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Utility functions

Road map

I Utility functions.

I Risk attitudes.
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Utility functions

Payment, payoff, and surplus

I In many business environments, people act to earn payments.

I However, one cares more than money/payments.
I All items (e.g., goods) have monetary values.
I One’s payoff or surplus include all the monetary values.

I Suppose one has a used laptop. If she feels that owning the laptop is
worth $x, she should not sell it at a price lower than $x.
I She maximizes her payoff, not just payments.

I We assume that “higher payoff, higher happiness” is true for everyone.
I We will exclude things that cannot be measured in monetary values.



(2.1) Utility functions and risk attitudes 4 / 12

Utility functions

Uncertainty and risks

I “Higher payoff, higher happiness” is true when payoffs are certain.

I However, the world is full of uncertainty, i.e., risks.
I This is especially true under information asymmetry!

I Consider the following three payment schemes (reward systems):
I A: Getting $1000 for certain.
I B: Getting $2000 or nothing, each with probability 1

2
.

I C: Getting $2000 with probability 99% or nothing with probability 1%.

I Different people may have different preferences:
I Most people would prefer C to B.
I How about C and A? How about B and A?

I We need a theoretical framework to study how people make choices.
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Utility functions

VN-M Utility functions

I In 1947, Von Neumann and Morgenstern established a unified
framework to describe preferences under uncertainty by utilities.

I They showed that, for a “rational” person, there exists a real-valued
utility function u(·) such that

strictly prefering A to B ⇔ E
[
u(A)

]
> E

[
u(B)

]
for any two random payoffs A and B.
I “Rationality” here include four axioms, such as “preferring A to B and

preferring B to C implies preferring A to C.”
I How about weak preferences?
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Utility functions

Examples

I Consider again the following two options:
I Let “random” payoff A satisfy Pr(A = 1) = 1.
I Let random payoff B satisfy Pr(B = 0) = Pr(B = 2) = 1

2
.

I If Alice’s utility function is u1(z) = z, which payoff will be preferred?

I If Bob’s is u2(z) =

{
z if z ≤ 1
1 if z > 1

, which payoff will be preferred?
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Utility functions

VN-M Utility functions

I Under the framework of VN-M utilities, every rational person acts for
the same goal: to maximize her expected utility.

I It is just that different people have different utility functions.
I Traditionally, people care about things having concrete monetary values.
I Other issues (utilitarianism, fairness, etc.) are also considered recently.

I Though VN-M utility functions are also criticized, it is still the most
common assumption in economics and business studies.

I We will follow it in this course for most of the time, if not always.
I At least this is valid for most business decisions.
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Risk attitudes

Road map

I Utility functions.

I Risk attitudes.
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Risk attitudes

Risk attitudes

I Consider again:
I Payoff A: Pr(A = 1) = 1.
I Payoff B: Pr(B = 0) = Pr(B = 2) = 1

2
.

I People have different preferences due to different risk attitudes.
I If one prefers A, she is typically believed to be risk-averse.
I If one prefers B, she is said to be risk-seeking (or risk-loving).
I If one feels indifferent, she tends to be risk-neutral.

I With the utility functions u1(z) = z and u2(z) =

{
z if z ≤ 1
1 if z > 1

, Alice

is risk-neutral and Bob is risk-averse (at least for these two payoffs).
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Risk attitudes

Risk attitudes vs. utility functions

I Though in practice it is hard to fully describe one’s risk attitude, we
adopt the conventional assumption:

Assumption 1

The shape of one’s utility function u(·) decides her risk attitude:
I One is risk-averse if and only if u(·) is concave.
I One is risk-seeking if and only if u(·) is convex.
I One is risk-neutral if and only if u(·) is linear.

I We said that Alice is risk-neutral and Bob is risk-averse. Are their
utility functions really linear and concave?

I But this example is restricted. Is the assumption reasonable in general?
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Risk attitudes

General random payoffs

I Consider a random payoff X and a concave
utility function u(·):
I Jensen’s inequality: E

[
u(X)

]
≤ u

(
E[X]

)
.

What does this mean?
I No matter what the original plan is, I always

prefer to be offered the expected payoff! I just
hate risks!

