IM 7011: Information Economics

Overview and preliminaries
Lecture 1.1: Overview

Ling-Chieh Kung

Department of Information Management
National Taiwan University

September 9, 2013

Welcome!

- This is Information Economics, NOT Information Economy.
- This is not a course talking about how to design and sell information goods, information systems, social networks, and high-tech products.
- This is an economics course focusing on the issue of information. This is economics of information.
- In different business environments:
- How people behave with different information?
- What is the value of information?
- What information to acquire?
- Is knowing more always better?
- In this course, we focus on information asymmetry.

Information asymmetry

- The world is full of asymmetric information:
- A consumer does not know a retailer's procurement cost.
- A consumer does not know a product's quality.
- A retailer does not know a consumer's valuation.
- An instructor does not know how hard a student works.
- As information asymmetry results in inefficiency, we want to:
- Analyze its impact. If possible, quantify it.
- Decide whether it introduces driving forces for some phenomena.
- Find a way to deal with it if it cannot be eliminated.
- This field is definitely fascinating. However:
- We need to have some "weapons" to explore the world!

Before you enroll...

- Prerequisites:
- Calculus.
- Convex optimization.
- Probability.
- Game theory.
- Language: "All" English.
- All materials are in English.
- Students should try their best to speak English in class. But when it really helps, one may speck Chinese.
- The instructor will speak Chinese in office hour unless a student prefers English.
- The instructor will speak Chinese in lectures when it helps.

The instructor

- Ling-Chieh Kung.
- Second-year assistant professor.
- Office: Room 413, Management Building II.
- Office hour: 9:10am-11:10am, Thursday or by appointment.
- E-mail: lckung@ntu.edu.tw.
- There is no teaching assistant for this course.

Related information

- Classroom: Room 204, Management Building II.
- Lecture time: 9:10am-12:10pm, Monday.
- Main references:
- Contract Theory by P. Bolton and M. Dewatripont.
- Around ten academic papers.
- References:
- Game Theory for Applied Economists by R. Gibbons.
- The Theory of Incentives: The Principal-agent Model by J.-J. Laffont and D. Martimort.
- Information Rules: A Strategic Guide to the Network Economy by C. Shapiro and H. Varian.
- Auction Theory by V. Krishna.

"Flipped classroom"

- Lectures in videos, then discussions in classes.
- Before each Monday, the instructor uploads a video of lectures.
- Ideally, the video will be no longer than one and a half hour.
- Students must watch the video by themselves before that Monday.
- During the lecture, we do three things:
- Discussing the lecture materials (0.5 to 1 hour).
- Solving class problems (1 to 2 hours).
- Further discussions (0.5 to 1 hour).
- After the lecture, students also need to do homework.

Teams

- Students form teams to do class problems and homework.
- Each team has three students.
- Unless a special approval is obtained.
- Students may change teammates from homework to homework.
- Once some students form a team for one homework, they will be in the same team for class problems until the submission of the next homework.
- All students get the same grades for each homework and class problem.

Homework and class problems

- Homework:
- Homework will be assigned roughly once per two weeks.
- For each homework, each team needs to submit only one paper.
- Please put a hard copy of your work into my mailbox on the first floor of the Management Building II by the due time.
- No submission in class. No late submission.
- The lowest one homework grade will be dropped (i.e., you may skip one homework if you want).
- Class problems:
- For each problem assigned by the instructor in class, students discuss in teams for around 10 minutes.
- At least one team then demonstrate their answer to the class (in English) to get grades for class problems.
- Sometimes teams may volunteer; sometimes the instructor determines who to answer.

Class participation and office hour

- Class participation:
- We do not require one to attend all the lectures.
- However, those who participate in class discussions get rewarded.
- Class problems also count for grades.
- Missing a class makes it impossible for you and less possible for your teammates to get this part of grades.
- Office hour:
- Come to discuss any question (or just chat) with me!
- If the regular time does not work for you, just send me an e-mail.
- My "open-door" policy.

Projects and exams

- Project:
- Please form a new team of at most n students, where the value of n will be determined according to the class size.
- Each team will write a research proposal for a self-selected topic, make a 30-minute presentation, and submit a report.
- All team members must be in class for the team to present.
- Two exams:
- In-class and open whatever you have (including all kinds of electronic devices).
- No discussion is allowed. Cheating will result in severe penalty.
- The final exam is comprehensive.

