Information Economics The Signaling Theory

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

► Introduction.

- ▶ Signaling with a discrete action space.
- ▶ Signaling with a continuous action space.

Signaling

- We have studied the **screening** problem.
 - ▶ The **agent** has hidden information.
- ► Today we will study the **signaling** problem.
 - ▶ The **principal** has hidden information.
- ▶ Both screening and signaling are adverse selection issues.

Origin of the signaling theory

- ▶ Akerlof (1970) studies the market of **used cars**.
 - The owner of a used car knows the **quality** of the car.
 - ▶ Potential buyers, however, do not know it.
 - ▶ The quality is hidden information observed only by the principal (seller).
- ▶ What is the issue?
 - ▶ Buyers do not want to buy "lemons".
 - They only pay a price for a used car that is "around average".
 - Owners of **bad** used cars are happy for selling their used cars.
 - Owners of **good** ones do not sell theirs.
 - ▶ Days after days... there are only bad cars on the market.
 - ▶ The "expected quality" and "average quality" become lower and lower.
- ► Information asymmetry causes inefficiency.
 - ▶ In screening problems, information asymmetry protects agents.
 - ► In signaling problems, information asymmetry **hurts everyone**.
- ▶ That is why we need platforms that suggest prices for used cars.

Origin of the signaling theory

▶ Spence (1973) studies the market of **labors**.

- One knows her **ability** (productivity) while potential employers do not.
- ▶ The "quality" of the worker is hidden.
- ► Firms only pay a wage for "around average" workers.
- ▶ Low-productivity workers are happy. High-productivity ones are sad.
- ▶ Productive workers leave the market (e.g., go abroad). Wages decrease.
- ▶ What should we do? No platform can suggest wages for individuals!
- ▶ That is why we get **high education** (or study in good schools).
 - ▶ It is not very costly for a high-productivity person to get a higher degree.
 - ► It is **more costly** for a low-productivity one to get it.
 - ▶ By getting a higher degree (e.g., a master), high-productivity people differentiate themselves from low-productivity ones.
 - Getting a higher degree is **sending a signal**.
- ► This will happen (as an equilibrium) even if education itself **does not** enhance productivity!

Introduction 000000

Signaling

- ► Signaling is for the principal to send a message to the agent to **signal the hidden information**.
 - ▶ Sending a message requires an **action** (e.g., getting a degree).
- ▶ For signaling to be effective, different types of principal should take different actions.
 - ▶ It must be **too costly** for a type to take a certain action.
- ▶ Other examples:
 - A manufacturer offers a **warranty** policy to signal the product reliability.
 - A firm sets a high **price** to signal the product quality.
 - "Full **refund** if not tasty".

Signaling games

- ▶ How to model a signaling game between a principal and an agent?
 - The principal has a **hidden type**.
 - ► The agent cannot observe the type and thus have a **prior belief** on the principal's type.
 - ▶ The principal chooses an **action** that is observable.
 - ► The agent then forms a **posterior belief** on the type.
 - ▶ Based on the posterior belief, the agent **responds** to the principal.
- ▶ The principal takes the action to **alter** the agent's belief.
- ► An example:
 - A firm makes and sells a product with **hidden reliability** to consumers.
 - Consumers have a prior belief on the reliability.
 - ► The firm chooses between offering a warranty or not.
 - ▶ By observing the policy, the consumer **updates his belief** and make the purchasing decision accordingly.
- ▶ We need to model belief updating by the Bayes' theorem.

- Introduction.
- ▶ Signaling with a discrete action space.
- ▶ Signaling with a continuous action space.

Introdu	lction
000000	

The first example

▶ A firm makes and sells a product with hidden reliability $r \in (0, 1)$.

