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Syllabus

Welcome!

I This is Information Economics, NOT Information Economy.
I This is not a course talking about how to design and sell information

goods, information systems, social networks, and high-tech products.

I This is an economics course focusing on the issue of information. This
is economics of information.

I In different business environments:
I How people behave with different information?
I What is the value of information?
I What information to acquire?
I Is knowing more always better?

I In this course, we focus on information asymmetry.
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Syllabus

Information asymmetry

I The world is full of asymmetric information:
I A consumer does not know a retailer’s procurement cost.
I A consumer does not know a product’s quality.
I A retailer does not know a consumer’s valuation.
I An instructor does not know how hard a student works.

I As information asymmetry results in inefficiency, we want to:
I Analyze its impact. If possible, quantify it.
I Decide whether it introduces driving forces for some phenomena.
I Find a way to deal with it if it cannot be eliminated.

I This field is definitely fascinating. However:
I We need to have some “weapons” to explore the world!
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Syllabus

Before you enroll...

I Prerequisites:
I Calculus.
I Convex optimization.
I Probability.
I Game theory.

I Language: “All” English.
I All materials are in English.
I Students should try their best to speak English in class. But when it

really helps, one may speck Chinese.
I The instructor will speak Chinese in office hour unless a student prefers

English.
I The instructor will speak Chinese in lectures when it helps.
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Syllabus

The instructor

I Ling-Chieh Kung.
I Second-year assistant professor.
I Office: Room 413, Management Building II.
I Office hour: 9:10am-11:10am, Thursday or by appointment.
I E-mail: lckung@ntu.edu.tw.

I There is no teaching assistant for this course.
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Syllabus

Related information

I Classroom: Room 204, Management Building II.

I Lecture time: 9:10am-12:10pm, Monday.

I Main references:
I Contract Theory by P. Bolton and M. Dewatripont.
I Around ten academic papers.

I References:
I Game Theory for Applied Economists by R. Gibbons.
I The Theory of Incentives: The Principal-agent Model by J.-J. Laffont

and D. Martimort.
I Information Rules: A Strategic Guide to the Network Economy by C.

Shapiro and H. Varian.
I Auction Theory by V. Krishna.
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Syllabus

“Flipped classroom”

I Lectures in videos, then discussions in classes.

I Before each Monday, the instructor uploads a video of lectures.
I Ideally, the video will be no longer than one and a half hour.
I Students must watch the video by themselves before that Monday.

I During the lecture, we do three things:
I Discussing the lecture materials (0.5 to 1 hour).
I Solving class problems (1 to 2 hours).
I Further discussions (0.5 to 1 hour).

I After the lecture, students also need to do homework.
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Syllabus

Teams

I Students form teams to do class problems and homework.

I Each team has three students.
I Unless a special approval is obtained.

I Students may change teammates from homework to homework.

I Once some students form a team for one homework, they will be in
the same team for class problems until the submission of the next
homework.

I All students get the same grades for each homework and class problem.
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Syllabus

Homework and class problems

I Homework:
I Homework will be assigned roughly once per two weeks.
I For each homework, each team needs to submit only one paper.
I Please put a hard copy of your work into my mailbox on the first floor

of the Management Building II by the due time.
I No submission in class. No late submission.
I The lowest one homework grade will be dropped (i.e., you may skip one

homework if you want).

I Class problems:
I For each problem assigned by the instructor in class, students discuss in

teams for around 10 minutes.
I At least one team then demonstrate their answer to the class (in

English) to get grades for class problems.
I Sometimes teams may volunteer; sometimes the instructor determines

who to answer.
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Syllabus

Class participation and office hour

I Class participation:
I We do not require one to attend all the lectures.
I However, those who participate in class discussions get rewarded.
I Class problems also count for grades.
I Missing a class makes it impossible for you and less possible for your

teammates to get this part of grades.

I Office hour:
I Come to discuss any question (or just chat) with me!
I If the regular time does not work for you, just send me an e-mail.
I My “open-door” policy.
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Syllabus

Projects and exams

I Project:
I Please form a new team of at most n students, where the value of n will

be determined according to the class size.
I Each team will write a research proposal for a self-selected topic, make a

30-minute presentation, and submit a report.
I All team members must be in class for the team to present.

I Two exams:
I In-class and open whatever you have (including all kinds of electronic

devices).
I No discussion is allowed. Cheating will result in severe penalty.
I The final exam is comprehensive.
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Syllabus

Grading

I Homework: 20%.

