| The story<br>000000 | Model<br>00000 | Optimal contracts<br>00000000 | Findings<br>0000000 | Extensions and conclusions 000000 |
|---------------------|----------------|-------------------------------|---------------------|-----------------------------------|
|                     |                |                               |                     |                                   |
|                     |                |                               |                     |                                   |

# Information Economics Cascade Contract Design and

# Partial Monitoring

#### Ling-Chieh Kung

Department of Information Management National Taiwan University

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 00000     | 00000 | 0000000           | 0000000  | 000000                     |
|           |       |                   |          |                            |

### Road map

- ► The story.
- ► Model.
- ▶ Optimal contracts.
- ► Findings.
- ▶ Extensions and conclusions.

# Different supply chains in practice

- ▶ Some manufacturers hire salespeople directly.
  - ▶ A car manufacturer lets its salespeople work at a car dealer's store.
  - ▶ A beer manufacturer lets its salespeople work at a restaurant.
- ▶ Some manufacturers let retailers manage salespeople.
- ► Why?



#### When a manufacturer hires a salesperson

- ▶ The salesperson needs to put **efforts** in promoting the product.
  - ▶ The efforts are costly: No one wants to work for free.
  - ▶ The efforts are hidden.
- ▶ The manufacturer will pay **commissions** to the salesperson.
  - ▶ The salesperson's payoff is based on the sales outcome.
- However, the outcome is **uncertain**.
  - ▶ What if a salesperson is diligent (resp., lazy) in promoting an unpopular (resp., popular) product?
  - What if the **market condition** is just bad?
- ▶ The market condition is also **hidden** to the manufacturer.
  - ▶ Is a high sales volume due to the salesperson's hard work or a good market condition?
  - ▶ If a salesperson is rewarded or punished by luck, will he work hard?

| The story 000000 | Model | Optimal contracts | Findings | Extensions and conclusions |
|------------------|-------|-------------------|----------|----------------------------|
|                  | 00000 | 00000000          | 0000000  | 000000                     |
|                  |       |                   |          |                            |

#### When a retailer hires a salesperson

- ► The market condition and sales effort introduce information asymmetry between manufacturers and salespeople.
- ▶ How to collect more information?
- ▶ Find a retailer!
  - The retailer is closer to the market and to the salespeople.
  - ▶ She knows more about the market condition and sales efforts.
- ▶ We will focus on the **informational impact** of including a retailer.
  - ▶ The retailer simply **resell** the product.
  - It is called a **reseller** in this study.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 0000000           | 0000000  | 000000                     |
|           |       |                   |          |                            |
|           |       |                   |          |                            |

## Demand forecasting

- ▶ Different retailers have different **demand forecasting** capabilities.
  - ▶ Manufacturers care about resellers' forecasting capabilities.
  - ▶ Sony (Stoller, 2004), HP (Newswire, 2000), CPFR (Fraser, 2003).
- ▶ When a reseller can do better demand forecasting, its screening problem (with respect to salespeople) is alleviated.
- ▶ In estimating the random market condition:
  - ▶ Salespeople are the best.
  - Retailers are second best.
  - Manufacturers are the worst.
- ► We study the impact of **forecasting accuracy** on supply chain performance and profit splitting.
  - ▶ How should the manufacturer choose the supply chain structure?
  - ▶ How should the retailer choose her forecasting accuracy?

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 0000000           | 0000000  | 000000                     |
|           |       |                   |          |                            |
|           |       |                   |          |                            |

# Learning objectives

- ▶ In a typical principal-agent relationship:
  - ▶ The agent have private information.
  - ▶ Hidden information creates the **screening** problem for the principal.
  - A hidden action creates the **moral hazard** problem for the principal.
- Many possibilities:
  - What if the agent has **both** hidden information and a hidden action?
  - ▶ What if the principal may obtain **some** (but not all) information?
  - ▶ What if there are two **cascaded** principal-agent relationship?
- ▶ We will address these issues by discussing Kung and Chen (2014).<sup>1</sup>

<sup>1</sup>Ling-Chieh Kung and Ying-Ju Chen, 2014, "Impact of reseller's and sales agent's forecasting accuracy in a multilayer supply chain," *Naval Research Logistics* 61(3) 207-222.