- r is the probability for the product to be functional.
- ▶ If a consumer buys the product at price *t*:
 - If the product works, his utility is θt .
 - If the product fails, his utility is -t.
- ▶ The firm may offer a **warranty** plan and repair a broken product.
 - The firm pays the repairing cost k > 0.
 - The consumer's utility is $\eta \in (0, \theta)$.
- The price is fixed (exogenous).
- Suppose w = 1 if a warranty is offered and 0 otherwise.
- Expected utilities:
 - The firm's expected utility is $u_F = t (1 r)kw$.
 - The consumer's expected utility is $u_C = r\theta + (1 r)\eta w t$.
- ▶ The consumer buys the product if and only if $u_C \ge 0$.
- ▶ The firm chooses whether to offer the warranty accordingly.

The first example: no signaling

- Suppose $r \in \{r_H, r_L\}$: The product may be reliable or unreliable.
 - ▶ $0 < r_L < r_H < 1.$
- ▶ Under complete information, the decisions are simple.
 - The firm's expected utility is $u_F = t (1 r_i)kw$.
 - The consumer's expected utility is $u_C = r_i \theta + (1 r_i)\eta w t$.
- ► Under incomplete information, they may make decision according to the **expected reliability**:
 - Let $\beta = \Pr(r = r_L) = 1 \Pr(r = r_H)$ be the consumer's **prior belief**.
 - The expected reliability is $\bar{r} = \beta r_L + (1 \beta) r_H$.
 - The firm's expected utility is $u_F = t (1 r_i)kw$.
 - The consumer's expected utility is $u_C = \bar{r}\theta + (1 \bar{r})\eta w t$.
- ▶ But wait! The **unreliable** firm will tend to offer **no warranty**.
 - Because $(1 r_L)k$ is high.
 - This forms the basis of **signaling**.

The first example: signaling

▶ Below we will work with the following parameters:

- $r_L = 0.2$ and $r_H = 0.8$.
- $\theta = 20$ and $\eta = 5$.
- t = 11 and k = 15.

▶ Payoff matrices (though players make decisions sequentially):

ConsumerConsumerImage: Buy | NotImage: Buy | NotFirm
$$w = 1 | 8, 6 | 0, 0$$
 $w = 0 | 11, 5 | 0, 0$ Firm $w = 0 | 11, 7 | 0, 0$

(Product is reliable)

(Product is unreliable)

► The issue is: The consumer does not know which matrix he is facing!

▶ The reliable firm tries to convince the consumer that it is the first one.

Game tree

- ► We express this **game with incomplete information** by the following game tree:
 - ► F and C : players.
 - Nature : a fictitious player that draws the type randomly.
 - Let $\beta = \frac{1}{2}$ be the prior belief.

Concept of equilibrium

- ▶ What is a (pure-strategy) **equilibrium** in a signaling game?
- ► Decisions:
 - The "two" firms' actions: $(w_H, w_L), w_i \in \{0, 1\}.$
 - The consumer's strategy: $(a_1, a_0), a_j \in \{B, N\}$.
- Posterior beliefs:
 - Let $p = \Pr(r_H | w = 1)$ be the posterior belief upon observing a warranty.
 - Let $q = \Pr(r_H | w = 0)$ be the posterior belief upon observing no warranty.
- An equilibrium is a strategy-belief **profile** $((w_H, w_L), (a_1, a_0), (p, q))$:
 - ▶ No firm wants to deviate based on the consumer's posterior belief.
 - ▶ The consumer does not deviate based on his posterior belief.
 - ▶ The beliefs are updated according to the firms' actions by the Bayes' rule.
- ▶ It is extremely hard to "search for" an equilibrium. It is easier to "check" whether a given profile is one.
- ▶ We start from the firms' actions:¹
 - Can (1,0) be part of an equilibrium? How about (0,1), (1,1), and (0,0)?

¹It is typical to start from the principal's actions.

Warranty for the reliable product only

• We start from $((1,0), (a_1,a_0), (p,q))$.

▶ Bayesian updating: p = 1, q = 0: $((1, 0), (a_1, a_0), (1, 0))$.

- Consumer ((1,0), (B,N), (1,0)).
- ▶ No firm wants to deviate.

Warranty for the unreliable product only

• We start from $((0,1), (a_1, a_0), (p,q))$.