Grading

- Homework: 20%.
- Projects: 20%.
- Class problems: 15%.
- Class participation: 5%.
- Two Exams: 40\%:
- Plan 1: midterm 20% and final 20%.
- Plan 2: midterm 15% and final 25%.
- The final letter grades will be given according to the following conversion rule:

Letter	Range	Letter	Range	Letter	Range
$\mathrm{A}+$	$[90,100]$	$\mathrm{B}+$	$[77,80)$	$\mathrm{C}+$	$[67,70)$
A	$[85,90)$	B	$[73,77)$	C	$[63,67)$
$\mathrm{A}-$	$[80,85)$	$\mathrm{B}-$	$[70,73)$	$\mathrm{C}-$	$[60,63)$

Important dates and tentative plan

- Important dates:
- Week 5 (2013/10/7): No class because the instructor is in a conference.
- Week 9 (2013/11/4): Midterm exam.
- Weeks 16 and 17 (2013/12/23 and 30): Project presentation.
- Week 18 (2014/1/6): Final exam.
- Tentative plan:
- Review of optimization and game theory.
- Contracting without information asymmetry.
- Hidden information: screening (Ch. 2 of Contract Theory).
- Hidden information: signaling (Ch. 3 of Contract Theory).
- Hidden action: moral hazard (Ch. 4 of Contract Theory).
- Advanced topics (Ch. 6 and 7 of Contract Theory).

Online resources

- CEIBA.
- Viewing your grades.
- Receiving announcements.
- http://www.ntu.edu.tw/ lckung/courses/IEFa13/.
- Downloading course materials.
- The bulletin board "NTUIM-lckung" on PTT.
- Discussions.
- YouTube:
- Watching lecture videos.

IM 7011: Information Economics

Overview and preliminaries
Lecture 1.2: Convexity, Optimization, and Probability

Ling-Chieh Kung

Department of Information Management
National Taiwan University

September 9, 2013

Road map

- Convexity.
- Optimization problems.
- Distributions and expectations.

Convex sets

Definition 1 (Convex sets)

A set F is convex if

$$
\lambda x_{1}+(1-\lambda) x_{2} \in F
$$

for all $\lambda \in[0,1]$ and $x_{1}, x_{2} \in F$.

Convex functions

Definition 2 (Convex functions)

For a convex domain F, a function $f(\cdot)$ is convex over F if

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

for all $\lambda \in[0,1]$ and $x_{1}, x_{2} \in F$.

Convex functions

Some examples

- Convex sets?
- $X_{1}=[10,20]$.
- $X_{2}=(10,20)$.
- $X_{3}=\mathbb{N}$.
- $X_{4}=\mathbb{R}$.
- $X_{5}=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$.
- $X_{6}=\left\{(x, y) \mid x^{2}+y^{2} \geq 4\right\}$.
- Convex functions?
- $f_{1}(x)=x+2, x \in \mathbb{R}$.
- $f_{2}(x)=x^{2}+2, x \in \mathbb{R}$.
- $f_{3}(x)=\sin (x), x \in[0,2 \pi]$.
- $f_{4}(x)=\sin (x), x \in[\pi, 2 \pi]$.
- $f_{5}(x)=\log (x), x \in(0, \infty)$.
- $f_{6}(x, y)=x^{2}+y^{2},(x, y) \in \mathbb{R}^{2}$.

Strictly convex and concave functions

Definition 3 (Strictly convex functions)

For a convex domain F, a function $f(\cdot)$ is strictly convex over F if

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right)<\lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

for all $\lambda \in(0,1)$ and $x_{1}, x_{2} \in F$ such that $x_{1} \neq x_{2}$.

Definition 4 ((Strictly) concave functions)

For a convex domain F, a function $f(\cdot)$ is (strictly) concave over F if $-f(\cdot)$ is (strictly) convex.

