
Information Economics, Spring 2013

Homework 1
Instructor: Ling-Chieh Kung

Department of Information Management
National Taiwan University

1 Rules

Note 1. This homework is due 5:00 pm, September 13, 2013. Please submit a hard copy into
the instructor’s mail box. As each team only needs to submit one copy, please indicate the names and
student IDs of all team members on the first page.

Note 2. For this homework, each team can have at most three students. If your team has fewer than
three students, you may be randomly teamed with students from other teams for the class discussions
on September 16.

Note 3. To better control the class size, all the students who want to enroll in this course must do this
homework. If one does not submit this homework, she/he will fail the course if she/he insists to take it.

2 Problems

1. (10 points) Consider the following problems regarding differentiation.

(a) (2 points) Let f(x) = 3x4 + 4x3 − x2 + 6. Find d
dxf(x)|x=1.

(b) (4 points) Let f(x) = 3x41 + 4x1x
2
2 − x22 + 6. Find the gradient Of(x) and Hessian O2f(x).

(c) (2 points) Let f(x) = ln(x2 + 2)e2x. Find d
dxf(x).

(d) (2 points) Find the first-order Taylor expansion of x2 + 2x− 3 at x = 3.

2. (10 points) Consider the following problems regarding integration.

(a) (2 points) Let f(x) = 2x2 + 3x+ 5. Find
∫ 2

0
f(x)dx.

(b) (2 points) Let f(x) = e2x. Find
∫
f(x)dx (you may ignore the constant).

(c) (3 points) Let f(x) = x1x
2
2 + sinx1. Find

∫
f(x)dx2 (you may ignore the constant).

(d) (3 points) Find d
dx

∫ x

0
(t2 + 2t− 3)dt.

3. (10 points) Consider the following linear program

z∗ = min 2x1 + x2
s.t. x1 + 2x2 ≥ 4 (1)

x1 + x2 ≥ 2 (2)
x1 ≥ 0. (3)

(a) (4 points) Draw the feasible region.

(b) (3 points) Find an optimal solution.

(c) (3 points) Is there any redundant constraint? If so, find them.

4. (10 points) Suppose the interarrival time between consecutive bus arrivals X follows an exponential
distribution with the rate five buses per hour.

(a) (5 points) What is the probability that no bus arrives in 15 minutes?

(b) (5 points) What is the expected number of bus arrivals in two hours?
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5. (10 points) Prove or disprove that the intersection of two convex sets is a convex set.

6. (10 points) Let f(·) and g(·) be two convex functions defined over the same convex domain F .
Prove or disprove that h(x) ≡ f(x) + g(x) is a convex function over F .1

7. (10 points) Solve the following single-variate optimization problems.

(a) (2 points) Find argmaxx∈R{x2 + 2x+ 3|x ∈ [−2, 1]}.
(b) (2 points) Find argmaxx∈R{x2 + 2x+ 3|x ∈ [−2, 0]}.
(c) (2 points) Find maxx∈R{x2 + 2x+ 3|x ∈ [−2, 0]}.
(d) (2 points) Find argminx∈R{x2 + 2x+ 3|x ∈ [−2, 1]}.
(e) (2 points) Find argminx∈R{x2 + 2x+ 3|x ∈ [−2, 0]}.

8. (15 points) Consider the monopoly pricing problem we discussed in class. In this problem, we will
show that the insight “the optimal price will (weakly) increase as the unit cost increase” is still
true when the demand function D(p) is twice-differentiable, nonincreasing, and concave.

(a) (2 points) First of all, let’s see the demand function D(p) may indeed be concave. Suppose
the consumer’s valuation is no longer a uniform random variable. Instead, suppose the pdf of
the valuation is f(x) = 2x for x ∈ [0, 1]. Show that f(·) is indeed a pdf.

(b) (3 points) Given a price p ∈ (0, 1), what is the probability for a randomly chosen consumer to
buy the product? What is the expected number of consumers who will buy the product?

(c) (3 points) Now forget Parts (a) and (b) and work on a general D(p). As π(p) = (p− c)D(p),
show that π′′(p) = 2D′(p) +D′′(p)(p− c).

(d) (2 points) Explain why π(p) is concave if D(p) is nonincreasing and concave.

(e) (5 points) As π(p) is concave, the optimal price is the price p satisfying D(p)+D′(p)(p−c) = 0,
or equivalently,

D(p)

D′(p)
+ p = c.

Let g(p) ≡ D(p)
D′(p) + p, explain why once we show g(p) is nondecreasing in p, we have shown

that a higher c results in a (weakly) higher optimal price. Then show that g(p) is indeed
nondecreasing in p.

9. (15 points) Jensen’s inequality describes a relationship between convex/concave functions and
expectations. In this problem, we will prove Jensen’s inequality:

Proposition 1 (Jensen’s inequality). Let u : R→ R be a concave function and X be a continuous

random variable. If E[X] exists, we have E
[
u(X)

]
≤ u

(
E[X]

)
.

(a) (5 points) Consider the following lemma: If a single-variate differentiable function u(·) is
concave, we have

u(x) ≤ u(x0) + u′(x0)(x− x0)

for all x0, x ∈ R. Let u(x) = −x2 + 2x + 3 and x0 = 0, prove that the lemma is indeed true
for all x ∈ R. Then draw a figure to illustrate u(·), x0, and the tangent line of u(·) at x0.

(b) (5 points) Prove the above lemma.2

(c) (5 points) Given the above lemma, we have u(x) ≤ u(µ) + u′(µ)(x − µ) for all x ∈ R,
where µ is defined to be E[X]. Let f(·) be the pdf of X, we have f(x) ≥ 0 and thus
f(x)u(x) ≤ f(x)u(µ) + f(x)u′(µ)(x − µ) for all x ∈ R. Now do an integration to obtain our
desired result.3

1Be aware that these functions may be non-differentiable. If they are all differentiable, is it easier to prove or disprove
the statement?

2This lemma is actually more general: A differentiable function u : Rn → R is concave if and only if u(y) ≤ u(x) +
Ou(x)(y − x) for all x, y ∈ Rn. Nevertheless, you are only required to prove the simpler version.

3Though we do not prove it,
∫∞
−∞ g(x)f(x)dx = E[g(X)] for all g(·). You may treat this as given and use it directly.
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