IM 7011: Information Economics

Overview and preliminaries Lecture 1.1: Overview

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 9, 2013

Welcome!

► This is Information Economics, NOT Information Economy.

- This is not a course talking about how to design and sell information goods, information systems, social networks, and high-tech products.
- This is an economics course focusing on the issue of information. This is economics of information.
- ▶ In different business environments:
 - ▶ How people behave with different information?
 - What is the value of information?
 - ▶ What information to acquire?
 - Is knowing more always better?
- ► In this course, we focus on **information asymmetry**.

Information asymmetry

- ▶ The world is full of asymmetric information:
 - ▶ A consumer does not know a retailer's procurement cost.
 - A consumer does not know a product's quality.
 - ▶ A retailer does not know a consumer's valuation.
 - ▶ An instructor does not know how hard a student works.
- ▶ As information asymmetry results in inefficiency, we want to:
 - ▶ Analyze its impact. If possible, quantify it.
 - ▶ Decide whether it introduces driving forces for some phenomena.
 - ▶ Find a way to deal with it if it cannot be eliminated.
- ▶ This field is definitely fascinating. However:
 - ▶ We need to have some "**weapons**" to explore the world!

Before you enroll...

- Prerequisites:
 - Calculus.
 - Convex optimization.
 - Probability.
 - ▶ Game theory.
- ► Language: "All" English.
 - ▶ All materials are in English.
 - ▶ Students should try their best to speak English in class. But when it really helps, one may speck Chinese.
 - ▶ The instructor will speak Chinese in office hour unless a student prefers English.
 - ▶ The instructor will speak Chinese in lectures when it helps.

The instructor

- ▶ Ling-Chieh Kung.
 - Second-year assistant professor.
 - ▶ Office: Room 413, Management Building II.
 - ▶ Office hour: 9:10am-11:10am, Thursday or by appointment.
 - ▶ E-mail: lckung@ntu.edu.tw.
- There is no teaching assistant for this course.

Related information

- ▶ Classroom: Room 204, Management Building II.
- ▶ Lecture time: 9:10am-12:10pm, Monday.
- ▶ Main references:
 - ▶ Contract Theory by P. Bolton and M. Dewatripont.
 - ▶ Around ten academic papers.
- ▶ References:
 - ▶ Game Theory for Applied Economists by R. Gibbons.
 - ► The Theory of Incentives: The Principal-agent Model by J.-J. Laffont and D. Martimort.
 - ▶ Information Rules: A Strategic Guide to the Network Economy by C. Shapiro and H. Varian.
 - ▶ Auction Theory by V. Krishna.

"Flipped classroom"

- ▶ Lectures in **videos**, then discussions in classes.
- ▶ Before each Monday, the instructor uploads a video of lectures.
 - ▶ Ideally, the video will be no longer than one and a half hour.
 - ▶ Students must watch the video by themselves before that Monday.
- During the lecture, we do three things:
 - Discussing the lecture materials (0.5 to 1 hour).
 - ► Solving **class problems** (1 to 2 hours).
 - Further discussions (0.5 to 1 hour).
- ▶ After the lecture, students also need to do homework.

Teams

- ▶ Students form **teams** to do class problems and homework.
- Each team has **three** students.
 - ▶ Unless a special approval is obtained.
- ▶ Students may change teammates from homework to homework.
- ► Once some students form a team for one homework, they will be in the same team for class problems until the submission of the next homework.
- ▶ All students get the same grades for each homework and class problem.

(1.1) Overview └─_{Syllabus}

Homework and class problems

- ► Homework:
 - ▶ Homework will be assigned roughly once per two weeks.
 - ▶ For each homework, each team needs to submit only one paper.
 - Please put a hard copy of your work into my mailbox on the first floor of the Management Building II by the due time.
 - ▶ No submission in class. No late submission.
 - ▶ The lowest one homework grade will be dropped (i.e., you may skip one homework if you want).
- Class problems:
 - ▶ For each problem assigned by the instructor in class, students discuss in teams for around 10 minutes.
 - ► At least one team then demonstrate their answer to the class (in English) to get grades for class problems.
 - ▶ Sometimes teams may volunteer; sometimes the instructor determines who to answer.