Derivatives of convex functions

Proposition 1

A single-variate twice-differentiable function $f(\cdot)$ is convex over an interval $[a, b]$ if and only if

$$
f^{\prime \prime}(x) \geq 0 \quad \forall x \in[a, b] .
$$

Proposition 2

A single-variate twice-differentiable function $f(\cdot)$ is strictly convex over an interval $[a, b]$ if and only if

$$
f^{\prime \prime}(x)>0 \quad \forall x \in[a, b] .
$$

Derivatives of concave functions

Proposition 3

A single-variate twice-differentiable function $f(\cdot)$ is concave over an interval $[a, b]$ if and only if

$$
f^{\prime \prime}(x) \leq 0 \quad \forall x \in[a, b] .
$$

Proposition 4

A single-variate twice-differentiable function $f(\cdot)$ is strictly concave over an interval $[a, b]$ if and only if

$$
f^{\prime \prime}(x)<0 \quad \forall x \in[a, b] .
$$

Road map

- Convexity.
- Optimization problems.
- Distributions and expectations.

Optimization problems

- In an optimization problem, there are:
- Decision variables.
- The objective function.
- Constraints.
- Consider the well-known knapsack problem:
- I have n items.
- The value and weight of item i are p_{i} and w_{i} (in kg), respectively.
- I can carry at most $B \mathrm{~kg}$.
- I want to maximize the total value of items I carry.

Formulation

- Decision variables: Let

$$
x_{i}=\left\{\begin{array}{ll}
1 & \text { if I carry item } i \\
0 & \text { otherwise }
\end{array}, i=1, \ldots, n .\right.
$$

- The objective function:

$$
\max \sum_{i=1}^{n} p_{i} x_{i}
$$

- Capacity constraint:

$$
\sum_{i=1}^{n} w_{i} x_{i} \leq B
$$

- Binary constraint:

$$
x_{i} \in\{0,1\} \quad \forall i=1, \ldots, n .
$$

Formulation

- The complete formulation:

$$
\begin{aligned}
z^{*}=\max & \sum_{i=1}^{n} p_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{n} w_{i} x_{i} \leq B \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, n .
\end{aligned}
$$

- Suppose $n=3, p=(15,20,25), w=(5,4,7), B=9$.
- The feasible region (the set of all feasible solutions) is $\{(0,0,0),(1,0,0),(0,1,0),(0,0,1),(1,1,0)\}$.
- Solutions $(1,0,1),(0,1,1)$, and $(1,1,1)$ are infeasible.
- An optimal solution is $x^{*}=(1,1,0)$. It happens to be unique.
- The optimal objective value is $z^{*}=35$.
- For this course, most problems will contain only continuous variables.

Linear programming

- Consider the problem

$$
\begin{aligned}
z^{*}=\max & 2 x_{1}+x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 6 \\
& 2 x_{1}+x_{2} \leq 6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

- The feasible region is the shaded area.
- There are multiple optimal solutions (where?).
- There is still a unique optimal objective value $z^{*}=6$.
- An optimization problem is a linear
 program (LP) if the objective function and constraints are all linear.

Nonlinear programming

- An optimization problem is a convex program if in it we maximize a concave function over a convex feasible region.
- Consider the convex program

$$
\begin{aligned}
z^{*}=\max & \log _{2} x_{1}+\log _{2} x_{2} \\
\text { s.t. } & x_{1}^{2}+x_{2}^{2} \leq 16 \\
& x_{1}+x_{2} \geq 1
\end{aligned}
$$

- What is the feasible region?
- What is an optimal solution? Is it unique?
- What is the value of z^{*} ?
- All convex programs can be solved efficiently.
- A problem is a nonlinear program if it is not a linear program.
- It may not be possible to solve a nonconvex program efficiently.

Infeasible and unbounded problems

- Not all problems have an optimal solution.

Definition 5 (Infeasible problems)

A problem is infeasible if there is no feasible solution.

- E.g., $\max \left\{x^{2} \mid x \leq 2, x \geq 3\right\}$.

Definition 6 (Unbounded problems)

A problem is unbounded if given any feasible solution, there is another feasible solution that is better.

- E.g., $\max \left\{e^{x} \mid x \geq 3\right\}$.
- How about $\min \{\sin x \mid x \geq 0\}$?
- A problem may be infeasible, unbounded, or having an optimal solution (may or may not be unique).

