Information Economics Suggested Solution for Problem Set 3

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. (a) Let the decision variables be

$$
x_{i}=\text { price of product } i, i=A, B .
$$

The problem can then be formulated as

$$
\begin{align*}
\max & 1000 x_{A}+1500 x_{B} \\
\text { s.t. } & 10-x_{A} \geq 0 \tag{IR-1}\\
& 15-x_{B} \geq 0 \tag{IR-2}\\
& 10-x_{A} \geq 8-x_{B} \tag{IC-1}\\
& 15-x_{B} \geq 12-x_{A} . \tag{IC-2}
\end{align*}
$$

The objective function maximizes the total sales revenue because group 1 members purchase A and group 2 members purchase B. Constraint (IR-1) ensures that a group 1 member is willing to buy product A. Constraint (IR-2) ensures that a group 2 member is willing to buy product B. Constraint (IC-1) ensures that a group 1 member prefers product A. Constraint (IC-2) ensures that a group 2 member prefers product B.
(b) First, note that (IR-2) is redundant because

$$
15-x_{B} \geq 12-x_{A} \geq 10-x_{A} \geq 0
$$

where the first inequality is (IC-2) and the last inequality is (IR-1). Once we remove (IR-2), we can show that (IC-2) is binding at any optimal solution. Suppose this is not the case, we will increase x_{B} for a sufficiently small amount without violating any constraint. We then have $x_{B}=x_{A}+3$, which implies that (IC-1) is satisfied by any optimal solution because

$$
8-x_{B}=5-x_{A} \leq 10-x_{A} .
$$

Once we remove (IC-1), it is clear that (IR-1) must be binding at any optimal solution, so $x_{A}=10$ and $x_{B}=13$. These are the optimal prices.
2. (a) $\theta \in\left\{r_{L}, r_{H}\right\}$ is the retailer's type. $v(q)$ is the expected sales volume given the inventory level q, which is

$$
\int_{0}^{q} x f(x) d x+\int_{q}^{1} q f(x) d x=q-\frac{1}{2} q^{2} .
$$

Within $[0,1]$, it is clear that $v^{\prime}(q)>0$ and $v^{\prime \prime}(q)<0$, and thus $v(q)$ is strictly increasing and strictly concave in the domain of interest.
(b) Our formula $\theta_{i} v^{\prime}\left(q_{i}^{F B}\right)=c$ translates to $r_{i}\left(1-q_{i}^{F B}\right)=c$, i.e., $q_{i}^{F B}=1-\frac{c}{r_{i}}$. The associated transfer is $t_{i}^{F B}=r_{i} v\left(q_{i}^{F B}\right)=\frac{1}{2 r_{i}}\left(r_{i}^{2}-c^{2}\right)$.
(c) The problem can be formulated as

$$
\begin{array}{ll}
\max & \beta\left(t_{L}-c q_{L}\right)+(1-\beta)\left(t_{H}-c q_{H}\right) \\
\text { s.t. } & r_{L}\left(q_{L}-\frac{1}{2} q_{L}^{2}\right)-t_{L} \geq r_{L}\left(q_{H}-\frac{1}{2} q_{H}^{2}\right)-t_{H} \\
& r_{H}\left(q_{H}-\frac{1}{2} q_{H}^{2}\right)-t_{H} \geq r_{H}\left(q_{L}-\frac{1}{2} q_{L}^{2}\right)-t_{L} \\
& r_{L}\left(q_{L}-\frac{1}{2} q_{L}^{2}\right)-t_{L} \geq 0 \\
& r_{H}\left(q_{H}-\frac{1}{2} q_{H}^{2}\right)-t_{H} \geq 0 \tag{IR-H}
\end{array}
$$

(d) Because $\frac{r_{H}-r_{L}}{r_{H}}=\frac{1}{5}<\frac{1}{2}$, we have

$$
r_{H} v^{\prime}\left(q_{H}^{*}\right)=r_{H}\left(1-q_{H}^{*}\right)=c \quad \Longleftrightarrow \quad q_{H}^{*}=1-\frac{2}{10}=\frac{4}{5}
$$

and

$$
r_{L} v^{\prime}\left(q_{L}^{*}\right)=r_{L}\left(1-q_{L}^{*}\right)=c\left(\frac{1}{1-\frac{1-\beta}{\beta} \frac{r_{H}-r_{L}}{r_{L}}}\right) \quad \Longleftrightarrow \quad q_{L}^{*}=1-\frac{8 / 3}{8}=\frac{2}{3}
$$

The associated transfers are $t_{L}^{*}=8\left(\frac{2}{3}-\frac{2}{9}\right)=\frac{32}{9}$ and $t_{H}^{*}=10\left(\frac{12}{25}-\frac{4}{9}\right)+\frac{32}{9}=\frac{176}{45}$.
(e) We have $\frac{2}{3}<\frac{4}{5}$, which means $q_{L}^{*}<q_{H}^{*}$. Moreover, we have $\frac{2}{3}<1-\frac{2}{8}=\frac{3}{4}$, which mean $q_{L}^{*}<q_{L}^{F B}$.

