Background and motivation	Model 0000000	Non-profit hospitals 00000	For-profit hospitals 0000000000000	Conclusions 000

Reliability Signaling through Revenue Sharing for Medical Treatments

Ling-Chieh Kung

Department of Information Management National Taiwan University

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
•0000000	0000000	00000	000000000000	000

Road map

▶ Background and motivation.

- ► Model.
- ► Analysis.
- ► Conclusions.

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
0000000	0000000	00000	000000000000	000

Radiation treatment for cancers

- ► More than 50% of cancer patients (in Taiwan) get radiation treatment.¹
- ▶ Radiation equipment (e.g., linear accelerators) is critical for radiation treatment.
 - ▶ IMRT: Intensity-moderated radiation treatment.
- ▶ The typical process of radiation treatments:
 - ▶ Ten to thirty minutes per day.
 - Once per day, five days per week.

Reliability Signaling through Revenue Sharing

 $^{^1\}mathrm{This}$ lecture is based on a working paper written by the instructor and the other authors.

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
0000000	0000000	00000	000000000000	000

Radiation equipment purchasing

- ▶ Traditionally, an equipment vendor **sells** linear accelerators to hospitals at a single price.
- ▶ Now it is also common for a vendor to give accelerators to hospitals "for free."
 - ▶ In exchange for per-treatment payments.
 - ► The vendor is adopting a **revenue-sharing** contract.
- ► Why?
 - ▶ Does the vendor earn more with revenue-sharing?
 - If so, why is a hospital willing to accept?

Radiation equipment purchasing

- ► Typical reasons:
 - A hospital's annual budget may be limited.
 - ▶ A salesperson may prefer steady sales performance.
- ▶ Beside these **significant** factors, is there any **insignificant** factor?
- Research questions:
 - ▶ What are the (insignificant) factors that affecting the contract format between a hospital and a vendor?
 - ▶ If there is one, why?

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
	0000000	00000	0000000000000	000

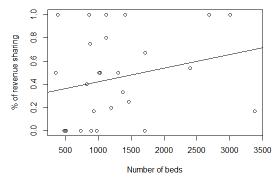
Data

▶ We collect data from 27 hospitals which have acquired at least one machine R for cancer diagnoses.

Variable	Meaning
Name	The name of hospitals
Private	The hospital is held by a private organization (1)
	or is held by the government (0)
Regional	The level of the hospital is regional (1) or
	teaching hospital (0)
Location	The location of the hospital is at the north (1) ,
	west (2) , south (3) , or east (4) of Taiwan
Bed	The number of beds in a hospital
Buy	The number of machines rent by the hospital
Rent	The number of machines bought by the hospital
RentPercentage	Rent/(Buy + Rent)

Background and motivation 00000000	Model 0000000	Non-profit hospitals 00000	For-profit hospitals 0000000000000	Conclusions 000

Data


▶ The data:

Name	Private	Regional	Location	Bed	Buy	Rent
H1	0	0	1	1,712	1	2
H2	1	0	2	$1,\!305$	1	1
H3	1	1	1	732	3	0
H4	0	0	2	$1,\!464$	3	1
H5	0	0	1	$3,\!010$	0	1
			• • •			
H25	0	0	1	$2,\!400$	6	7
H26	0	1	2	510	1	0
H27	0	1	1	$1,\!120$	0	3

Empirical observations about hospital size

- ▶ Average *RentPercentage*: 54.4% for teaching and 32.5% for regional.
- ▶ Correlation coefficient between *RentPercentage* and *Bed*: 0.2398.

▶ Large hospitals (slightly) prefer renting more than small hospitals do.

Background and motivation 0000000●	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Why renting?

- ▶ Hospital budget and salesperson's intention may indeed be reasons.
- ▶ There must be some other reasons.
- ► According to the data, it seems that the **management type** (public or private) matters.
 - ▶ Average *RentPercentage*: 51.8% for public and 42.3% for private.
 - ▶ **Public** hospitals prefer **renting** more than private ones do.
 - Public \approx non-profit; private \approx for-profit.
- ▶ Is it true that a public hospital has a reason to prefer renting more than a private one does (given that all other conditions are the same)?
- ▶ If so, what difference between these two types leads to the result?
 - ▶ In general, private hospitals care more about **profit maximization**.
 - ▶ Is this a reason? If so, why?

Background and motivation 00000000	Model ●000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Road map

- ▶ Background and motivation.
- ► Model.
- ► Analysis.
- ► Conclusions.