Set of optimal solutions

- The set of optimal solutions of a problem $\max \{f(x) \mid x \in X\}$ is

$$
\operatorname{argmax}\{f(x) \mid x \in X\} .
$$

- Let $X=\left\{x_{1}+2 x_{2} \leq 6,2 x_{1}+x_{2} \leq 6, x \in \mathbb{Z}_{+}^{2}\right\}$.

We have

$$
12=\max \left\{4 x_{1}+2 x_{2} \mid x \in X\right\}
$$

and

$$
\{(2,2),(3,0)\}=\operatorname{argmax}\left\{2 x_{1}+x_{2} \mid x \in X\right\} .
$$

- If x^{*} is an optimal solution of $\max \{f(x) \mid x \in X\}$, we should write $x^{*} \in \operatorname{argmax}\{f(x) \mid x \in X\}$, NOT $x^{*}=\operatorname{argmax}\{f(x) \mid x \in X\}!$

Road map

- Convexity.
- Optimization problems.
- Distributions and expectations.

Random variables

- The value of a random variable is unknown before it is realized.
- A random variable may be discrete, continuous, or mixed.
- A discrete one models a quantity that is typically counted.
- A continuous one models a quantity that is typically measured.
- A mixed one has one part discrete and the other part continuous.

Discrete random variables

- A discrete random variable is described by its probability mass function (pmf).
- Let Y be the outcome of tossing a fair dice. What is the pmf of Y ?
- Let Z be the sum of two fair dices. What is the pmf of Z ?
- Let X be a discrete random variable. Its pmf, $p_{X}(\cdot)$, is a function mapping a possible realization to a real values between 0 and 1 (which is the probability).
- $p_{X}: S \rightarrow[0,1]$, where S is the sample space of X.
- What is $p_{Y}(3)=\operatorname{Pr}(Y=3)$? What is $p_{Z}(3)=\operatorname{Pr}(Z=3)$?

Continuous random variables

- A continuous random variable is described by its probability density function (pdf).
- Let Y be uniformly distributed with lower bound a and upper bound b. The pdf of Y is

$$
f_{Y}(y)=\frac{1}{b-a} \quad \forall y \in[a, b] .
$$

- Let Z be exponentially distributed with rate λ. The pdf of Z is

$$
f_{Z}(z)=\lambda e^{-\lambda z} \quad \forall z \in[0, \infty)
$$

- Let X be a continuous random variable. Its pdf, $f_{X}(\cdot)$, is now a function mapping a possible realization to a nonnegative real value.
- $f: S \rightarrow[0, \infty)$, where S is the sample space of X.
- This value is NOT a probability!
- What is $f_{Y}(3)$? Is it $\operatorname{Pr}(Y=3)$?

Continuous random variables

- For a continuous random variable X, the probability for X to be equal to a value is always 0 .
- Only the probability for X to be within a range can be measured.
- Let $Y \sim f_{Y}$ where $f_{Y}(y)=\frac{1}{4}$ for $y \in[0,4]$. What is $\operatorname{Pr}(Y \in[3,4])$?
- Let $Z \sim f_{Z}$ where $f_{Z}(z)=2 e^{-2 z}$ for $z \geq 0$. What is $\operatorname{Pr}(Z \in[1,2])$?

(Cumulative) distribution functions

- For a random variable X, its (cumulative) distribution function (cdf) $F(\cdot)$ is defined as

$$
F_{X}(t)=\operatorname{Pr}(X \leq t)
$$

for all t in the sample space.

- If X is continuous, then $F_{X}(t)=\int_{-\infty}^{t} f_{X}(x) d x$ and $f_{X}(x)=F_{X}^{\prime}(x)$.
- Let Y be the outcome of rolling a dice. What is $F_{Y}(y)$?
- Let $Z \sim f_{Z}$ where $f_{Z}(z)=2 e^{-2 z}$ for $z \geq 0$. What is $F_{Z}(z)$?

Expectations

- For a discrete random variable X whose sample space is S, its expectation (or expected value) $\mathbb{E}[X]$ is

$$
\mathbb{E}[X]=\sum_{x \in S} x p_{X}(x)
$$

- What is the expectation of rolling a dice?
- For a continous random variable X whose sample space is S, its expectation $\mathbb{E}[X]$ is

$$
\mathbb{E}[X]=\int_{x \in S} x f_{X}(x) d x
$$

- Let $Y \sim f_{Y}$ where $f_{Y}(y)=\frac{1}{4}$ for $y \in[0,4]$. What is $\mathbb{E}[Y]$?