- Bayesian updating: p = 0, q = 1: $((0, 1), (a_1, a_0), (0, 1))$.
- Consumer: ((0,1), (N,B), (0,1)).
- But now the unreliable firm deviates to $w_L = 0!$

Signaling with a continuous action space $\tt OOOOOOOO$

Both offering warranties

• We start from $((1, 1), (a_1, a_0), (p, q))$.

- ▶ Bayesian updating: $p = \frac{1}{2}$, $q \in [0, 1]$: $((1, 1), (a_1, a_0), (\frac{1}{2}, [0, 1]))$.
- Consumer: $((1,1), (B, \{B,N\}), (\frac{1}{2}, [0,1])).$
- If $a_0 = B$, no firm offers a warranty: $((1,1), (B,N), (\frac{1}{2}, [0,1]))$.
- But now the unreliable firm deviates to $w_L = 0!$

Signaling with a discrete action space 0000000000000

Signaling with a continuous action space $\tt OOOOOOOO$

Both offering no warranty

• We start from $((0,0), (a_1, a_0), (p,q))$.

- ▶ Bayesian updating: $p \in [0, 1], q = \frac{1}{2}$: $((0, 0), (a_1, a_0), ([0, 1], \frac{1}{2})).$
- Consumer: $((0,0), (B,N), ([\frac{1}{3},1],\frac{1}{2}))$, or $((0,0), (N,N), ([0,\frac{1}{3}],\frac{1}{2}))$.
- ▶ For the former, the reliable firm deviates to $w_H = 1$. The latter is a pooling equilibrium.

Interpretations

- ▶ There are **pooling**, **separating**, and **semi-separating** equilibria:
 - ▶ In a pooling equilibrium, all types take the same action.
 - ▶ In a separating equilibrium, different types take different actions.
 - ▶ In a semi-separating one, some but not all types take the same action.
- ▶ In this example, there are two (sets of) equilibria:
 - A separating equilibrium ((1,0), (B,N), (1,0)).
 - A pooling equilibrium $((0,0), (N,N), ([0,\frac{1}{3}], \frac{1}{2})).$
- What does that mean?

Interpretations

- The separating equilibrium is ((1,0), (B,N), (1,0)):
 - ▶ The reliable product is sold with a warranty.
 - ▶ The unreliable product, offered with no warranty, is not sold.
 - ► The reliable firm **successfully signals** her reliability.
 - ▶ The system becomes more efficient.
 - Because it is too costly for the unreliable firm to do the same thing.
- The pooling equilibrium is $((0,0), (N,N), ([0,\frac{1}{3}], \frac{1}{2}))$.
 - ▶ Both firms do not offer a warranty.
 - ▶ The consumer cannot update his belief.
 - ▶ The consumer does not buy the product.
- ▶ In this (and most) signaling game, there are **multiple** equilibria.

- Introduction.
- ▶ Signaling with a discrete action space.
- ▶ Signaling with a continuous action space.

The second example

- ▶ A manufacturer sells a product of hidden reliability $r \in \{r_L, r_H\}$.
 - The consumer's prior belief on r is $Pr(r = r_L) = \beta = 1 Pr(r = r_H)$.
- ▶ The manufacturer chooses a price $t \in \mathbb{R}$ and a warranty protection probability $w \in [0, 1]$.
- \blacktriangleright By selling the product, the type-i manufacturer's expected utility is

$$u_i^M(t,w) = t - (1 - r_i)wk.$$

- k is the cost of fixing a broken product.
- ▶ By buying the product with *r* as the expected reliability, the consumer's expected utility is

$$u^C = r\theta + (1-r)\eta w - t.$$

- θ is the utility of using a functional product.
- η is the utility of using a fixed product. $k > \eta$ and $\theta > \eta$.

First best

- ► Assume that r is **public**. Consider the type-*i* manufacturer's first-best offer (t_i^{FB}, w_i^{FB}) with reliability r_i .
- ▶ The manufacturer's problem is

$$\begin{split} \max_{t \in \mathbb{R}, w \in [0,1]} & t - (1-r_i)wk \\ \text{s.t.} & r_i\theta + (1-r_i)\eta w - t \geq 0. \end{split}$$

▶ This reduces to

$$\max_{w \in [0,1]} r_i \theta + (1 - r_i)(\eta - k)w.$$

• As $\eta < k$, we have $w^{FB} = 0$ and thus $t^{FB} = r_i \theta$.