Background and motivation	Model 0●00000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Model

- ► A vendor (she) contracts with a hospital (he) for a kind of medical equipment required for a certain treatment.
- ▶ The medical treatment requires reservation.
 - The maximum number of patients that can be served in a period is K.
 - ► *K* is called the **capacity** of the machine.
- The probability that the machine is functional is r.
 - $r \in \{r_L, r_H\}$ is the vendor's private information. $0 < r_L < r_H < 1$.
 - For the hospital, the prior belief on r is $Pr(r = r_L) = \beta = 1 Pr(r = r_H)$.
 - ▶ *r* is called the **reliability** of the machine.
- Once the machine is down, affected treatments will be postponed but not canceled.
 - The effective capacity is rK.
 - ▶ There is no "lost sales."

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
0000000	000000	00000	000000000000	000

Non-profit and for-profit hospitals

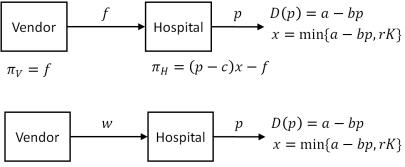
- ► The hospital may be **non-profit** (public) or **for-profit** (private).
- ▶ For a for-profit hospital, the treatment price p is endogenously chosen to maximize its profit.
 - The demand for the treatment is D(p) = a bp.
 - D(p) may be above or below rK. The treatment volume is

 $\min\{D(p),rK\}.$

- ▶ For a non-profit hospital, the price p_0 per treatment is **exogenous**.
 - We assume that $D(p_0) = a bp_0 > rK$ in this case.
- The unit treatment cost is c.

Background and motivation 00000000	Model 000●000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000
	(

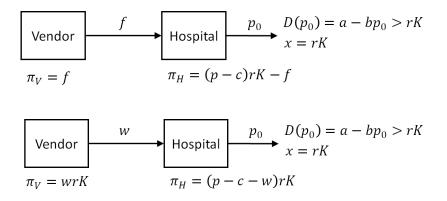
Contracting


- ▶ The vendor offers the hospital two options:²
 - ► **Fixed-fee contract**: The machine is sold at a fixed fee *f*.
 - **Revenue-sharing contract**: The hospital pays w per treatment.
- In either case, the vendor chooses f or w for profit maximization.

Reliability Signaling through Revenue Sharing

 $^{^2 {\}rm In}$ general, the contract may be a mixed one including both a fixed fee and a per-treatment fee. Here we discuss pure contracts only.

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
0000000	0000000	00000	000000000000	000


Model: for-profit hospital

$$\pi_V = wx \qquad \qquad \pi_H = (p - c - w)x$$

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
0000000	0000000	00000	000000000000	000

Model: non-profit hospital

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
0000000	000000	00000	000000000000	000

Sequence of events

- ► Sequence of events:
 - The vendor privately observes $r \in \{r_L, r_H\}$.
 - The vendor offers one of the two contracts.
 - The hospital updates his belief on r by observing the offer.
 - ▶ The hospital accepts or rejects the offer. Payments are made accordingly.
- ▶ Is it possible for the reliable vendor to signal her reliability?

Model 0000000	Non-profit hospitals •0000	For-profit hospitals 0000000000000	Conclusions 000
			/
		* *	

Road map

- ▶ Background and motivation.
- ► Model.

► Analysis.

- ▶ Non-profit hospitals.
- For-profit hospitals.
- Conclusions.

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
0000000	0000000	0000	000000000000	000

Non-profit hospitals: public reliability

- Suppose that r is common knowledge first.
- ▶ A public hospital does not make the pricing decision.
 - Both p_0 and c are fixed.
 - The demand $D(p_0)$ is above the capacity rK.
 - His profit is

 $\left\{ \begin{array}{ll} (p_0-c)rK-f & \text{with a fixed fee } f \\ (p_0-c-w)rK & \text{with a per-treatment payment } w \end{array} \right.$

- ► For the vendor:
 - The optimal fixed fee is $f = (p_0 c)rK$.
 - The optimal per-treatment payment is $w = p_0 c$.
 - She earns $(p_0 c)rK$ anyway.

Background and motivation	Model 0000000	Non-profit hospitals 00●00	For-profit hospitals	Conclusions 000

Non-profit hospitals: private reliability

- When machine reliability r is **hidden**, the hospital's willingness-to-pay depends on his belief on r.
 - ▶ May the reliable vendor differentiate itself from the unreliable one?
- There are four possible combinations of contract offering: (F, F), (F, R), (R, F), and (R, R).
 - ▶ E.g., (F, R) means that the unreliable vendor offers a fixed fee whereas the reliable vendor offers a per-treatment fee.
- ▶ Note that separation is impossible when the two types of vendors offer the same type of contract.
 - E.g., under (F, F), the unreliable vendor may always mimic the reliable one by offering the same fixed fee.
 - **Price alone cannot** be a signaling device.
- May (F, R) or (R, F) exist as a separating equilibrium?