| The story<br>000000 | Model<br>●0000 | Optimal contracts<br>00000000 | Findings<br>0000000 | Extensions and conclusions |
|---------------------|----------------|-------------------------------|---------------------|----------------------------|
| 000000              | 00000          | 00000000                      | 0000000             | 000000                     |
|                     |                |                               |                     |                            |

### Road map

- ▶ The story.
- ► Model.
- ▶ Optimal contracts.
- ► Findings.
- ▶ Extensions and conclusions.

| 00 |
|----|
|    |

# Supply chain

- ► Manufacturer (M) Reseller (R) Sales agent (A).
- ▶ Production cost is 0 and retail price is 1.
- ▶ Random market demand  $x \in \{0, 1\}$  is realized according to

$$\Pr(x=1|\theta,a) = \frac{\theta a}{\theta} = 1 - \Pr(x=0|\theta,a),$$

which depends on market condition  $\theta$  and sales effort a.

•  $\theta \in \{\theta_{\rm L}, \theta_{\rm H}\}$  where  $0 < \theta_{\rm L} < \theta_{\rm H} < 1$ .

$$\blacktriangleright \operatorname{Pr}(\theta = \theta_{\mathrm{L}}) = \operatorname{Pr}(\theta = \theta_{\mathrm{H}}) = \frac{1}{2}.$$

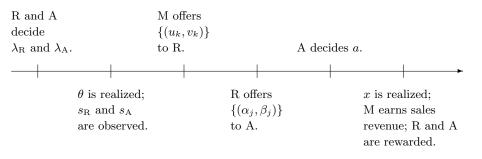
• Cost of a is  $\frac{1}{2}a^2$ .

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 0000000           | 0000000  | 000000                     |
|           |       |                   |          |                            |

#### Demand forecasting

- ▶ R and A estimate  $\theta$  independently.
- ▶ R obtains signal  $s_{\rm R} \in \{G, B\}$  with forecasting accuracy  $\lambda_{\rm R}$ .
  - G = Good, B = Bad.
  - $\blacktriangleright \operatorname{Pr}(B|\theta_{\mathrm{L}}) = \operatorname{Pr}(G|\theta_{\mathrm{H}}) = \lambda_{\mathrm{R}} = 1 \operatorname{Pr}(G|\theta_{\mathrm{L}}) = 1 \operatorname{Pr}(B|\theta_{\mathrm{H}}).$
- A obtains signal  $s_A \in \{F, U\}$  with forecasting accuracy  $\lambda_A$ .
  - F = Favorable, U = Unfavorable.
  - $\mathsf{Pr}(U|\theta_{\mathrm{L}}) = \mathrm{Pr}(F|\theta_{\mathrm{H}}) = \lambda_{\mathrm{A}} = 1 \mathrm{Pr}(F|\theta_{\mathrm{L}}) = 1 \mathrm{Pr}(U|\theta_{\mathrm{H}}).$
- $\lambda_{\mathrm{R}} \in [\frac{1}{2}, 1]$  and  $\lambda_{\mathrm{A}} \in [\frac{1}{2}, 1]$ .
- ▶ A sees  $s_A$  and  $s_R$ , R sees  $s_R$ , and M sees nothing.

| The story<br>000000 | Model<br>000●0 | Optimal contracts<br>00000000 | Findings<br>0000000 | Extensions and conclusions 000000 |
|---------------------|----------------|-------------------------------|---------------------|-----------------------------------|
|                     |                |                               |                     |                                   |
|                     |                |                               |                     |                                   |


# **Contract** forms

- $\blacktriangleright$  R can only compensate A based on the realized sales outcome x.
- The optimal compensation scheme consists of a fixed payment α and a sales bonus β:

A's earning = 
$$\begin{cases} \alpha & \text{if } x = 0\\ \alpha + \beta & \text{if } x = 1 \end{cases}$$

- ▶ Because A privately observes s<sub>A</sub>, it is optimal for R to offer a menu of contracts {(α<sub>F</sub>, β<sub>F</sub>), (α<sub>U</sub>, β<sub>U</sub>)}.
- Similarly, M offers  $\{(u_{\rm G}, v_{\rm G}), (u_{\rm B}, v_{\rm B})\}$  to R.
- Each player acts to maximize her own expected profit.