Class participation and office hour

- Class participation:
 - We do not require one to attend all the lectures.
 - ▶ However, those who participate in class discussions get rewarded.
 - Class problems also count for grades.
 - Missing a class makes it impossible for you and less possible for your teammates to get this part of grades.
- ► Office hour:
 - Come to discuss any question (or just chat) with me!
 - ▶ If the regular time does not work for you, just send me an e-mail.
 - ▶ My "open-door" policy.

Projects and exams

- ▶ Project:
 - \blacktriangleright Please form a new team of at most n students, where the value of n will be determined according to the class size.
 - Each team will write a research proposal for a self-selected topic, make a 30-minute presentation, and submit a report.
 - ▶ All team members must be in class for the team to present.
- ► Two exams:
 - ▶ In-class and open whatever you have (including all kinds of electronic devices).
 - ▶ No discussion is allowed. Cheating will result in severe penalty.
 - ▶ The final exam is comprehensive.

Grading

- Homework: 20%.
- ▶ Projects: 20%.
- ▶ Class problems: 15%.
- ▶ Class participation: 5%.
- ► Two Exams: 40%:
 - \blacktriangleright Plan 1: midterm 20% and final 20%.
 - \blacktriangleright Plan 2: midterm 15% and final 25%.
- ▶ The final letter grades will be given according to the following conversion rule:

Letter	Range	Letter	Range	Letter	Range
$\substack{A+\\A}{A-}$	$\begin{array}{c} [90, 100] \\ [85, 90) \\ [80, 85) \end{array}$	B+ B B-	$[77, 80) \\ [73, 77) \\ [70, 73)$	C+ C C-	[67, 70) [63, 67) [60, 63)

Important dates and tentative plan

Important dates:

- Week 5 (2013/10/7): No class because the instructor is in a conference.
- ▶ Week 9 (2013/11/4): Midterm exam.
- ▶ Weeks 16 and 17 (2013/12/23 and 30): Project presentation.
- ▶ Week 18 (2014/1/6): Final exam.
- ▶ Tentative plan:
 - ▶ Review of optimization and game theory.
 - Contracting without information asymmetry.
 - ▶ Hidden information: screening (Ch. 2 of Contract Theory).
 - ▶ Hidden information: signaling (Ch. 3 of Contract Theory).
 - ▶ Hidden action: moral hazard (Ch. 4 of Contract Theory).
 - ▶ Advanced topics (Ch. 6 and 7 of Contract Theory).

Online resources

► CEIBA.

- Viewing your grades.
- Receiving announcements.
- ▶ http://www.ntu.edu.tw/~lckung/courses/IEFa13/.
 - Downloading course materials.
- ▶ The bulletin board "NTUIM-lckung" on PTT.
 - Discussions.
- ► YouTube:
 - ▶ Watching lecture videos.

IM 7011: Information Economics

Overview and preliminaries Lecture 1.2: Convexity, Optimization, and Probability

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 9, 2013

Road map

- ► Convexity.
- ▶ Optimization problems.
- ▶ Distributions and expectations.

Convex sets

Definition 1 (Convex sets)

A set F is **<u>convex</u>** if

$$\lambda x_1 + (1 - \lambda) x_2 \in F$$

for all $\lambda \in [0,1]$ and $x_1, x_2 \in F$.

Convex functions

Definition 2 (Convex functions)

For a convex domain F, a function $f(\cdot)$ is <u>convex</u> over F if

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

for all $\lambda \in [0,1]$ and $x_1, x_2 \in F$.

(1.2) Convexity, Optimization, and Probability $\[blue]{}_{Convexity}$

Convex functions

(1.2) Convexity, Optimization, and Probability \Box Convexity

Some examples

- ► Convex sets?
 - $X_1 = [10, 20].$
 - $X_2 = (10, 20).$
 - $X_3 = \mathbb{N}$.
 - $\blacktriangleright X_4 = \mathbb{R}.$
 - $X_5 = \{(x, y) | x^2 + y^2 \le 4\}.$
 - $X_6 = \{(x, y) | x^2 + y^2 \ge 4\}.$

- Convex functions?
 - $f_1(x) = x + 2, x \in \mathbb{R}$.
 - $f_2(x) = x^2 + 2, x \in \mathbb{R}.$
 - $f_3(x) = \sin(x), x \in [0, 2\pi].$
 - $f_4(x) = \sin(x), x \in [\pi, 2\pi].$
 - $f_5(x) = \log(x), x \in (0, \infty).$
 - $f_6(x,y) = x^2 + y^2, (x,y) \in \mathbb{R}^2.$

Strictly convex and concave functions

Definition 3 (Strictly convex functions)

For a convex domain F, a function $f(\cdot)$ is strictly convex over F if

$$f\left(\lambda x_1 + (1-\lambda)x_2\right) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

for all $\lambda \in (0,1)$ and $x_1, x_2 \in F$ such that $x_1 \neq x_2$.