IM 7011: Information Economics

Overview and Preliminaries
Lecture 1.3: Optimality Conditions

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 9, 2013

Introduction

- Here we introduce optimality conditions for optimization problems.
- These conditions are critical for us to obtain analytical solutions.
- Only with analytical solutions we may deliver business/economic implications, or insights.

Road map

- Optimality conditions for unconstrained problems.
- Application: monopoly pricing.
- Application: the newsvendor problem.

Global optima

- For a function $f(x)$ over a feasible region F :
- A point x^{*} is a global minimum if $f\left(x^{*}\right) \leq f(x)$ for all $x \in F$.
- A point x^{\prime} is a local minimum if for some $\epsilon>0$ we have

$$
f\left(x^{\prime}\right) \leq f(x) \quad \forall x \in B\left(x^{\prime}, \epsilon\right) \cap F,
$$

where $B\left(x^{0}, \epsilon\right) \equiv\left\{x \mid d\left(x, x^{0}\right) \leq \epsilon\right\}$ and $d(x, y) \equiv \sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}}$.

- Global maxima and local maxima are defined accordingly.

First-order necessary condition

- Consider an unconstrained problem

$$
\max _{x \in \mathbb{R}^{n}} f(x)
$$

Proposition 1 (Unconstrained FONC)

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is differentiable. For a point x^{*} to be a local maximum of f, we need:

- $f^{\prime}\left(x^{*}\right)=0$ if $n=1$.
- $\nabla f\left(x^{*}\right)=0$ if $n \geq 2$.
- For an n-dimensional differentiable function f, its gradient is

$$
\nabla f \equiv\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right] .
$$

Examples

- Consider the problem

$$
\max _{x \in \mathbb{R}} x^{3}-3 x^{2}+4 x+2
$$

The FONC yields

$$
3\left(x^{2}-3 x+2\right)=0 .
$$

Solving the equation gives us 1 and 2 as two candidates of local maxima.

- It is easy to see that $x^{*}=1$ is a local maxima but $\tilde{x}=2$ is NOT.
- Consider the problem

$$
\max _{x \in \mathbb{R}^{2}} f(x)=x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}-6 x_{2}
$$

The FONC yields

$$
\nabla f(x)=\left[\begin{array}{c}
2 x_{1}-x_{2} \\
-x_{1}+2 x_{2}-6
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] .
$$

Solving the linear system gives us $(2,4)$ as the only candidate of local maxima.

- Note that it may NOT be a local maximum!

Second-order necessary condition

- Let's proceed further.

Proposition 2 (Unconstrained SONC)

Suppose $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ is twice-differentiable. For a point x^{*} to be a local maximum of f, we need:

- $f^{\prime \prime}\left(x^{*}\right) \leq 0$ if $n=1$.
- $y^{T} \nabla^{2} f\left(x^{*}\right) y \leq 0$ for all $y \in \mathbb{R}^{n}$ if $n \geq 2$.
- For an n-dimensional function $f\left(x_{1}, \ldots, x_{n}\right): \mathbb{R}^{n} \rightarrow \mathbb{R}$ that is twice-differentiable, its Hessian is the $n \times n$ matrix

$$
\nabla^{2} f \equiv\left[\begin{array}{ccc}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \cdots & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]
$$

Second-order necessary condition

- Regarding the Hessian:
- (Calculus) If the second-order derivatives are all continuous (which will be true for almost all functions we will see in this course), the Hessian is symmetric.
- (Linear Algebra) A symmetric matrix A is called negative semidefinite if $y^{T} A y \leq 0$ for all $y \in \mathbb{R}^{n}$.
- Therefore, if the second-order derivatives of f all exists and are continuous, the unconstrained SONC is simply requesting the Hessian to be negative semidefinite.
- In this course, we will not apply the SONC a lot.
- Here our point is that a local maximum requires NOT just

$$
\frac{\partial^{2} f}{\partial x_{i}^{2}} \leq 0 \quad \forall i=1, \ldots, n
$$

We want more than candidates!