# Timing and backward induction



Solution: Backward induction.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions 000000 |
|-----------|-------|-------------------|----------|-----------------------------------|
| 000000    | 00000 | •0000000          | 0000000  |                                   |
|           |       |                   |          |                                   |

### Road map

- ▶ The story.
- ► Model.
- ► Optimal contracts.
- ► Findings.
- ▶ Extensions and conclusions.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 0000000           | 0000000  | 000000                     |
|           |       |                   |          |                            |

### Sales agent's effort level

- Suppose the sales agent has observed  $(s_A, s_R) = (j, k)$  and chosen the contract  $(\alpha, \beta)$ .
- ▶ The sales agent solves

$$\mathcal{A}_{jk} \equiv \max_{a \ge 0} \mathbb{E} \left[ \alpha + \beta x - \frac{1}{2} a^2 \middle| s_{\mathrm{A}} = j, s_{\mathrm{R}} = k \right]$$
$$= \max_{a \ge 0} \alpha + \beta N_{jk} a - \frac{1}{2} a^2.$$

• Let 
$$N_{jk} \equiv \mathbb{E}[\theta|s_{\mathrm{A}} = j, s_{\mathrm{R}} = k].$$

• The optimal service level is  $a_{jk}^* = N_{jk}\beta$ .

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 00000000          | 0000000  | 000000                     |
| (         |       |                   |          |                            |

### Reseller's optimal menu

▶ In expectation, the sales agent earns

$$\alpha + \frac{1}{2}\beta^2 N_{jk}^2$$

if he observes  $(s_A, s_R) = (j, k)$  and selects  $(\alpha, \beta)$ .

- ▶ For the reseller (seeing  $s_{\rm R} = k$ ) to induce **truth-telling**:
  - To make an agent observing  $s_{\rm A} = F$  prefer  $(\alpha_{\rm F}, \beta_{\rm F})$ :

$$\alpha_{\rm F} + \frac{1}{2} \beta_{\rm F}^2 N_{Fk}^2 \ge \alpha_{\rm U} + \frac{1}{2} \beta_{\rm U}^2 N_{Fk}^2.$$

• To make an agent observing  $s_{\rm A} = U$  prefer  $(\alpha_{\rm U}, \beta_{\rm U})$ :

$$\alpha_{\rm U} + \frac{1}{2} \beta_{\rm U}^2 N_{Uk}^2 \ge \alpha_{\rm F} + \frac{1}{2} \beta_{\rm F}^2 N_{Uk}^2.$$

► These are the **incentive compatibility** constraints.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 00000000          | 0000000  | 000000                     |
|           |       |                   |          |                            |

### Reseller's optimal menu

▶ In expectation, the sales agent earns

$$\alpha + \frac{1}{2}\beta^2 N_{jk}^2$$

if he observes  $(s_A, s_R) = (j, k)$  and selects  $(\alpha, \beta)$ .

- ▶ For the reseller (seeing  $s_{\rm R} = k$ ) to induce **participation**:
  - To allow an agent observing  $s_A = F$  to earn something:

$$\alpha_{\rm F} + \frac{1}{2}\beta_{\rm F}^2 N_{Fk}^2 \ge 0.$$

• To make an agent observing  $s_{\rm A} = U$  select  $(\alpha_{\rm U}, \beta_{\rm U})$ :

$$\alpha_{\mathrm{U}} + \frac{1}{2}\beta_{\mathrm{U}}^2 N_{Uk}^2 \ge 0.$$

► These are the **individual rationality** constraints.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions 000000 |
|-----------|-------|-------------------|----------|-----------------------------------|
| 000000    | 00000 | 00000000          | 0000000  |                                   |
|           |       |                   |          |                                   |