Definition 4 ((Strictly) concave functions)

For a convex domain F, a function $f(\cdot)$ is <u>(strictly) concave</u> over F if $-f(\cdot)$ is (strictly) convex.

Derivatives of convex functions

Proposition 1

A single-variate twice-differentiable function $f(\cdot)$ is **convex** over an interval [a,b] if and only if

$$f''(x) \ge 0 \quad \forall x \in [a, b].$$

Proposition 2

A single-variate twice-differentiable function $f(\cdot)$ is strictly convex over an interval [a, b] if and only if

$$f''(x) > 0 \quad \forall x \in [a, b].$$

Derivatives of concave functions

Proposition 3

A single-variate twice-differentiable function $f(\cdot)$ is **concave** over an interval [a,b] if and only if

$$f''(x) \le 0 \quad \forall x \in [a, b].$$

Proposition 4

A single-variate twice-differentiable function $f(\cdot)$ is strictly concave over an interval [a, b] if and only if

$$f''(x) < 0 \quad \forall x \in [a, b].$$

(1.2) Convexity, Optimization, and Probability \square Optimization problems

Road map

- ► Convexity.
- ▶ Optimization problems.
- Distributions and expectations.

(1.2) Convexity, Optimization, and Probability \square Optimization problems

Optimization problems

- ▶ In an optimization problem, there are:
 - ▶ Decision variables.
 - ► The objective function.
 - ► Constraints.
- ▶ Consider the well-known *knapsack* problem:
 - I have n items.
 - The value and weight of item i are p_i and w_i (in kg), respectively.
 - ▶ I can carry at most *B* kg.
 - ▶ I want to maximize the total value of items I carry.

Formulation

▶ Decision variables: Let

$$x_i = \begin{cases} 1 & \text{if I carry item } i \\ 0 & \text{otherwise} \end{cases}, i = 1, ..., n.$$

▶ The objective function:

$$\max \sum_{i=1}^{n} p_i x_i.$$

► Capacity constraint:

$$\sum_{i=1}^{n} w_i x_i \le B.$$

▶ Binary constraint:

$$x_i \in \{0, 1\} \quad \forall i = 1, ..., n.$$

Formulation

▶ The complete formulation:

$$z^* = \max \quad \sum_{i=1}^n p_i x_i$$

s.t.
$$\sum_{i=1}^n w_i x_i \le B$$
$$x_i \in \{0,1\} \quad \forall i = 1, ..., n.$$

- Suppose n = 3, p = (15, 20, 25), w = (5, 4, 7), B = 9.
 - ▶ The feasible region (the set of all feasible solutions) is $\{(0,0,0), (1,0,0), (0,1,0), (0,0,1), (1,1,0)\}.$
 - Solutions (1, 0, 1), (0, 1, 1), and (1, 1, 1) are **infeasible**.
 - An optimal solution is $x^* = (1, 1, 0)$. It happens to be unique.
 - The optimal objective value is $z^* = 35$.

▶ For this course, most problems will contain only continuous variables.

Linear programming

▶ Consider the problem

$$z^* = \max \quad 2x_1 + x_2$$

s.t.
$$x_1 + 2x_2 \le 6$$
$$2x_1 + x_2 \le 6$$
$$x_i \ge 0 \quad \forall i = 1, 2.$$

- ▶ The feasible region is the shaded area.
- There are multiple optimal solutions (where?).
- There is still a unique optimal objective value $z^* = 6$.
- ► An optimization problem is a linear program (LP) if the objective function and constraints are all linear.

Nonlinear programming

- ► An optimization problem is a **convex program** if in it we maximize a concave function over a convex feasible region.
- Consider the convex program

 $z^* = \max \quad \log_2 x_1 + \log_2 x_2$ s.t. $x_1^2 + x_2^2 \le 16$ $x_1 + x_2 \ge 1.$

- ▶ What is the feasible region?
- ▶ What is an optimal solution? Is it unique?
- What is the value of z^* ?
- ▶ All convex programs can be solved efficiently.
- ▶ A problem is a **nonlinear program** if it is not a linear program.
- ▶ It may not be possible to solve a nonconvex program efficiently.

