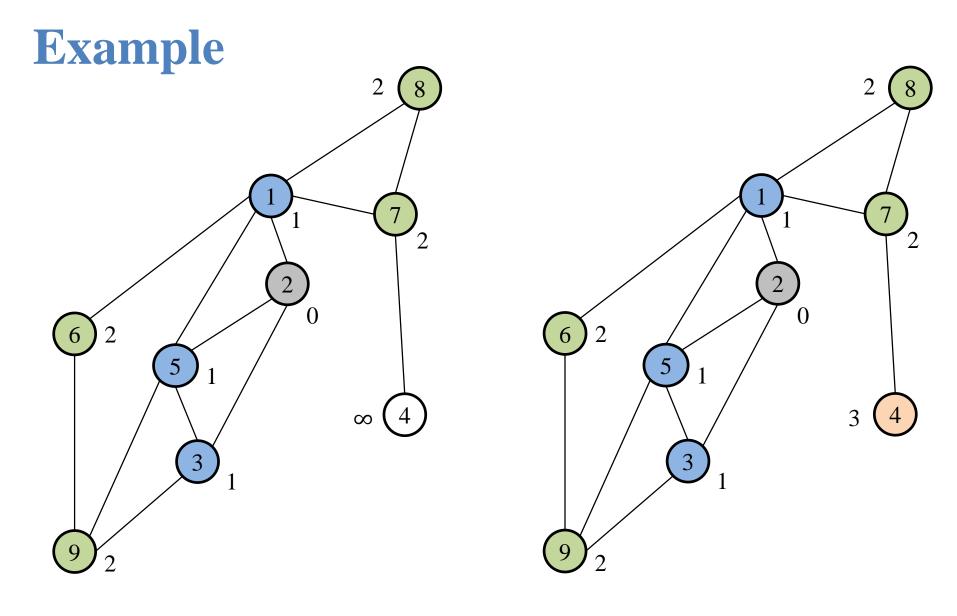
Minimum number of edges

- To find the distances from *s* to all nodes, we use **breadth-first search** (**BFS**).
- Let all nodes have weights representing their distances from *s*.
 - First, we label *s* as 0 and all other nodes as ∞ .
 - We then find the neighbors of *s*. Label them as 1.
 - For each node whose label is 1, find its neighbors that are currently labeled as ∞. Label them as 2.
 - Continue until all nodes are labeled.
- The graph should be **connected** (i.e., there is a path from *s* to any other node).

Graph algorithms



Graph algorithms



Graph algorithms

Implementation: function header

```
#include <iostream>
using namespace std;
const int MAX NODE CNT = 10;
   Input:
// - adjacent: the adjacency matrix
// - nodeCnt: number of nodes
// - source: the source node
// - dist: to store the distances from the source
// This function will find the distances from the source
// node to each node and put them in "dist"
void distFromSource (const bool adjacent[][MAX NODE CNT],
                    int dist[], int nodeCnt, int source);
```

Implementation: main function

```
int main()
  int nodeCnt = 5;
 bool adjacent[MAX NODE CNT] [MAX NODE CNT]
    = \{\{1, 1, 0, 0, 1\}, \{1, 1, 1, 0, 0\}, \{0, 1, 1, 1, 0\},\
       \{0, 0, 1, 1, 1\}, \{1, 0, 0, 1, 1\}\};
  int dist[MAX NODE CNT] = {0};
  int source = 0;
  distFromSource (adjacent, dist, nodeCnt, source);
  cout << "\nThe complete result: \n";
  for(int i = 0; i < nodeCnt; i++)</pre>
    cout \ll dist[i] \ll "";
  return 0;
}
```

Implementation: function body

Implementation: function body

```
// continue from the previous page
while(complete < nodeCnt) {</pre>
  for(int i = 0; i < nodeCnt; i++) { // one for a level</pre>
    if(dist[i] = curDist - 1) {
      for (int j = 0; j < nodeCnt; j++) { // from i to j
        if (adjacent[i][j] = true
           && dist[j] = nodeCnt) {
          dist[j] = curDist;
          complete++;
  curDist++;
```

Complexity

- There is a three-level loop.
 - Each of the two for loops has *n* iterations, where *n* is the number of nodes.
 - In the worst case, the while loop has n iterations (if in each iteration we label only one node).
- Is the algorithm's complexity $O(n^3)$?
- Not really!
 - The most inner loop will be initiated only if its label equals curDist 1.
 - For each node, this will be true for exactly once.
 - In the worst case, the while loop and first for loop together give $O(n^2)$.
 - The most inner loop gives another $O(n^2)$.
 - The overall complexity is $O(n^2 + n^2) = O(n^2)$.

Remarks

- The name "breadth-first search" comes from the fact that "we reach all neighbors of a node before we reach neighbors of neighbors."
 - Please search for breadth-first search and "depth-first search" to learn more.
- BFS can be done with a lower complexity.
 - O(n + m), where m is the number of edges.
 - By using a data structure "queue."