- The FONC and SONC produce candidates of local maxima/minima.
- What's next?
- We need some ways to ensure local optimality.
- We need to find a global optimal solution.
- While complicated methods exist for general functions, only simple conditions are required for concave/convex functions.
- Because for a differentiable concave/convex function, the FONC is necessary AND sufficient (thus called FOC in this case).
- Now points satisfying the FONC are locally optimal.
- Our final step is to show that they are also globally optimal.

Local v.s. global optima

Proposition 3 (Global optimality of convex functions)

For a convex (concave) function f, a local minimum (maximum) is a global minimum (maximum).

Proof. Suppose a local min x^{\prime} is not a global min and there exists $x^{\prime \prime}$ such that $f\left(x^{\prime \prime}\right)<f\left(x^{\prime}\right)$. Consider a small enough $\lambda>0$ such that $\bar{x}=\lambda x^{\prime \prime}+(1-\lambda) x^{\prime}$ satisfies $f(\bar{x})>f\left(x^{\prime}\right)$. Such \bar{x} exists because x is a local min. Now, note that

$$
\begin{aligned}
f(\bar{x}) & =f\left(\lambda x^{\prime \prime}+(1-\lambda) x^{\prime}\right) \\
& >f\left(x^{\prime}\right) \\
& =\lambda f\left(x^{\prime}\right)+(1-\lambda) f\left(x^{\prime}\right) \\
& >\lambda f\left(x^{\prime \prime}\right)+(1-\lambda) f\left(x^{\prime}\right),
\end{aligned}
$$

which violates the fact that $f(\cdot)$ is convex. Therefore, by contradiction, the local min x must be a global min.

Remarks

- When you are asked to solve a problem:
- First check whether the objective function is convex/concave. If so the problem may become much more easier.
- All the conditions for unconstrained problems apply to interior points of a feasible region.
- One common strategy for solving constrained problems proceeds in the following steps:
- Ignore all the constraints.
- Solve the unconstrained problem.
- Verify that the unconstrained optimal solution satisfies all constraints.
- If the strategy fails, we seek for other ways.

Road map

- Optimality conditions for unconstrained problems.
- Application: monopoly pricing.
- Application: the newsvendor problem.

Monopoly pricing

- Suppose a monopolist sells a single product to consumers.
- Consumers are heterogeneous in their willingness-to-pay, or valuation, of this product.
- One's valuation, x, lies on the interval $[0, b]$ uniformly.
- He buys the product if and only if his valuation is above the price.
- The total number of consumers is a.
- Given a price p, in expectation how many consumers buy?
- The unit production cost is c.
- The seller chooses a unit price p to maximize her total profit.

Formulation

- The endogenous decision variable is p.
- The exogenous parameters are a, b, and c.
- The only constraint is $p \geq 0$.
- Let $\pi(p)$ be the profit under price p. What is $\pi(p)$?
- What is the complete problem formulation?
- It is equivalent to normalize the population size a to 1 .

Solving the problem

- Given that $\pi(p)=\frac{a}{b}(p-c)(b-p)$, let's show it is strictly concave:
- $\pi^{\prime}(p)=$
- $\pi^{\prime \prime}(p)=$
- Great! Now let's ignore the constraint $p \geq 0$.
- Applying the FOC, what is the unconstrained optimal solution?
- Does p^{*} satisfy the ignored constraint? Is it globally optimal?

Comparative statics

- The optimal price $p^{*}=\frac{b+c}{2}$ tells us something:
- p^{*} is increasing in the highest possible valuation b. Why?
- p^{*} is increasing in the unit cost c. Why?
- p^{*} has nothing to do with the total number of consumer a. Why?
- The optimal profit $\pi^{*} \equiv \pi\left(p^{*}\right)=\frac{a(b-c)^{2}}{4 b}$.
- π^{*} is decreasing in c. Why?
- π^{*} is increasing in a. Why?
- How is π^{*} affected by b ? Guess!
- Let's answer it:
- It is these qualitative business/economic implications that matters.
- Never forget to verify your solutions with your intuition.