I Projects: 20%.

I Class problems: 15%.

I Class participation: 5%.

I Two Exams: 40%:
I Plan 1: midterm 20% and final 20%.
I Plan 2: midterm 15% and final 25%.

I The final letter grades will be given according to the following
conversion rule:

Letter Range Letter Range Letter Range

A+ [90, 100] B+ [77, 80) C+ [67, 70)
A [85, 90) B [73, 77) C [63, 67)
A− [80, 85) B− [70, 73) C− [60, 63)
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Syllabus

Important dates and tentative plan

I Important dates:
I Week 5 (2013/10/7): No class because the instructor is in a conference.
I Week 9 (2013/11/4): Midterm exam.
I Weeks 16 and 17 (2013/12/23 and 30): Project presentation.
I Week 18 (2014/1/6): Final exam.

I Tentative plan:
I Review of optimization and game theory.
I Contracting without information asymmetry.
I Hidden information: screening (Ch. 2 of Contract Theory).
I Hidden information: signaling (Ch. 3 of Contract Theory).
I Hidden action: moral hazard (Ch. 4 of Contract Theory).
I Advanced topics (Ch. 6 and 7 of Contract Theory).
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Syllabus

Online resources

I CEIBA.
I Viewing your grades.
I Receiving announcements.

I http://www.ntu.edu.tw/~lckung/courses/IEFa13/.
I Downloading course materials.

I The bulletin board “NTUIM-lckung” on PTT.
I Discussions.

I YouTube:
I Watching lecture videos.
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Convexity

Road map

I Convexity.

I Optimization problems.

I Distributions and expectations.
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Convexity

Convex sets

Definition 1 (Convex sets)

A set F is convex if

λx1 + (1− λ)x2 ∈ F

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Convexity

Convex functions

Definition 2 (Convex functions)

For a convex domain F , a function f(·) is convex over F if

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2)

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Convexity

Convex functions
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Convexity

Some examples

I Convex sets?
I X1 = [10, 20].

I X2 = (10, 20).

I X3 = N.
I X4 = R.
I X5 = {(x, y)|x2 + y2 ≤ 4}.
I X6 = {(x, y)|x2 + y2 ≥ 4}.

I Convex functions?
I f1(x) = x+ 2, x ∈ R.
I f2(x) = x2 + 2, x ∈ R.
I f3(x) = sin(x), x ∈ [0, 2π].

I f4(x) = sin(x), x ∈ [π, 2π].

I f5(x) = log(x), x ∈ (0,∞).

I f6(x, y) = x2 + y2, (x, y) ∈ R2.
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Convexity

Strictly convex and concave functions

Definition 3 (Strictly convex functions)

For a convex domain F , a function f(·) is strictly convex over F if

f
(
λx1 + (1− λ)x2

)
< λf(x1) + (1− λ)f(x2)

for all λ ∈ (0, 1) and x1, x2 ∈ F such that x1 6= x2.

Definition 4 ((Strictly) concave functions)

For a convex domain F , a function f(·) is (strictly) concave over
F if −f(·) is (strictly) convex.
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Convexity

Derivatives of convex functions

Proposition 1

A single-variate twice-differentiable
function f(·) is convex over an interval
[a, b] if and only if

f ′′(x) ≥ 0 ∀x ∈ [a, b].

Proposition 2

A single-variate twice-differentiable
function f(·) is strictly convex over an
interval [a, b] if and only if

f ′′(x) > 0 ∀x ∈ [a, b].
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Convexity

Derivatives of concave functions

Proposition 3

A single-variate twice-differentiable
function f(·) is concave over an interval
[a, b] if and only if

f ′′(x) ≤ 0 ∀x ∈ [a, b].

Proposition 4

A single-variate twice-differentiable
function f(·) is strictly concave over an
interval [a, b] if and only if

f ′′(x) < 0 ∀x ∈ [a, b].



(1.2) Convexity, Optimization, and Probability 10 / 24

Optimization problems

Road map

I Convexity.

I Optimization problems.

I Distributions and expectations.
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Optimization problems

Optimization problems

I In an optimization problem, there are:
I Decision variables.
I The objective function.
I Constraints.

I Consider the well-known knapsack problem:
I I have n items.
I The value and weight of item i are pi and wi (in kg), respectively.
I I can carry at most B kg.
I I want to maximize the total value of items I carry.
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Optimization problems

Formulation

I Decision variables: Let

xi =

{
1 if I carry item i
0 otherwise

, i = 1, ..., n.