Non-profit hospitals: private reliability

Proposition 1

When the vendor with hidden reliability sells to a non-profit hospital, the separating equilibrium (F, R) always exists. In this equilibrium, we have

$$f_L^N = (p_0 - c)r_L K$$
 and $w_H^N = p_0 - c$,

where f_L^N and w_H^N are the fixed fee charged by the unreliable vendor and the per-treatment payment charged by the reliable vendor, respectively.

- ▶ Each firm chooses one contract format and offers her **first-best** price.
- **Contract format** is a useful signaling device.
- One may signal her high reliability by offering **revenue sharing**.

Background and motivation	Model 0000000	Non-profit hospitals 0000●	For-profit hospitals 0000000000000	Conclusions 000
0000000	0000000	0000●	000000000000	000

Proof of Proposition 1

- ▶ For the unreliable vendor:
 - Her first-best fixed-fee contract is $f_L^N = (p_0 c)r_L K$.
 - ▶ Mimicking the reliable one by switching to $w_H^N = p_0 c$ results in the same expected profit $(p_0 c)r_L K$.
- ▶ For the reliable vendor:
 - Her first-best revenue-sharing contract is $w_H^N = p_0 c$.
 - Mimicking the unreliable vendor results in a lower profit f_L^N as $r_L < r_H$.
- ▶ No one wants to unilaterally deviate.

Background and motivation 00000000	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Road map

- ▶ Background and motivation.
- ► Model.

► Analysis.

- Non-profit hospitals.
- ► For-profit hospitals.
- Conclusions.

Background and motivation 00000000	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

For-profit hospitals: public reliability

• Upon accepting a fixed fee f, the hospital solves

$$\max_{p} (p-c) \min\{a-bp, rK\} - f.$$

The optimal treatment price is

$$\begin{cases} \frac{a+bc}{2b} & \text{if } rK \ge \frac{a-bc}{2} \\ \frac{a-rK}{b} & \text{otherwise} \end{cases}$$

▶ For the vendor, the optimal fixed fee (and his expected profit) is

$$f_{FB}^{F} = \begin{cases} \frac{(a-bc)^{2}}{4b} & \text{if } rK \geq \frac{a-bc}{2} \\ \frac{(a-bc-rK)rK}{b} & \text{otherwise} \end{cases}$$

Background and motivation	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

For-profit hospitals: public reliability

• Upon accepting a per-treatment payment w, the hospital solves

$$\max_{p} (p-c-w) \min\{a-bp, rK\}.$$

The optimal treatment price is

$$\begin{cases} \frac{a+bc+bw}{2b} & \text{if } rK \ge \frac{a-bc-bw}{2} \\ \frac{a-rK}{b} & \text{otherwise} \end{cases}$$

▶ The equilibrium price is **higher** than that with a fixed fee.

Double marginalization.

Background and motivation	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

For-profit hospitals: public reliability

▶ The vendor solves

$$\max_{w} w \min\{a - bp, rK\}.$$

The optimal per-treatment fee is

$$\begin{cases} \frac{a-bc}{2b} & \text{if } rK \geq \frac{a-bc}{4} \\ \frac{a-bc-2rK}{b} & \text{otherwise} \end{cases}$$

• The vendor's expected profit is

$$\begin{cases} \frac{(a-bc)^2}{8b} & \text{if } rK \ge \frac{a-bc}{4} \\ \frac{(a-bc-2rK)rK}{b} & \text{otherwise} \end{cases}$$

- When r is public, a vendor always prefer a fixed-fee contract.
 - ▶ Using a per-treatment fee **cannot** extract all the surplus.
 - The revenue-sharing contract is inefficient due to double marginalization.

For-profit hospitals: private reliability

- When machine reliability is **hidden**:
 - If the reliable vendor chooses to offer the fixed-fee contract, she will be mimicked by the unreliable vendor.
 - ► To convince the hospital of her high reliability, the reliable vendor can only provide the revenue-sharing contract.
 - ▶ Unfortunately, the revenue-sharing contract is inefficient when the hospital is for-profit.
- ▶ When is the benefit of signaling large enough to cover the detriment of double marginalization?
- ▶ Is signaling still possible?