I A high payoff creates a relatively low utility.

I What if u(·) is convex?
I E[u(X)] and u(E[X]), which is higher?
I A high payoff creates a really high utility.

I What if u(·) is linear?
I Maximizing the expected utility is the same as

maximizing the expected payoff.
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Risk attitudes

Beliefs

I How risky an action is?

I Risks are sometimes objective.

I However, one may need to be subjective on how risky an action is.

I In general, one acts according to her belief.
I I believe this dice is fair.
I I believe the chance for tomorrow to be sunny is 30%.

I One’s belief is a probability distribution.

I Different people may have different beliefs on a certain event.
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Introduction

I Here we introduce static games under complete information.
I Static games: All players act simultaneously (at the same time).
I Complete information: All the utility functions are publicly known.

They are assumed to be common knowledge.

I We will illustrate the inefficiency caused by decentralization (lack of
cooperation).

I We will show how to solve a game, i.e., to predict what players will do
in equilibrium.
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Prisoners’ dilemma

Road map

I Prisoners’ dilemma.

I Nash equilibrium.

I Application: Cournot competition.
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Prisoners’ dilemma

Prisoners’ dilemma: story

I A and B broke into a grocery store and stole some money. Before
police officers caught them, they hided those money carefully without
leaving any evidence. However, a monitor got their images when they
broke the window.

I They were kept in two separated rooms. Each of them were offered two
choices: Denial or confession.
I If both of them deny the fact of stealing money, they will both get one

month in prison.
I If one of them confesses while the other one denies, the former will be set

free while the latter will get nine months in prison.
I If both confesses, they will both get six months in prison.

I They cannot communicate and they must make their choices
simultaneously.

I All they want is to be in prison as short as possible.

I What will they do?
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Prisoners’ dilemma

Prisoners’ dilemma: matrix representation

I We may use the following matrix to formulate this “game”:

Player 2

Denial Confession

Player 1 Denial −1,−1 −9, 0

Confession 0,−9 −6,−6

I There are two players, each has two possible actions.
I For each combination of actions, the two numbers are the utilities of the

two players: the first for player 1 and the second for player 2.

I Prisoner 1 thinks:
I “If he denies, I should confess.”
I “If he confesses, I should still confess.”
I “I see! I should confess anyway!”

I For prisoner 2, the situation is the same.

I The solution (outcome) of this game is that both will confess.
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Prisoners’ dilemma

Prisoners’ dilemma: discussions

I In this game, confession is said to be a dominant strategy.

I This outcome can be “improved” if they can cooperate.

I Lack of cooperation can result in a lose-lose outcome.
I Such a situation is socially inefficient.

I We will see more situations similar to the prisoners’ dilemma.
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Prisoners’ dilemma

Solutions for a game

I Is it always possible to solve a game by finding dominant strategies?

I What are the solutions of the following games?

Player 2

B S

Player 1 B 2, 1 0, 0

S 0, 0 1, 2

Player 2

H T

Player 1 H 1,−1 −1, 1

T −1, 1 1,−1

I We need a new solution concept: Nash equilibrium!
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Nash equilibrium

Road map

I Prisoners’ dilemma.

I Nash equilibrium.

I Application: Cournot competition.
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Nash equilibrium

Nash equilibrium: definition

I The most fundamental equilibrium concept is the Nash equilibrium:

Definition 1

For an n-player game, let Si be player i’s action space and ui be
player i’s utility function, i = 1, ..., n. An action profile (s∗1, ..., s

∗
n),

s∗i ∈ Si, is a (pure-strategy) Nash equilibrium if

ui(s
∗
1, ..., s

∗
i−1, s

∗
i , s
∗
i+1, ..., s

∗
n)

≥ ui(s
∗
1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n)

for all si ∈ Si, i = 1, ..., n.

I Alternatively, s∗i ∈ argmax
si∈Si

{
ui(s

∗
1, ..., s

∗
i−1, si, s

∗
i+1, ..., s

∗
n)
}

for all i.