I The objective function:

max

n∑
i=1

pixi.

I Capacity constraint:
n∑

i=1

wixi ≤ B.

I Binary constraint:
xi ∈ {0, 1} ∀i = 1, ..., n.
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Optimization problems

Formulation

I The complete formulation:

z∗ = max

n∑
i=1

pixi

s.t.

n∑
i=1

wixi ≤ B

xi ∈ {0, 1} ∀i = 1, ..., n.

I Suppose n = 3, p = (15, 20, 25), w = (5, 4, 7), B = 9.
I The feasible region (the set of all feasible solutions) is
{(0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (1, 1, 0)}.

I Solutions (1, 0, 1), (0, 1, 1), and (1, 1, 1) are infeasible.
I An optimal solution is x∗ = (1, 1, 0). It happens to be unique.
I The optimal objective value is z∗ = 35.

I For this course, most problems will contain only continuous variables.
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Optimization problems

Linear programming

I Consider the problem

z∗ = max 2x1 + x2

s.t. x1 + 2x2 ≤ 6

2x1 + x2 ≤ 6

xi ≥ 0 ∀i = 1, 2.

I The feasible region is the shaded area.
I There are multiple optimal solutions

(where?).
I There is still a unique optimal objective

value z∗ = 6.

I An optimization problem is a linear
program (LP) if the objective function
and constraints are all linear.
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Optimization problems

Nonlinear programming

I An optimization problem is a convex program if in it we maximize a
concave function over a convex feasible region.

I Consider the convex program

z∗ = max log2 x1 + log2 x2

s.t. x21 + x22 ≤ 16

x1 + x2 ≥ 1.

I What is the feasible region?
I What is an optimal solution? Is it unique?
I What is the value of z∗?

I All convex programs can be solved efficiently.

I A problem is a nonlinear program if it is not a linear program.

I It may not be possible to solve a nonconvex program efficiently.
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Optimization problems

Infeasible and unbounded problems

I Not all problems have an optimal solution.

Definition 5 (Infeasible problems)

A problem is infeasible if there is no feasible solution.

I E.g., max{x2|x ≤ 2, x ≥ 3}.

Definition 6 (Unbounded problems)

A problem is unbounded if given any feasible solution, there is
another feasible solution that is better.

I E.g., max{ex|x ≥ 3}.
I How about min{sinx|x ≥ 0}?

I A problem may be infeasible, unbounded, or having an optimal
solution (may or may not be unique).
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Optimization problems

Set of optimal solutions

I The set of optimal solutions of a problem
max{f(x)|x ∈ X} is

argmax{f(x)|x ∈ X}.

I Let X =
{
x1 + 2x2 ≤ 6, 2x1 + x2 ≤ 6, x ∈ Z2

+

}
.

We have

12 = max
{

4x1 + 2x2

∣∣∣x ∈ X}
and{

(2, 2), (3, 0)
}

= argmax
{

2x1 + x2

∣∣∣x ∈ X}.
I If x∗ is an optimal solution of max{f(x)|x ∈ X},

we should write x∗ ∈ argmax{f(x)|x ∈ X}, NOT
x∗ = argmax{f(x)|x ∈ X}!
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Distributions and expectations

Road map

I Convexity.

I Optimization problems.

I Distributions and expectations.
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Distributions and expectations

Random variables

I The value of a random variable is unknown before it is realized.

I A random variable may be discrete, continuous, or mixed.
I A discrete one models a quantity that is typically counted.
I A continuous one models a quantity that is typically measured.
I A mixed one has one part discrete and the other part continuous.
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Distributions and expectations

Discrete random variables

I A discrete random variable is described by its probability mass
function (pmf).
I Let Y be the outcome of tossing a fair dice. What is the pmf of Y ?

I Let Z be the sum of two fair dices. What is the pmf of Z?

I Let X be a discrete random variable. Its pmf, pX(·), is a function
mapping a possible realization to a real values between 0 and 1 (which
is the probability).
I pX : S → [0, 1], where S is the sample space of X.
I What is pY (3) = Pr(Y = 3)? What is pZ(3) = Pr(Z = 3)?
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Distributions and expectations

Continuous random variables

I A continuous random variable is described by its
probability density function (pdf).
I Let Y be uniformly distributed with lower bound
a and upper bound b. The pdf of Y is

fY (y) =
1

b− a ∀y ∈ [a, b].