Infeasible and unbounded problems

▶ Not all problems have an optimal solution.

Definition 5 (Infeasible problems)

A problem is **infeasible** if there is no feasible solution.

• E.g.,
$$\max\{x^2 | x \le 2, x \ge 3\}.$$

Definition 6 (Unbounded problems)

A problem is <u>unbounded</u> if given any feasible solution, there is another feasible solution that is better.

- E.g., $\max\{e^x | x \ge 3\}.$
- How about $\min\{\sin x | x \ge 0\}$?
- A problem may be infeasible, unbounded, or having an optimal solution (may or may not be unique).

(1.2) Convexity, Optimization, and Probability \square Optimization problems

Set of optimal solutions

▶ The set of optimal solutions of a problem $\max{f(x)|x \in X}$ is

 $\operatorname{argmax}\{f(x)|x\in X\}.$

• Let
$$X = \left\{ x_1 + 2x_2 \le 6, 2x_1 + x_2 \le 6, x \in \mathbb{Z}_+^2 \right\}$$
.
We have

$$12 = \max\left\{4x_1 + 2x_2 \middle| x \in X\right\}$$

and

$$\{(2,2),(3,0)\} = \operatorname{argmax} \{2x_1 + x_2 | x \in X\}.$$

• If x^* is an optimal solution of $\max\{f(x)|x \in X\}$, we should write $x^* \in \operatorname{argmax}\{f(x)|x \in X\}$, NOT $x^* = \operatorname{argmax}\{f(x)|x \in X\}!$

Road map

- ► Convexity.
- ▶ Optimization problems.
- ► Distributions and expectations.

Random variables

- ▶ The value of a **random variable** is unknown before it is **realized**.
- ▶ A random variable may be discrete, continuous, or mixed.
 - A **discrete** one models a quantity that is typically **counted**.
 - ► A **continuous** one models a quantity that is typically **measured**.
 - ▶ A mixed one has one part discrete and the other part continuous.

Discrete random variables

- ► A discrete random variable is described by its **probability mass** function (pmf).
 - Let Y be the outcome of tossing a fair dice. What is the pmf of Y?

• Let Z be the sum of two fair dices. What is the pmf of Z?

- ▶ Let X be a discrete random variable. Its pmf, $p_X(\cdot)$, is a function mapping a possible realization to a real values between 0 and 1 (which is the **probability**).
 - ▶ $p_X : S \to [0, 1]$, where S is the sample space of X.
 - What is $p_Y(3) = \Pr(Y = 3)$? What is $p_Z(3) = \Pr(Z = 3)$?

Continuous random variables

- A continuous random variable is described by its probability density function (pdf).
 - Let Y be uniformly distributed with lower bound a and upper bound b. The pdf of Y is

$$f_Y(y) = \frac{1}{b-a} \quad \forall y \in [a,b].$$

• Let Z be exponentially distributed with rate λ . The pdf of Z is

$$f_Z(z) = \lambda e^{-\lambda z} \quad \forall z \in [0, \infty).$$

• Let X be a continuous random variable. Its pdf, $f_X(\cdot)$, is now a function mapping a possible realization to a nonnegative real value.

• $f: S \to [0, \infty)$, where S is the sample space of X.

- ▶ This value is NOT a probability!
 - What is $f_Y(3)$? Is it $\Pr(Y=3)$?

Continuous random variables

- ► For a continuous random variable X, the probability for X to be equal to a value is always 0.
- ▶ Only the probability for X to be **within a range** can be measured.
 - Let $Y \sim f_Y$ where $f_Y(y) = \frac{1}{4}$ for $y \in [0, 4]$. What is $\Pr\left(Y \in [3, 4]\right)$?

• Let
$$Z \sim f_Z$$
 where $f_Z(z) = 2e^{-2z}$ for $z \ge 0$. What is $\Pr\left(Z \in [1,2]\right)$?

(Cumulative) distribution functions

For a random variable X, its (cumulative) distribution function (cdf) $F(\cdot)$ is defined as

$$F_X(t) = \Pr(X \le t)$$

for all t in the sample space.

- If X is continuous, then $F_X(t) = \int_{-\infty}^t f_X(x) dx$ and $f_X(x) = F'_X(x)$.
- Let Y be the outcome of rolling a dice. What is $F_Y(y)$?