### Reseller's optimal menu

▶ Suppose the reseller has observed  $s_{\rm R} = k$  and chosen (u, v):

$$\mathcal{R}_{k} \equiv \max_{\substack{\alpha_{\mathrm{F}} \text{ urs., } \beta_{\mathrm{F}} \geq 0, \\ \alpha_{\mathrm{U}} \text{ urs., } \beta_{\mathrm{U}} \geq 0}} \sum_{j \in \{F, U\}} \bar{P}_{jk} \Big[ u - \alpha_{j} + (v - \beta_{j}) N_{jk}^{2} \beta_{j} \Big]$$
  
s.t. 
$$\alpha_{\mathrm{F}} + \frac{1}{2} \beta_{\mathrm{F}}^{2} N_{Fk}^{2} \geq 0$$
$$\alpha_{\mathrm{U}} + \frac{1}{2} \beta_{\mathrm{U}}^{2} N_{Uk}^{2} \geq 0$$
$$\alpha_{\mathrm{F}} + \frac{1}{2} \beta_{\mathrm{F}}^{2} N_{Fk}^{2} \geq \alpha_{\mathrm{U}} + \frac{1}{2} \beta_{\mathrm{U}}^{2} N_{Fk}^{2}$$
$$\alpha_{\mathrm{U}} + \frac{1}{2} \beta_{\mathrm{U}}^{2} N_{Uk}^{2} \geq \alpha_{\mathrm{F}} + \frac{1}{2} \beta_{\mathrm{F}}^{2} N_{Uk}^{2}.$$

• 
$$\bar{P}_{jk} \equiv \Pr(s_{\mathrm{A}} = j | s_{\mathrm{R}} = k).$$
  
•  $\mathbb{E}[x | s_{\mathrm{A}} = j, s_{\mathrm{R}} = k] = N_{jk} a_{jk}^* = N_{jk}^2 \beta_j.$ 

| The story | Model | Optimal contracts | Findings | Extensions and conclusions 000000 |
|-----------|-------|-------------------|----------|-----------------------------------|
| 000000    | 00000 | 00000000          | 0000000  |                                   |
|           |       |                   |          |                                   |

### **Reseller's optimal contract**

Lemma 1 With  $s_{\rm R} = k \in \{G, B\}$  and (u, v), the reseller offers  $\beta_F^* = v_{and} \beta_U^* = \frac{\bar{P}_{Uk}}{\bar{P}_{Uk} + \bar{P}_{Fk}(N_{Fk}^2/N_{Uk}^2 - 1)}v$ and earns  $\mathcal{R}_k(t) = u + \frac{1}{2}Z_kv^2$  in expectation, where  $Z_k \equiv \bar{P}_{Fk}N_{Fk}^2 + \frac{\bar{P}_{Uk}^2N_{Uk}^4}{\bar{P}_{Uk} + \bar{P}_{Fk}(N_{Fk}^2/N_{Uk}^2 - 1)}.$ 

▶ Downward distortion for the pessimistic sales agent.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 00000000          | 0000000  | 000000                     |
|           |       |                   |          |                            |

#### Manufacturer's optimal contract

- ▶ Let the retailer's expected profit be  $\mathcal{R}_k(t)$  if she observes signal  $s_R = k$  but selects  $(u_t, v_t)$ .
- Let  $\mathcal{R}_k \equiv \mathcal{R}_k(k)$ .
- ▶ The manufacturer solves

$$\mathcal{M} = \max_{\substack{u_G \text{ urs., } v_G \ge 0, \\ u_B \text{ urs., } v_B \ge 0}} \sum_{k \in \{G,B\}} \frac{1}{2} \Big[ (1 - v_k) Z_k v_k - u_k \Big]$$
  
s.t.  $\mathcal{R}_G \ge 0, \quad \mathcal{R}_B \ge 0,$   
 $\mathcal{R}_G \ge \mathcal{R}_G(B), \quad \mathcal{R}_B \ge \mathcal{R}_B(G)$ 

$$\bullet \quad \mathbb{E}[x|s_R = k] = \sum_{j \in \{F,U\}} \bar{P}_{jk} N_{jk}^2 \beta_{jk} = Z_k v_k.$$

#### Manufacturer's optimal contract

#### Lemma 2

The manufacturer offers

$$v_{G}^{*} = 1 \text{ and } v_{B}^{*} = \frac{Z_{B}}{Z_{G}}$$

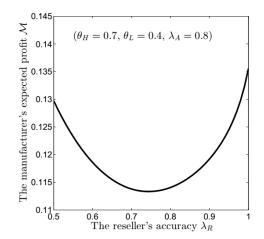
and earns  $\mathcal{M} = \frac{1}{4} \left[ Z_G + \frac{Z_B^2}{Z_G} \right]$  in expectation. We also have  $\mathcal{R}_B = 0$ ,  $\mathcal{R}_G = \frac{1}{2} (Z_G - Z_B) (\frac{Z_B}{Z_G})^2$ , and  $\mathcal{R} = \frac{1}{2} (\mathcal{R}_G + \mathcal{R}_B)$ .