I Let Z be exponentially distributed with rate λ.
The pdf of Z is

fZ(z) = λe−λz ∀z ∈ [0,∞).

I Let X be a continuous random variable. Its pdf,
fX(·), is now a function mapping a possible
realization to a nonnegative real value.
I f : S → [0,∞), where S is the sample space of X.

I This value is NOT a probability!
I What is fY (3)? Is it Pr(Y = 3)?
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Distributions and expectations

Continuous random variables

I For a continuous random variable X, the probability for X to be equal
to a value is always 0.

I Only the probability for X to be within a range can be measured.

I Let Y ∼ fY where fY (y) =
1
4
for y ∈ [0, 4]. What is Pr

(
Y ∈ [3, 4]

)
?

I Let Z ∼ fZ where fZ(z) = 2e−2z for z ≥ 0. What is Pr
(
Z ∈ [1, 2]

)
?
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Distributions and expectations

(Cumulative) distribution functions

I For a random variable X, its (cumulative) distribution function
(cdf) F (·) is defined as

FX(t) = Pr(X ≤ t)

for all t in the sample space.
I If X is continuous, then FX(t) =

∫ t
−∞ fX(x)dx and fX(x) = F ′X(x).

I Let Y be the outcome of rolling a dice. What is FY (y)?

I Let Z ∼ fZ where fZ(z) = 2e−2z for z ≥ 0. What is FZ(z)?



(1.2) Convexity, Optimization, and Probability 24 / 24

Distributions and expectations

Expectations

I For a discrete random variable X
whose sample space is S, its
expectation (or expected
value) E[X] is

E[X] =
∑
x∈S

xpX(x).

I What is the expectation of
rolling a dice?

I For a continous random variable
X whose sample space is S, its
expectation E[X] is

E[X] =

∫
x∈S

xfX(x)dx.

I Let Y ∼ fY where fY (y) =
1
4
for

y ∈ [0, 4]. What is E[Y ]?
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Introduction

I Here we introduce optimality conditions for optimization problems.

I These conditions are critical for us to obtain analytical solutions.

I Only with analytical solutions we may deliver business/economic
implications, or insights.
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Optimality conditions

Road map

I Optimality conditions for unconstrained problems.

I Application: monopoly pricing.

I Application: the newsvendor problem.
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Optimality conditions

Global optima

I For a function f(x) over a feasible region F :
I A point x∗ is a global minimum if f(x∗) ≤ f(x) for all x ∈ F .
I A point x′ is a local minimum if for some ε > 0 we have

f(x′) ≤ f(x) ∀x ∈ B(x′, ε) ∩ F,

where B(x0, ε) ≡ {x|d(x, x0) ≤ ε} and d(x, y) ≡
√∑n

i=1(xi − yi)2.

I Global maxima and local maxima are defined accordingly.
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Optimality conditions

First-order necessary condition
I Consider an unconstrained problem

max
x∈Rn

f(x).

Proposition 1 (Unconstrained FONC)

Suppose f : Rn → R is differentiable. For a point x∗ to be a local
maximum of f , we need:
I f ′(x∗) = 0 if n = 1.
I Of(x∗) = 0 if n ≥ 2.

I For an n-dimensional differentiable function f , its gradient is

Of ≡


∂f

∂x1
...
∂f

∂xn

 .
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Optimality conditions

Examples

I Consider the problem

max
x∈R

x3 − 3x2 + 4x+ 2

The FONC yields

3(x2 − 3x+ 2) = 0.

Solving the equation gives us 1
and 2 as two candidates of local
maxima.
I It is easy to see that x∗ = 1 is a

local maxima but x̃ = 2 is NOT.

I Consider the problem

max
x∈R2

f(x) = x21 − x1x2 + x22 − 6x2.

The FONC yields

Of(x) =

[
2x1 − x2

−x1 + 2x2 − 6

]
=

[
0
0

]
.

Solving the linear system gives us
(2, 4) as the only candidate of
local maxima.
I Note that it may NOT be a local

maximum!
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Optimality conditions

Second-order necessary condition

I Let’s proceed further.

Proposition 2 (Unconstrained SONC)

Suppose f : Rn → R is twice-differentiable. For a point x∗ to be a
local maximum of f , we need:
I f ′′(x∗) ≤ 0 if n = 1.
I yTO2f(x∗)y ≤ 0 for all y ∈ Rn if n ≥ 2.