I In a Nash equilibrium, no one has an incentive to unilaterally deviate.
I The term “pure-strategy” will be explained later.
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Nash equilibrium

Nash equilibrium: an example

I Consider the following game with no dominant strategy:

Player 2

Player 1

L C R

T 0, 4 4, 0 5, 3

M 4, 0 0, 4 5, 3

B 3, 5 3, 5 6, 6

I What is a Nash equilibrium?
I (T, L) is not: Player 1 will deviate to M or B.
I (T, C) is not: Player 2 will deviate to L or R.
I (B, R) is: No one will unilaterally deviate.
I Any other Nash equilibrium?

I Why a Nash equilibrium is an “outcome”?
I Imagine that they takes turns to make decisions until no one wants to

move. What will be the outcome?



(2.2) Static games 11 / 19

Nash equilibrium

Nash equilibrium: More examples

I Is there any Nash equilibrium of the prisoners’ dilemma?

Player 2

Denial Confession

Player 1 Denial −1,−1 −9, 0

Confession 0,−9 −6,−6

I How about the following two games?

Player 2

B S

Player 1 B 2, 1 0, 0

S 0, 0 1, 2

Player 2

H T

Player 1 H 1,−1 −1, 1

T −1, 1 1,−1
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Nash equilibrium

Existence of a Nash equilibrium

H T

H 1,−1 −1, 1

T −1, 1 1,−1

I The last game does not have a
“pure-strategy” Nash equilibrium.

I What if we allow randomized
(mixed) strategy?

I In 1950, John Nash proved the following theorem regarding the
existence of “mixed-strategy” Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action
spaces are all finite, there exists at least one mixed-strategy Nash
equilibrium.

I This is a sufficient condition. Is it necessary?

I In most business applications of Game Theory, people focus only on
pure-strategy Nash equilibria.
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Cournot competition

Road map

I Prisoners’ dilemma.

I Nash equilibrium.

I Application: Cournot competition.
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Cournot competition

Cournot Competition

I In 1838, Antoine Cournot introduced the following quantity
competition between two retailers.

I Let qi be the production quantity of firm i, i = 1, 2.

I Let P (Q) = a−Q be the market-clearing price for an aggregate
demand Q = q1 + q2.

I Unit production cost of both firms is c < a.

I Each firm wants to maximize its profit.

I Our questions are:
I In this environment, what will these two firms do?
I Is the outcome satisfactory?
I What is the difference between duopoly and monopoly (i.e.,

decentralization and integration)?
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Cournot competition

Cournot Competition

I Players: 1 and 2.

I Action spaces: Si = [0,∞) for i = 1, 2.

I Utility functions:

u1(q1, q2) = q1

[
a− (q1 + q2)− c

]
and

u2(q1, q2) = q2

[
a− (q1 + q2)− c

]
.

I As for an outcome, we look for a Nash equilibrium.

I If (q∗1 , q
∗
2) is a Nash equilibrium, it must solve

q∗1 ∈ argmax
q1∈[0,∞)

u1(q1, q
∗
2) = argmax

q1∈[0,∞)

q1

[
a− (q1 + q∗2)− c

]
and

q∗2 ∈ argmax
q2∈[0,∞)

u2(q∗1 , q2) = argmax
q2∈[0,∞)

q2

[
a− (q∗1 + q2)− c

]
.
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Cournot competition

Solving the Cournot competition

I For firm 1, we first see that the objective function is strictly concave:
I u′1(q1, q

∗
2) = a− q1 − q∗2 − c− q1.

I u′′1 (q1, q
∗
2) = −2 < 0.

I The FOC condition suggests q∗1 = 1
2 (a− q∗2 − c).

I If q∗2 < a− c, q∗1 is optimal for firm 1.

I Similarly, q∗2 = 1
2 (a− q∗1 − c) is firm 2’s optimal decision if q∗1 < a− c.

I So if (q∗1 , q
∗
2) is a Nash equilibrium such that q∗i < a− c for i = 1, 2, it

must satisfy

q∗1 =
1

2
(a− q∗2 − c) and q∗2 =

1

2
(a− q∗1 − c).

I The unique solution to this system is q∗1 = q∗2 = a−c
3 .

I Does this solution make sense?
I As a−c

3
< a− c, this is indeed a Nash equilibrium. It is also unique.
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Cournot competition

Distortion due to decentralization

I What is the “cost” of decentralization?