Robustness

- We "proved" one thing: The seller will charge more and earn more when the unit cost goes up.
- Does this depend on our model assumptions?
- In particular, what if the distribution of consumer valuations is not uniform (i.e., the demand function is not linear)?
- Let's examine the robustness of this finding by generalizing our demand function.
- Suppose the demand function $D(p)$ is twice-differentiable.
- The profit function is

$$
\pi(p)=(p-c) D(p)
$$

- To check concavity, note that $D^{\prime \prime}(p)=2 D^{\prime}(p)+D^{\prime \prime}(p)(p-c)$ (verify it!).
- As long as D is nonincreasing and concave, $\pi(p)$ is concave (why?).
- Under this assumption, the FOC requires the optimal price p^{*} to satisfy

$$
D\left(p^{*}\right)+D^{\prime}\left(p^{*}\right)\left(p^{*}-c\right)=0
$$

Robustness

- For the equation $D(p)+D^{\prime}(p)(p-c)=0$, how does c affect p ?
- We have "proved" that our finding is not so restrictive: It is true as long as $D(\cdot)$ is nonincreasing and concave.
- This generalization can go further.
- Avoid using unreasonable assumptions to prove "surprising" results!

Road map

- Optimality conditions for unconstrained problems.
- Application: monopoly pricing.
- Application: the newsvendor problem.

Newsvendor problem

- In some situations, sellers face uncertain demands.
- Consider a vendor of newspapers:
- She does not know how many people will buy in a day.
- She has only one chance to prepare newspapers (at, e.g., 4am).
- Unsold newspapers become (almost) valueless.
- For perishable products, sellers solve single-period problems.
- These are also called one-shot problems.
- For durable goods, sellers solve multi-period problems.
- As a newsvendor, what should be in your mind?

Newsvendor model

- Let D be the uncertain demand.
- Let F and f be the distribution and density functions of D.
- This time let's directly use a general model.
- The only assumption here is that D is continuous and nonnegative.
- The insights we obtain will also apply to discrete random demands.
- Let r be the unit retail price and c be the unit replenishment cost.
- We want to find an order quantity q that maximizes the expected total profit.

Formulation

- The sales quantity, given the demand D and order quantity q, is

$$
\min \{D, q\},
$$

which is also random.

- With this, the expected profit is
- The only constraint is $q \geq 0$.
- What is the complete formulation?

Concavity of the cost function

- As usual, let's analyze the objective function first.
- The expected profit $\pi(q)$ is

$$
\begin{aligned}
\pi(q) & =r \mathbb{E}[\min \{D, q\}]-c q=r \int_{0}^{\infty} \min \{x, q\} f(x) d x-c q \\
& =r\left\{\int_{0}^{q} x f(x) d x+\int_{q}^{\infty} q f(x) d x\right\}-c q \\
& =r\left\{\int_{0}^{q} x f(x) d x+q[1-F(q)]\right\}-c q .
\end{aligned}
$$

- We then have

$$
\pi^{\prime}(q)=r[q f(q)+1-F(q)-q f(q)]-c=r[1-F(q)]-c .
$$

and

$$
\pi^{\prime \prime}(q)=-r f(q) \leq 0
$$

Optimizing the order quantity

- So $\pi(q)$ is concave in q.
- Let q^{*} be the order quantity that satisfies the FOC, we have

$$
\pi^{\prime}\left(q^{*}\right)=r\left[1-F\left(q^{*}\right)\right]-c=0 \quad \Leftrightarrow \quad F\left(q^{*}\right)=1-\frac{c}{r} .
$$

- As $0<c<r$, we have $0<1-\frac{c}{r}<1$ and thus a reasonable q^{*} can be obtained (how?).
- As $D \geq 0, q^{*}$ must be nonnegative. So q^{*} is optimal.

Trade-off between overage and underage

- Let's verify our solution with intuitions.
- The optimal probability of shortage is $1-F\left(q^{*}\right)=\frac{c}{r}$.
- When c goes up, creates a higher shortage probability by decreasing q^{*}.
- When r goes up, creates a lower shortage probability by increasing q^{*}.
- $\frac{c}{r}$ is called the critical ratio.
- Suppose the shape of F changes and $\mathbb{E}[D]$ goes up. Will q^{*} also go up?

Other components that may be modeled

- More components may be included in the model:
- The unit salvage value for each unsold product.
- The unit disposal fee for each unsold product.
- The unit shortage cost for each unsatisfied customer.