• Let
$$Z \sim f_Z$$
 where $f_Z(z) = 2e^{-2z}$ for $z \ge 0$. What is $F_Z(z)$?

Expectations

► For a discrete random variable X whose sample space is S, its expectation (or expected value) E[X] is

$$\mathbb{E}[X] = \sum_{x \in S} x p_X(x).$$

What is the expectation of rolling a dice? ► For a continuous random variable X whose sample space is S, its expectation E[X] is

$$\mathbb{E}[X] = \int_{x \in S} x f_X(x) dx.$$

• Let $Y \sim f_Y$ where $f_Y(y) = \frac{1}{4}$ for $y \in [0, 4]$. What is $\mathbb{E}[Y]$?

IM 7011: Information Economics

Overview and Preliminaries Lecture 1.3: Optimality Conditions

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 9, 2013

Introduction

- ▶ Here we introduce **optimality conditions** for optimization problems.
- ▶ These conditions are critical for us to obtain **analytical solutions**.
- Only with analytical solutions we may deliver business/economic implications, or insights.

Road map

- ▶ Optimality conditions for unconstrained problems.
- ▶ Application: monopoly pricing.
- ▶ Application: the newsvendor problem.

Global optima

- For a function f(x) over a feasible region F:
 - A point x^* is a global minimum if $f(x^*) \le f(x)$ for all $x \in F$.
 - A point x' is a **local minimum** if for some $\epsilon > 0$ we have

$$f(x') \le f(x) \quad \forall x \in B(x', \epsilon) \cap F,$$

where $B(x^0, \epsilon) \equiv \{x | d(x, x^0) \le \epsilon\}$ and $d(x, y) \equiv \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$.

▶ Global maxima and local maxima are defined accordingly.

First-order necessary condition

▶ Consider an **unconstrained** problem

 $\max_{x \in \mathbb{R}^n} f(x).$

Proposition 1 (Unconstrained FONC)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is differentiable. For a point x^* to be a local maximum of f, we need:

•
$$f'(x^*) = 0$$
 if $n = 1$

- $\blacktriangleright \ \nabla f(x^*) = 0 \ if \ n \ge 2.$
- For an *n*-dimensional differentiable function f, its **gradient** is

$$abla f \equiv egin{bmatrix} rac{\partial f}{\partial x_1} \ dots \ rac{\partial f}{\partial x_n} \end{bmatrix}.$$

Examples

Consider the problem

 $\max_{x \in \mathbb{R}} x^3 - 3x^2 + 4x + 2$

The FONC yields

 $3(x^2 - 3x + 2) = 0.$

Solving the equation gives us 1 and 2 as two candidates of local maxima.

► It is easy to see that x^{*} = 1 is a local maxima but x̃ = 2 is NOT.

Consider the problem

 $\max_{x \in \mathbb{R}^2} f(x) = x_1^2 - x_1 x_2 + x_2^2 - 6x_2.$

The FONC yields

$$\nabla f(x) = \begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}.$$

Solving the linear system gives us (2,4) as the only candidate of local maxima.

Note that it may NOT be a local maximum!

Second-order necessary condition

▶ Let's proceed further.

Proposition 2 (Unconstrained SONC)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is twice-differentiable. For a point x^* to be a local maximum of f, we need:

•
$$f''(x^*) \le 0$$
 if $n = 1$.

►
$$y^T \nabla^2 f(x^*) y \leq 0$$
 for all $y \in \mathbb{R}^n$ if $n \geq 2$.

► For an *n*-dimensional function $f(x_1, ..., x_n) : \mathbb{R}^n \to \mathbb{R}$ that is twice-differentiable, its **Hessian** is the $n \times n$ matrix

$$\nabla^2 f \equiv \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

Second-order necessary condition

▶ Regarding the Hessian:

- ▶ (Calculus) If the second-order derivatives are all continuous (which will be true for almost all functions we will see in this course), the Hessian is symmetric.
- ► (Linear Algebra) A symmetric matrix A is called **negative** semidefinite if $y^T A y \leq 0$ for all $y \in \mathbb{R}^n$.
- ▶ Therefore, if the second-order derivatives of *f* all exists and are continuous, the unconstrained SONC is simply requesting the Hessian to be negative semidefinite.
- ▶ In this course, we will not apply the SONC a lot.
- ▶ Here our point is that a local maximum requires NOT just

$$\frac{\partial^2 f}{\partial x_i^2} \leq 0 \quad \forall i=1,...,n.$$

We want more than candidates!

