1. Consider the model in the section The first model. Suppose that θ now is distributed uniformly in $[a, b]$, where $0 \leq a<b<\infty$.
(a) Formulate the demand function as a function of p.
(b) Formulate the profit function as a function of p.
(c) Derive the optimal price and the associated profit.
(d) Show how a, b, and c affect the optimal price.
2. Consider the model in the section Exogenous product quality. Suppose that θ now is distributed uniformly in $[a, b]$, where $0 \leq a<$ $b<\infty$.
(a) Formulate the demand function as a function of p.
(b) Formulate the profit function as a function of p.
(c) Derive the optimal price and the associated profit.
(d) Show how a, b, c, and q affect the optimal price.
3. Consider the model in the section Exogenous product quality. Suppose that θ now follows a continuous distribution characterized by the PDF f and CDF F.
(a) Formulate the demand function as a function of p.
(b) Formulate the profit function as a function of p.
(c) Derive an optimality condition for an optimal price.
(d) Prove that the optimal price increases in c and q or give a condition under which this is true.
4. Consider the binary model in the section Endogenous product quality. Suppose that the product is an information good. While there is no unit production cost, there is an $R \& D \operatorname{cost} \frac{c q^{2}}{2}$ to reach the product quality level q.
(a) Formulate the two optimization problems for selling to all consumers or only the high-end consumers.
(b) Solve the two optimization problems.
(c) Give a condition under which serving all customers is better than serving only the high segment.
5. Consider the model in the section Exogenous product quality. Suppose that now the product is a network good, and a consumer's utility function of buying the product now becomes

$$
\theta q-p+t x
$$

where x is the number of consumers buying the product and t is the degree of network externality. Assume that $\theta \sim \operatorname{Uni}(0,1)$.
(a) Formulate the demand function as a function of p.
(b) Formulate the profit function as a function of p.
(c) Derive the optimal price, if possible, or derive an optimality condition for an optimal price.
(d) Show how c, q, and t affect the optimal price.