I For an n-dimensional function f(x1, ..., xn) : Rn → R that is
twice-differentiable, its Hessian is the n× n matrix

O2f ≡



∂2f

∂x21
· · · ∂2f

∂x1 ∂xn
...

. . .
...

∂2f

∂xn ∂x1
· · · ∂2f

∂x2n

 .
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Optimality conditions

Second-order necessary condition

I Regarding the Hessian:
I (Calculus) If the second-order derivatives are all continuous (which will

be true for almost all functions we will see in this course), the Hessian is
symmetric.

I (Linear Algebra) A symmetric matrix A is called negative
semidefinite if yTAy ≤ 0 for all y ∈ Rn.

I Therefore, if the second-order derivatives of f all exists and are
continuous, the unconstrained SONC is simply requesting the Hessian to
be negative semidefinite.

I In this course, we will not apply the SONC a lot.

I Here our point is that a local maximum requires NOT just

∂2f

∂x2i
≤ 0 ∀i = 1, ..., n.
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Optimality conditions

We want more than candidates!

I The FONC and SONC produce candidates of local maxima/minima.

I What’s next?
I We need some ways to ensure local optimality.
I We need to find a global optimal solution.

I While complicated methods exist for general functions, only simple
conditions are required for concave/convex functions.
I Because for a differentiable concave/convex function, the FONC is

necessary AND sufficient (thus called FOC in this case).

I Now points satisfying the FONC are locally optimal.

I Our final step is to show that they are also globally optimal.
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Optimality conditions

Local v.s. global optima

Proposition 3 (Global optimality of convex functions)

For a convex (concave) function f , a local minimum (maximum) is a
global minimum (maximum).

Proof. Suppose a local min x′ is not a global min and there exists x′′

such that f(x′′) < f(x′). Consider a small enough λ > 0 such that
x̄ = λx′′ + (1− λ)x′ satisfies f(x̄) > f(x′). Such x̄ exists because x is
a local min. Now, note that

f(x̄) = f
(
λx′′ + (1− λ)x′

)
> f(x′)

= λf(x′) + (1− λ)f(x′)

> λf(x′′) + (1− λ)f(x′),

which violates the fact that f(·) is convex. Therefore, by
contradiction, the local min x must be a global min.
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Optimality conditions

Remarks

I When you are asked to solve a problem:
I First check whether the objective function is convex/concave. If so the

problem may become much more easier.

I All the conditions for unconstrained problems apply to interior points
of a feasible region.

I One common strategy for solving constrained problems proceeds in the
following steps:
I Ignore all the constraints.
I Solve the unconstrained problem.
I Verify that the unconstrained optimal solution satisfies all constraints.

I If the strategy fails, we seek for other ways.



(1.3) Optimality Conditions 12 / 26

Monopoly pricing

Road map

I Optimality conditions for unconstrained problems.

I Application: monopoly pricing.

I Application: the newsvendor problem.
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Monopoly pricing

Monopoly pricing

I Suppose a monopolist sells a single product to consumers.

I Consumers are heterogeneous in their willingness-to-pay, or
valuation, of this product.
I One’s valuation, x, lies on the interval [0, b] uniformly.
I He buys the product if and only if his valuation is above the price.
I The total number of consumers is a.
I Given a price p, in expectation how many consumers buy?

I The unit production cost is c.

I The seller chooses a unit price p to maximize her total profit.
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Monopoly pricing

Formulation

I The endogenous decision variable is p.

I The exogenous parameters are a, b, and c.

I The only constraint is p ≥ 0.

I Let π(p) be the profit under price p. What is π(p)?

I What is the complete problem formulation?

I It is equivalent to normalize the population size a to 1.
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Monopoly pricing

Solving the problem

I Given that π(p) = a
b (p− c)(b− p), let’s show it is strictly concave:

I π′(p) =

I π′′(p) =

I Great! Now let’s ignore the constraint p ≥ 0.

I Applying the FOC, what is the unconstrained optimal solution?

I Does p∗ satisfy the ignored constraint? Is it globally optimal?
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Monopoly pricing

Comparative statics

I The optimal price p∗ = b+c
2 tells us something:

I p∗ is increasing in the highest possible valuation b. Why?
I p∗ is increasing in the unit cost c. Why?
I p∗ has nothing to do with the total number of consumer a. Why?

I The optimal profit π∗ ≡ π(p∗) = a(b−c)2
4b .