▶ Downward distortion for the pessimistic reseller.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 00000000          | •000000  | 000000                     |
|           |       |                   |          |                            |

### Road map

- ▶ The story.
- ► Model.
- ▶ Optimal contracts.
- ► Findings.
- ▶ Extensions and conclusions.


| The story | Model | Optimal contracts | Findings | Extensions and conclusions 000000 |
|-----------|-------|-------------------|----------|-----------------------------------|
| 000000    | 00000 | 00000000          | 000000   |                                   |
|           |       |                   |          |                                   |

### Manufacturer's profitability

► How does the reseller's accuracy affect the manufacturer's expected profit *M*?

#### Proposition 1

- $\mathcal{M}$  is convex on  $\lambda_{\mathrm{R}} \in [\frac{1}{2}, 1].$
- *M* may first decrease and then increase.



| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 0000000           | 000000   | 000000                     |
|           |       |                   |          |                            |

#### Impact of reseller's accuracy

- ▶ If there should be a retailer, which one?
  - ▶ Huge upstream information asymmetry:

 $\mbox{Manufacturer} \quad {\rightarrow} {\rightarrow} {\rightarrow} {\rightarrow} \quad {\rm Reseller} \quad {\rightarrow} \quad {\rm Salesperson}$ 

▶ Huge downstream information asymmetry:

 ${\rm Manufacturer} \quad \rightarrow \quad {\rm Reseller} \quad \rightarrow \rightarrow \rightarrow \rightarrow \rightarrow \quad {\rm Salesperson}$ 

### Two driving forces when the reseller improves

#### ▶ **Better-monitoring** effect.

- ▶ Mitigating the R-A information asymmetry.
- Strong when  $\lambda_{\rm R}$  is large.

#### ▶ **Rent-extraction** effect.

- ▶ Aggravating the M-R information asymmetry.
- Strong when  $\lambda_{\rm R}$  is small.
- ► The better-monitoring effect eventually dominates the rent-extraction effect when  $\lambda_R$  is large enough.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 00000000          | 0000000  | 000000                     |
| /         |       |                   |          |                            |

### Supply chain structure

- ▶ Which supply chain structure is optimal?
  - One huge level of information asymmetry:

▶ Two small levels of information asymmetry:

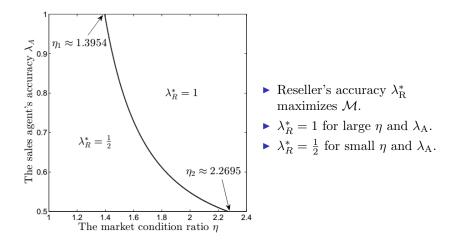
 $\mbox{Manufacturer} \quad \rightarrow \rightarrow \rightarrow \quad \mbox{Reseller} \quad \rightarrow \rightarrow \rightarrow \quad \mbox{Salesperson}$ 

| The story | Model | Optimal contracts | Findings | Extensions and conclusions 000000 |
|-----------|-------|-------------------|----------|-----------------------------------|
| 000000    | 00000 | 00000000          | 0000000  |                                   |
| /         |       |                   |          |                                   |

### Supply chain structure

- ▶ The manufacturer prefers R to be **uninformed or precise**.
- ▶ Supply chain structure selection: M-R-A v.s. M-A.
- Let  $\lambda_{\mathbf{R}}^*$  maximize  $\mathcal{M}$ . Let  $\eta \equiv \frac{\theta_{\mathbf{H}}}{\theta_{\mathbf{L}}}$ .