For-profit hospitals: private reliability

Proposition 2

Suppose that the vendor with hidden reliability sells to a for-profit hospital. A separating equilibrium does not exist if

$$a - bc < \min\left\{ (4 + 2\sqrt{2})r_L K, (r_H + r_L)K \right\}.$$

- ▶ Signaling is still possible.
- ▶ However, it is impossible if:
 - The profit potential a bc is small.
 - The unreliable vendor's effective reliability $r_L K$ is high.

Background and motivation	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Proof of Proposition 2

▶ In any separating equilibrium, the unreliable vendor offers her first-best contract.

•
$$f_L^F = \frac{(a-bc)^2}{4b}$$
 if $r_L K \geq \frac{a-bc}{2}$

•
$$f_L^F = \frac{(a - bc - r_L K)r_L K}{b}$$
 otherwise.

- ▶ For the reliable vendor to separate from the unreliable one, she must offer a revenue-sharing contract.
- Below we will show that there is no value of w_H^F that may satisfy all required constraints at the same time under some condition.
 - ▶ As the unreliable vendor's behavior depends on whether $r_L K \ge \frac{a-bc}{2}$, we divide the proof into two cases.

Background and motivation 00000000	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Proof of Proposition 2 (Case 1)

- The per-treatment fee w_H^F must satisfy:
 - (IR) The hospital earns a nonnegative profit.
 - ▶ (IC-L) The unreliable vendor has no incentive to mimic the reliable one.
 - ▶ (IC-H) The reliable vendor has no incentive to mimic the unreliable one.

 \blacktriangleright Let p^* be the equilibrium treatment price, the three constraints are

$$\begin{array}{rcl} (p^{*}-w_{H}^{F}-c)\min\{a-bp^{*},r_{H}K\} & \geq & 0 & (\mathrm{IR}) \\ & f_{L}^{F} & \geq & w_{H}^{F}\min\{a-bp^{*},r_{L}K\} & (\mathrm{IC-L}) \\ & w_{H}^{F}\min\{a-bp^{*},r_{H}K\} & \geq & f_{L}^{F}. & (\mathrm{IC-H}) \end{array}$$

▶ We need to examine the feasibility of w_H^F in three regions:

L	Region 1A	Regior	n 1B	Region 1C	_
Г 0	$\frac{a-bc}{b}$	$-2r_HK$	$\frac{a-bc}{b}$	$\frac{1}{2r_LK}$	-

Background and motivation	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Proof of Proposition 2 (Region 1A)

- If $w_H^F \leq \frac{a-bc-2r_HK}{b}$, we have $p^* = \frac{a-r_HK}{b}$, $\min\{a-bp^*, r_HK\} = r_HK$, and $\min\{a-bp^*, r_LK\} = r_LK$.
- ▶ The three constraints become

$$\begin{pmatrix} \frac{a-r_HK}{b} - w_H^F - c \end{pmatrix} r_HK \geq 0$$
(IR)
$$\frac{(a-bc-r_LK)r_LK}{b} \geq w_H^F r_LK$$
(IC-L)
$$w_H^F r_HK \geq \frac{(a-bc-r_LK)r_LK}{b}.$$
(IC-H)

▶ To satisfy (IR) and (IC-H) together, w_H^F should fall in the interval $[(\frac{a-bc-r_LK}{b})\frac{r_L}{r_H}, \frac{a-bc-r_HK}{b}]$. This is impossible if the left endpoint is greater than the right one, which happens if $K > \frac{a-bc}{r_H+r_L}$.

Background and motivation 00000000	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Proof of Proposition 2 (Region 1B)

- If $\frac{a-bc-2r_HK}{b} < w_H^F \le \frac{a-bc-2r_LK}{b}$, we have $p^* = \frac{a+bc+bw_H^F}{2b}$, $\min\{a-bp^*, r_HK\} = \frac{a-bc-bw_H^F}{2}$, and $\min\{a-bp^*, r_LK\} = r_LK$.
- ▶ The (IR) constraint becomes

$$\left(\frac{a+bc+bw_{H}^{F}}{2b}-w_{H}^{F}-c\right)\left(\frac{a-bc-bw_{H}^{F}}{2}\right)\geq0.$$

 \blacktriangleright (IC-L) remain the same as in Case 1A, and (IC-H) becomes

$$w_H^F\left(\frac{a-bc-bw_H^F}{2}\right) \ge \frac{(a-bc-r_LK)r_LK}{b}.$$

► There is no value satisfying (IC-H) if $(\frac{a-bc}{2})^2 - 4(\frac{b}{2})(\frac{a-bc-r_Lk}{b})r_Lk < 0$. Hence, separation is impossible if $4 - 2\sqrt{2} < \frac{a-bc}{r_Lk} < 4 + 2\sqrt{2}$.