I π∗ is decreasing in c. Why?
I π∗ is increasing in a. Why?
I How is π∗ affected by b? Guess!
I Let’s answer it:

I It is these qualitative business/economic implications that matters.

I Never forget to verify your solutions with your intuition.
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Monopoly pricing

Robustness

I We “proved” one thing: The seller will charge more and earn more
when the unit cost goes up.
I Does this depend on our model assumptions?
I In particular, what if the distribution of consumer valuations is not

uniform (i.e., the demand function is not linear)?

I Let’s examine the robustness of this finding by generalizing our
demand function.
I Suppose the demand function D(p) is twice-differentiable.
I The profit function is

π(p) = (p− c)D(p).

I To check concavity, note that D′′(p) = 2D′(p) +D′′(p)(p− c) (verify it!).
I As long as D is nonincreasing and concave, π(p) is concave (why?).
I Under this assumption, the FOC requires the optimal price p∗ to satisfy

D(p∗) +D′(p∗)(p∗ − c) = 0.
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Monopoly pricing

Robustness

I For the equation D(p) +D′(p)(p− c) = 0, how does c affect p?

I We have “proved” that our finding is not so restrictive: It is true as
long as D(·) is nonincreasing and concave.
I This generalization can go further.

I Avoid using unreasonable assumptions to prove “surprising” results!



(1.3) Optimality Conditions 19 / 26

Newsvendor problem

Road map

I Optimality conditions for unconstrained problems.

I Application: monopoly pricing.

I Application: the newsvendor problem.
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Newsvendor problem

Newsvendor problem

I In some situations, sellers face uncertain demands.

I Consider a vendor of newspapers:
I She does not know how many people will buy in a day.
I She has only one chance to prepare newspapers (at, e.g., 4am).
I Unsold newspapers become (almost) valueless.

I For perishable products, sellers solve single-period problems.
I These are also called one-shot problems.
I For durable goods, sellers solve multi-period problems.

I As a newsvendor, what should be in your mind?
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Newsvendor problem

Newsvendor model

I Let D be the uncertain demand.

I Let F and f be the distribution and density functions of D.
I This time let’s directly use a general model.
I The only assumption here is that D is continuous and nonnegative.
I The insights we obtain will also apply to discrete random demands.

I Let r be the unit retail price and c be the unit replenishment cost.

I We want to find an order quantity q that maximizes the expected total
profit.
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Newsvendor problem

Formulation

I The sales quantity, given the demand D and order quantity q, is

min{D, q},

which is also random.

I With this, the expected profit is

I The only constraint is q ≥ 0.

I What is the complete formulation?
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Newsvendor problem

Concavity of the cost function

I As usual, let’s analyze the objective function first.

I The expected profit π(q) is

π(q) = rE
[

min{D, q}
]
− cq = r

∫ ∞
0

min{x, q}f(x)dx− cq

= r

{∫ q

0

xf(x)dx+

∫ ∞
q

qf(x)dx

}
− cq

= r

{∫ q

0

xf(x)dx+ q[1− F (q)]

}
− cq.

I We then have

π′(q) = r
[
qf(q) + 1− F (q)− qf(q)

]
− c = r

[
1− F (q)

]
− c.

and
π′′(q) = −rf(q) ≤ 0.
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Newsvendor problem

Optimizing the order quantity

I So π(q) is concave in q.

I Let q∗ be the order quantity that satisfies the FOC, we have

π′(q∗) = r
[
1− F (q∗)

]
− c = 0 ⇔ F (q∗) = 1− c

r
.

I As 0 < c < r, we have 0 < 1− c
r < 1 and thus a reasonable q∗ can be

obtained (how?).

I As D ≥ 0, q∗ must be nonnegative. So q∗ is optimal.
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Newsvendor problem

Trade-off between overage and underage

I Let’s verify our solution with intuitions.

I The optimal probability of shortage is
1− F (q∗) = c

r .
I When c goes up, creates a higher shortage

probability by decreasing q∗.
I When r goes up, creates a lower shortage

probability by increasing q∗.
I c

r
is called the critical ratio.

I Suppose the shape of F changes and E[D]
goes up. Will q∗ also go up?



(1.3) Optimality Conditions 26 / 26

Newsvendor problem

Other components that may be modeled

I More components may be included in the model:
I The unit salvage value for each unsold product.
I The unit disposal fee for each unsold product.
I The unit shortage cost for each unsatisfied customer.
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