I Suppose the two firms’ are integrated together to jointly choose the
aggregate production quantity.

I They together solve
max

Q∈[0,∞)
Q[a−Q− c],

whose optimal solution is Q∗ = a−c
2 .

I First observation: Q∗ = a−c
2 < 2(a−c)

3 = q∗1 + q∗2 .

I Why does a firm intend to increase its production quantity under
decentralization?
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Cournot competition

Inefficiency due to decentralization

I May these firms improve their profitability with integration?

I Under decentralization, firm i earns

πD
i =

(a− c)
3

[
a− 2(a− c)

3
− c

]
=

(
a− c

3

)(
a− c

3

)
=

(a− c)2

9
.

I Under integration, the two firms earn

πC =
(a− c)

2

[
a− a− c

2
− c

]
=

(
a− c

2

)(
a− c

2

)
=

(a− c)2

4
.

I πC > πD
1 + πD

2 : The integrated system is more efficient.

I Through appropriate profit splitting, both firm earns more.
I Integration can result in a win-win solution for firms!

I However, under monopoly the aggregate quantity is lower and the price
is higher. Consumers benefits from firms’ competition.
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Cournot competition

The two firms’ prisoners’ dilemma

I Now we know the two firms should together produce Q = a−c
2 .

I What if we suggest them to produce q′1 = q′2 = a−c
4 ?

I This maximizes the total profit but is not a Nash equilibrium:
I If he chooses q′ = a−c

4
, I will move to

q′′ =
1

2
(a− q′ − c) =

3(a− c)
8

.

I So both firms will have incentives to unilaterally deviate.

I These two firms are engaged in a prisoners’ dilemma!
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Dynamic games

Road map

I Dynamic games.

I Application: Pricing in a supply chain.
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Dynamic games

Dynamic games

I Recall the game “Bach or Stravinsky”:

Player 2

B S

Player 1 B 2, 1 0, 0

S 0, 0 1, 2

I What if the two players make decisions sequentially rather than
simultaneously?
I What will they do in equilibrium?
I How do their payoffs change?
I Is it better to be the leader or the follower?
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Dynamic games

Game tree for dynamic games

I Suppose player 1 moves first.

I Instead of a game matrix, the game can now
be described by a game tree.
I At each internal node, the label shows who is

making a decision.
I At each link, the label shows an action.
I At each leaf, the numbers show the payoffs.

I The games is played from the root to leaves.
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Dynamic games

Optimal strategies

I How should player 1 move?

I She must predict how player 2 will response:
I If B has been chosen, choose B.
I If S has been chosen, choose S.

I This is player 2’s best response.

I Player 1 can now make her decision:
I If I choose B, I will end up with 2.
I If I choose S, I will end up with 1.

I So player 1 will choose B.

I An equilibrium outcome is a “path” goes
from the root to a leaf.
I In equilibrium, they play (B, B).



(2.3) Dynamic games 6 / 16

Dynamic games

Sequential moves vs. simultaneous moves

I In the static version, there are two pure-strategy Nash equilibria:
I (B, B) and (S, S).

I When the game is played dynamically with player 1 moves first, there
is only one equilibrium outcome:
I (B, B).

I Their equilibrium behaviors change. Is it always the case?

I Being the leader is beneficial. Is it always the case?
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Dynamic games

Dynamic matching pennies

I Suppose the game “matching pennies” is
played dynamically:

Player 2

H T

Player 1 H 1,−1 −1, 1

T −1, 1 1,−1

I What is the equilibrium outcome?

I There are multiple possible outcomes.

I Being the leader hurts player 1.
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Dynamic games

Backward induction

I In the previous two examples, there are a leader and a follower.

I Before the leader can make her decision, she must anticipate what the
follower will do.

I When there are multiple stages in a dynamic game, we generally
analyze those decision problems from the last stage.
I The second last stage problem can be solved by having the last stage

behavior in mind.
I Then the third last stage, the fourth last stage, ...

I In general, we move backwards until the first stage problem is solved.

I This solution concept is called backward induction.
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Pricing in a supply chain

Road map

I Dynamic games.