Background and motivation 00000000	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Proof of Proposition 2 (Region 1C)

- If $w_H^F \ge \frac{a-bc-2r_LK}{b}$, we have p^* and $\min\{a-bp^*, r_HK\}$ unchanged. However, $\min\{a-bp^*, r_LK\} = \frac{a-bc-bw_H^F}{2}$.
- ▶ (IR) and (IC-H) remain the same as those in Region 1B, and (IC-L) becomes

$$\frac{(a-bc-r_LK)r_LK}{b} \ge w_H^F \left(\frac{a-bc-bw_H^F}{2}\right).$$

- ▶ It turns out that (IC-L) does not matter.
- ▶ The condition derived in Region 1B based on (IC-H) still applies.

Background and motivation M	Model I	Non-profit hospitals	For-profit hospitals	Conclusions
0000000 0	0000000	00000	000000000000	000

Proof of Proposition 2 (Case 1)

- Collectively, when $r_L K \leq \frac{a-bc}{2}$ is true,
 - If $K > \frac{a-bc}{r_H+r_L}$, no w_H^F satisfies all three constraints in Region 1A.
 - ▶ If $4 2\sqrt{2} < \frac{a-bc}{r_L k} < 4 + 2\sqrt{2}$, no w_H^F satisfies all three constraints in Regions 1B and 1C.
- ▶ If the two conditions are satisfied at the same time, there is no $w_H^F \in [0, \infty)$ that may satisfy all three constraints.
- ▶ Therefore, when $r_L K \leq \frac{a-bc}{2}$, separation is impossible if

$$2r_L K \le a - bc < \min\left\{4 + 2\sqrt{2}, \frac{r_H}{r_L} + 1\right\} r_L K.$$

Background and motivation	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 000

Proof of Proposition 2

- For the second case $r_L K > \frac{a-bc}{2}$, we may follow the same way to check for feasibility.
 - In all the three regions, no w_H^F satisfies all constraints.
 - Separation is impossible as long as $a bc < 2r_L K$.
- ▶ Based on the analyses for Cases 1 and 2, we show that separation is impossible if either

$$2r_L K \le a - bc < \min\left\{4 + 2\sqrt{2}, \frac{r_H}{r_L} + 1\right\} r_L K$$
 or $a - bc < 2r_L K$.

▶ Combining these two conclusions, we conclude that a separating equilibrium does not exist if

$$a-bc<\min\left\{4+2\sqrt{2},\frac{r_H}{r_L}+1\right\}r_LK.$$

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions
00000000	0000000	00000	0000000000000	●00

Road map

- ▶ Background and motivation.
- ► Model.
- ► Analysis.
- ► Conclusions.

Background and motivation	Model	Non-profit hospitals	For-profit hospitals	Conclusions $0 \bullet 0$
00000000	0000000	00000	0000000000000	

Comparisons

- ► When selling to a non-profit hospital, a separating equilibrium always exists.
 - The treatment price is exogenous.
 - ▶ Both a fixed fee and a per-treatment payment extract full surplus.
 - ▶ Reliability always affects the treatment volume.
- ▶ When selling to a **for-profit** hospital, it is possible that a separating equilibrium **does not exist**.
 - The treatment price is endogenous.
 - Only a fixed fee can extract full surplus.
 - ▶ A per-treatment payment drives up the treatment price, drives down the demand, and makes reliability less critical for the treatment volume.
 - ▶ When the vendor is able to reveal the true information, that true information becomes less important to be revealed.

Background and motivation	Model 0000000	Non-profit hospitals 00000	For-profit hospitals	Conclusions 00●

Conclusions

- ► The equipment vendor has a **a lower incentive** to rent the machine to private hospitals than to public ones.
 - ▶ When it is a public hospital, a revenue-sharing contract signals the high reliability and increase the reliable vendor's expected profit.
 - ▶ When it is a private hospital, it is worthwhile to signal reliability through a revenue-sharing contract only if the **efficiency loss** is not severe.
- Regarding this research:
 - ▶ We observe different entities **acting differently** in practice.
 - ▶ There are obvious reasons. We look for **non-obvious reasons**.
 - ▶ An empirical study helps us identify potential factors.
 - ▶ A theoretical study helps us find explanations.