- ▶ The FONC and SONC produce candidates of local maxima/minima.
- ► What's next?
 - We need some ways to **ensure** local optimality.
 - We need to find a **global** optimal solution.
- ▶ While complicated methods exist for general functions, only simple conditions are required for concave/convex functions.
 - ▶ Because for a differentiable concave/convex function, the FONC is necessary AND sufficient (thus called FOC in this case).

- ▶ Now points satisfying the FONC are locally optimal.
- Our final step is to show that they are also **globally** optimal.

Local v.s. global optima

Proposition 3 (Global optimality of convex functions)

For a convex (concave) function f, a local minimum (maximum) is a global minimum (maximum).

Proof. Suppose a local min x' is not a global min and there exists x'' such that f(x'') < f(x'). Consider a small enough $\lambda > 0$ such that $\bar{x} = \lambda x'' + (1 - \lambda)x'$ satisfies $f(\bar{x}) > f(x')$. Such \bar{x} exists because x is a local min. Now, note that

$$f(\bar{x}) = f\left(\lambda x'' + (1 - \lambda)x'\right)$$

$$> f(x')$$

$$= \lambda f(x') + (1 - \lambda)f(x')$$

$$> \lambda f(x'') + (1 - \lambda)f(x'),$$

$$x''$$

which violates the fact that $f(\cdot)$ is convex. Therefore, by contradiction, the local min x must be a global min.

Remarks

- ▶ When you are asked to solve a problem:
 - ▶ First check whether the objective function is convex/concave. If so the problem may become much more easier.
- ► All the conditions for unconstrained problems apply to **interior** points of a feasible region.
- One common strategy for solving constrained problems proceeds in the following steps:
 - ▶ Ignore all the constraints.
 - ▶ Solve the unconstrained problem.
 - ▶ Verify that the unconstrained optimal solution satisfies all constraints.
- ▶ If the strategy fails, we seek for other ways.

Road map

- ▶ Optimality conditions for unconstrained problems.
- ► Application: monopoly pricing.
- ▶ Application: the newsvendor problem.

Monopoly pricing

- ▶ Suppose a monopolist sells a single product to consumers.
- Consumers are heterogeneous in their willingness-to-pay, or valuation, of this product.
 - One's valuation, x, lies on the interval [0, b] uniformly.
 - ▶ He buys the product if and only if his valuation is above the price.
 - The total number of consumers is a.
 - ▶ Given a price *p*, in expectation how many consumers buy?

- The unit production cost is c.
- The seller chooses a unit price p to maximize her total profit.

Formulation

- ► The **endogenous** decision variable is *p*.
- The **exogenous** parameters are a, b, and c.
- The only constraint is $p \ge 0$.
- Let $\pi(p)$ be the profit under price p. What is $\pi(p)$?

▶ What is the complete problem formulation?

• It is equivalent to **normalize** the population size a to 1.

Solving the problem

- Given that $\pi(p) = \frac{a}{b}(p-c)(b-p)$, let's show it is strictly concave:
 - $\blacktriangleright \ \pi'(p) =$
 - $\pi''(p) =$
- Great! Now let's ignore the constraint $p \ge 0$.
- ▶ Applying the FOC, what is the unconstrained optimal solution?

• Does p^* satisfy the ignored constraint? Is it globally optimal?

Comparative statics

- ▶ The optimal price $p^* = \frac{b+c}{2}$ tells us something:
 - p^* is increasing in the highest possible valuation b. Why?
 - p^* is increasing in the unit cost c. Why?
 - p^* has nothing to do with the total number of consumer a. Why?

• The optimal profit $\pi^* \equiv \pi(p^*) = \frac{a(b-c)^2}{4b}$.

- π^* is decreasing in c. Why?
- π^* is increasing in *a*. Why?
- How is π^* affected by b? Guess!
- ▶ Let's answer it:

- ▶ It is these **qualitative** business/economic implications that matters.
- ▶ Never forget to verify your solutions with your **intuition**.