#### Proposition 2


There exists two cutoffs  $\eta_1$  and  $\eta_2$  such that

• for 
$$\eta \in (1, \eta_1]$$
,  $\lambda_{\rm R}^* = \frac{1}{2}$ ;

- for  $\eta \in (\eta_1, \eta_2)$ ,  $\lambda_R^* = \frac{1}{2}$  if  $\lambda_A$  is small and  $\lambda_R^* = 1$  if  $\lambda_A$  is large;
- for  $\eta \in [\eta_2, \infty)$ ,  $\lambda_{\mathrm{R}}^* = 1$ .

| The story | Model | Optimal contracts | Findings | Extensions and conclusions 000000 |
|-----------|-------|-------------------|----------|-----------------------------------|
| 000000    | 00000 | 00000000          | 000000   |                                   |
|           |       |                   |          |                                   |

#### Supply chain structure



| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 00000000          | 0000000  | •00000                     |
|           |       |                   |          |                            |

### Road map

- ▶ The story.
- ► Model.
- ▶ Optimal contracts.
- ► Findings.
- ▶ Extensions and conclusions.

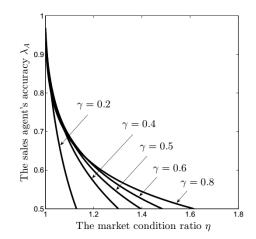


#### An extension: General levels of pessimism

▶ The random market condition follows a general Bernoulli distribution:

$$\Pr(\theta = \theta_{\rm L}) = \gamma = 1 - \Pr(\theta = \theta_{\rm H})$$

for any  $\gamma \in (0, 1)$ .

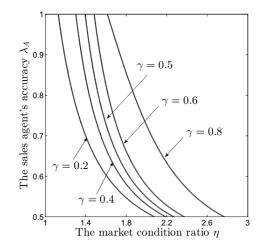

- ▶ Too complicated to prove our main results!
- We may use **numerical studies** to confirm our main insights.

| The story | Model | Optimal contracts | Findings | Extensions and conclusions $000000$ |
|-----------|-------|-------------------|----------|-------------------------------------|
| 000000    | 00000 | 00000000          | 0000000  |                                     |
|           |       |                   |          |                                     |

#### Nonmonotonicity

#### Observation 1

For any  $\gamma \in (0, 1)$ ,  $\mathcal{M}$ either first decreases and then increases or monotonically decreases in  $\lambda_R \in [\frac{1}{2}, 1]$ . In particular,  $\mathcal{M}$  tends to be nonmonotone when  $\gamma$  is low but monotonically decreasing when  $\gamma$  is high.




| The story | Model | Optimal contracts | Findings | Extensions and conclusions |
|-----------|-------|-------------------|----------|----------------------------|
| 000000    | 00000 | 0000000           | 0000000  | 000000                     |
|           |       |                   |          |                            |

#### Manufacturer-optimal reseller's accuracy

#### Observation 2

For any  $\gamma \in (0, 1)$ ,  $\mathcal{M}$  is maximized at  $\lambda_B^* = \frac{1}{2}$ (respectively,  $\lambda_B^* = 1$ ) if  $\eta$ and  $\lambda_A$  are both small (respectively, large) enough. Moreover, it is more likely that  $\lambda_B^* = \frac{1}{2}$ (respectively,  $\lambda_B^* = 1$ ) when  $\gamma$  increases (respectively, decreases).



| The story | Model | Optimal contracts | Findings | Extensions and conclusions $000000$ |
|-----------|-------|-------------------|----------|-------------------------------------|
| 000000    | 00000 | 00000000          | 0000000  |                                     |
|           |       |                   |          |                                     |

#### Other extensions

- ▶ A is protected by limited liability.
  - $\alpha_j \ge 0$  for  $j \in \{F, U\}$ .
- A does not observe R's signal  $s_{\rm R}$ .
  - Informed principal.
  - ▶ R offers different menus upon observing different  $s_{\rm R}$ .

| The story<br>000000 | Model<br>00000 | Optimal contracts<br>00000000 | Findings<br>0000000 | Extensions and conclusions |
|---------------------|----------------|-------------------------------|---------------------|----------------------------|
|                     |                |                               |                     |                            |
|                     |                |                               |                     |                            |

# Conclusions

- ► A manufacturer may benefit from having a reseller **indirectly collect information** for it.
  - ▶ However, "more" information may **hurt** a principal!
- Once a reseller is included in the supply chain, she should be either precise or uninformed.
- ▶ The manufacturer prefers:
  - ▶ The reseller to be uninformed when the market is not volatile and the sales agent is not accurate.
  - ▶ The reseller to be precise when the market is volatile and the sales agent is accurate.
- ▶ Do these implications match your daily life experiences?