I Application: Pricing in a supply chain.
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Pricing in a supply chain

Pricing in a supply chain

I There is a manufacturer and a retailer in a supply chain.

-
C

Manufacturer -
w

Retailer -
r

D(r) = A−Br

I The manufacturer supplies to the retailer, who then sells to consumers.
I The manufacturer sets the wholesale price w and then the retailer sets

the retail price r.

I The demand is D(r) = A−Br, where A and B are known constants.

I The unit production cost is C, a known constant.

I Each of them wants to maximize her or his profit.
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Pricing in a supply chain

Pricing in a supply chain (illustrative)

-0
Manufacturer -w

Retailer -r
D(r) = 1− r

I Let’s assume A = B = 1 and C = 0 for a while.

I Let’s apply backward induction to solve this game.

I For the retailer, the wholesale price is given. He solves

max
r≥0

(r − w)(1 − r).

I The optimal solution (best response) is r∗(w) ≡ w+1
2 .
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Pricing in a supply chain

Pricing in a supply chain (illustrative)

-0
Manufacturer -w

Retailer -r
D(r) = 1− r

I The manufacturer predicts the retailer’s decision:
I Given her offer w, the retail price will be r∗(w) ≡ w+1

2
.

I More importantly, the order quantity (which is the demand) will be

1 − r∗(w) = 1 − w + 1

2
=

1 − w

2
.

I The manufacturer’s solves

max
w≥0

w

(
1 − w

2

)
.

I The optimal solution is w∗ =
1

2
.
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Pricing in a supply chain

Pricing in a supply chain (illustrative)

-0
Manufacturer -w∗ = 1

2
Retailer -r∗ = 3

4
D(r) = A−Br

I As the manufacturer offers w∗ = 1
2 , the resulting retail price is

r∗ ≡ r∗(w∗) =
w∗ + 1

2
=

3

4
>

1

2
= w∗.

I A common practice called markup.

I The sales volume is D(r∗) = 1 − r∗ = 1
4 .

I The retailer earns (r∗ − w∗)D(r∗) = (1
4 )( 1

4 ) = 1
16 .

I The manufacturer earns w∗D(r∗) = ( 1
2 )( 1

4 ) = 1
8 .

I In total, they earn 1
16 + 1

8 = 3
16 .
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Pricing in a supply chain

Pricing in a supply chain (general)

I For the retailer, the wholesale price is given. He solves

max
r≥0

(r − w)(A−Br)

I The optimal solution is r∗(w) ≡ Bw+A
2B .

I The manufacturer predicts the retailer’s decision:
I Given her offer w, the retail price will be r∗(w) ≡ Bw+A

2B
.

I More importantly, the order quantity (which is the demand) will be
A−Br∗(w) = A− Bw+A

2
= A−Bw

2
.

I The manufacturer’s problem:

max
w≥0

(w − C)

(
A−Bw

2

)
I The optimal solution is w∗ = BC+A

2B .
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Pricing in a supply chain

Pricing in a supply chain (general)

I As the manufacturer offers w∗ = BC+A
2B , the resulting retail price is

r∗ ≡ r∗(w∗) = Bw∗+A
2B = BC+3A

4B .

I The sales volume is D(r∗) = A−Br∗ = A−BC
4 .

I The retailer earns (r∗ − w∗)D(r∗) = (A−BC
4B )(A−BC

4 ) = (A−BC)2

16B .

I The manufacturer earns (w∗ − C)D(r∗) = (A−BC
2B )(A−BC

4 ) = (A−BC)2

8B .

I In total, they earn (A−BC)2

16B + (A−BC)2

8B = 3(A−BC)2

16B .
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Pricing in a supply chain

Pricing in a cooperative supply chain

I Suppose the two firms are cooperative.

I They decide the wholesale and retail prices together.

I Is there a way to allow both players to be better off?

I Consider the following proposal:
I Let’s set wFB = C = 0 and rFB = 1

2
(FB: first best).

I The sales volume is

D(rFB) = 1 − 1

2
=

1

2
.

I The total profit is

rFBD(rFB) =
1

4
.

I This is larger than 3
16

, the total profit generated under decentralization.

I How to split the pie to get a win-win situation?
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