Robustness

- ▶ We "**proved**" one thing: The seller will charge more and earn more when the unit cost goes up.
 - Does this depend on our model assumptions?
 - ▶ In particular, what if the distribution of consumer valuations is not uniform (i.e., the demand function is not linear)?
- ► Let's examine the **robustness** of this finding by **generalizing** our demand function.
 - Suppose the demand function D(p) is twice-differentiable.
 - ▶ The profit function is

$$\pi(p) = (p-c)D(p).$$

- To check concavity, note that D''(p) = 2D'(p) + D''(p)(p-c) (verify it!).
- As long as D is nonincreasing and concave, $\pi(p)$ is concave (why?).
- ▶ Under this assumption, the FOC requires the optimal price p^* to satisfy

$$D(p^*) + D'(p^*)(p^* - c) = 0.$$

Robustness

► For the equation D(p) + D'(p)(p-c) = 0, how does c affect p?

- We have "proved" that our finding is not so restrictive: It is true as long as $D(\cdot)$ is nonincreasing and concave.
 - ▶ This generalization can go further.
- ▶ Avoid using unreasonable assumptions to prove "surprising" results!

Road map

- ▶ Optimality conditions for unconstrained problems.
- ▶ Application: monopoly pricing.
- ► Application: the newsvendor problem.

Newsvendor problem

- ▶ In some situations, sellers face **uncertain demands**.
- Consider a vendor of newspapers:
 - ▶ She does not know how many people will buy in a day.
 - ▶ She has only **one chance** to prepare newspapers (at, e.g., 4am).
 - ▶ Unsold newspapers become (almost) valueless.
- ► For **perishable** products, sellers solve **single-period** problems.
 - ▶ These are also called **one-shot** problems.
 - ▶ For durable goods, sellers solve multi-period problems.
- ▶ As a newsvendor, what should be in your mind?

Newsvendor model

- Let D be the uncertain demand.
- Let F and f be the distribution and density functions of D.
 - ▶ This time let's directly use a general model.
 - \blacktriangleright The only assumption here is that D is continuous and nonnegative.
 - ▶ The insights we obtain will also apply to discrete random demands.
- Let r be the unit retail price and c be the unit replenishment cost.
- \blacktriangleright We want to find an order quantity q that maximizes the expected total profit.

Formulation

▶ The sales quantity, given the demand D and order quantity q, is

 $\min\{D,q\},$

which is also random.

▶ With this, the expected profit is

- The only constraint is $q \ge 0$.
- ▶ What is the complete formulation?

Concavity of the cost function

- ▶ As usual, let's analyze the objective function first.
- The expected profit $\pi(q)$ is

$$\begin{aligned} \pi(q) &= r \mathbb{E}\Big[\min\{D,q\}\Big] - cq = r \int_0^\infty \min\{x,q\} f(x) dx - cq \\ &= r \Big\{ \int_0^q x f(x) dx + \int_q^\infty q f(x) dx \Big\} - cq \\ &= r \Big\{ \int_0^q x f(x) dx + q[1 - F(q)] \Big\} - cq. \end{aligned}$$

▶ We then have

$$\pi'(q) = r \Big[qf(q) + 1 - F(q) - qf(q) \Big] - c = r \Big[1 - F(q) \Big] - c.$$

and

$$\pi''(q) = -rf(q) \le 0.$$

Optimizing the order quantity

- So $\pi(q)$ is concave in q.
- Let q^* be the order quantity that satisfies the FOC, we have

$$\pi'(q^*) = r \Big[1 - F(q^*) \Big] - c = 0 \quad \Leftrightarrow \quad F(q^*) = 1 - \frac{c}{r}$$

▶ As 0 < c < r, we have $0 < 1 - \frac{c}{r} < 1$ and thus a reasonable q^* can be obtained (how?).

▶ As $D \ge 0$, q^* must be nonnegative. So q^* is optimal.

Trade-off between overage and underage

- ▶ Let's verify our solution with intuitions.
- ► The optimal probability of shortage is $1 F(q^*) = \frac{c}{r}$.
 - ▶ When c goes up, creates a higher shortage probability by decreasing q^{*}.
 - When r goes up, creates a lower shortage probability by increasing q^* .
 - $\frac{c}{r}$ is called the **critical ratio**.
- ► Suppose the shape of F changes and E[D] goes up. Will q* also go up?

Other components that may be modeled

• More components may be included in the model:

- ▶ The unit salvage value for each unsold product.
- ▶ The unit disposal fee for each unsold product.
- ▶ The unit shortage cost for each unsatisfied customer.