▶ Both types of manufacturers offer **no warranty**.

Second best

- \blacktriangleright Assume that r is private. Let's look for a **separating equilibrium**.
- ► Let's guess: The unreliable manufacturer chooses its first-best offer $(t_L^*, w_L^*) = (r_L \theta, 0).$
- Let's try to find the reliable manufacturer's offer (t_H^*, w_H^*) in this case.
- ▶ The reliable manufacturer's problem is

$$\max_{\substack{t_H \in \mathbb{R}, w_H \in [0,1] \\ \text{s.t.}}} t_H - (1 - r_H) w_H k$$

$$r_H \theta + (1 - r_H) \eta w_H - t_H \ge 0$$

$$t_L^* - (1 - r_L) w_L^* k \ge t_H - (1 - r_L) w_H k$$

$$t_H - (1 - r_H) w_H k \ge t_L^* - (1 - r_H) w_L^* k.$$
(IC-H)

Solving for the second best

▶ By replacing t_L^* and w_L^* by $r_L \theta$ and 0, the problem reduces to

$$\max_{t_H \in \mathbb{R}, w_H \in [0,1]} t_H - (1 - r_H) w_H k$$

s.t.
$$r_H \theta + (1 - r_H) \eta w_H - t_H \ge 0 \quad (IR)$$
$$r_L \theta \ge t_H - (1 - r_L) w_H k \quad (IC-L)$$
$$t_H - (1 - r_H) w_H k \ge r_L \theta. \quad (IC-H)$$

▶ Let's ignore (IC-H) for a while.

Solving for the second best

▶ By replacing t_L^* and w_L^* by $r_L \theta$ and 0, the problem reduces to

$$\max_{\substack{t_H \in \mathbb{R}, w_H \in [0,1]\\ \text{s.t.}}} t_H - (1 - r_H)w_H k$$

s.t.
$$r_H \theta + (1 - r_H)\eta w_H - t_H \ge 0 \quad \text{(IR)}$$
$$r_L \theta \ge t_H - (1 - r_L)w_H k. \quad \text{(IC-L)}$$

▶ Suppose that (IC-L) is not binding, then (IR) is binding, and the problem reduces to

$$\max_{w_H \in [0,1]} r_H \theta + (1 - r_H)(\eta - k) w_H,$$

and the optimal solution is $w_H = 0$ and $t_H = r_H \theta$. This violates (IC-L), so we know (IC-L) must be binding.

Introduction 000000

ı

Solving for the second best

▶ The problem reduces to

$$\max_{\substack{w_H \in [0,1]\\ \text{s.t.}}} r_L \theta + (r_H - r_L) w_H k$$

s.t. $(r_H - r_L) \theta + \left[(1 - r_H) \eta - (1 - r_L) k \right] w_H \ge 0.$ (IR)

- ▶ To solve this problem, note that:
 - $r_H > r_L$ and $k > \eta$ implies $(1 r_H)\eta (1 r_L)k < 0$.
 - The objective function is increasing in w_H .
- ▶ Collectively, we have

$$w_H^* = \min\left\{1, \frac{(r_H - r_L)\theta}{(1 - r_L)k - (1 - r_H)\eta}\right\}$$
 and $t_H^* = r_L\theta + (1 - r_L)w_H^*k.$

▶ It is straightforward to verify that (IC-H) is satisfied.

Interpretations

- ▶ In a separating equilibrium, the consumer may **tell** whether the manufacturer is reliable or not.
- ▶ The unreliable manufacturer chooses its **first-best offer**.
 - Its type will be revealed anyway.
 - ▶ It should choose the "most efficient" offer, i.e., the first-best one.
- ► The reliable manufacturer **upward distorts** its warranty protection probability.
 - $w_H^* > w_H^{FB} = 0.$
 - ▶ To discourage the unreliable one from mimicking itself.