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Payment, payoff, and surplus

v

In many business environments, people act to earn payments.

v

However, one cares more than money/payments.

> All items (e.g., goods) have monetary values.
» One’s payoff or surplus include all the monetary values.

v

Suppose one has a used laptop. If she feels that owning the laptop is
worth $x, she should not sell it at a price lower than $z.

» She maximizes her payoff, not just payments.
» We assume that “higher payoff, higher happiness” is true for everyone.
» We will exclude things that cannot be measured in monetary values.
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Uncertainty and risks

» “Higher payoff, higher happiness” is true when payoffs are certain.
» However, the world is full of uncertainty, i.e., risks.
» This is especially true under information asymmetry!
» Consider the following three payment schemes (reward systems):
> A: Getting $1000 for certain.
» B: Getting $2000 or nothing, each with probability %
» C: Getting $2000 with probability 99% or nothing with probability 1%.
» Different people may have different preferences:

» Most people would prefer C to B.
» How about C and A? How about B and A?

» We need a theoretical framework to study how people make choices.
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VN-M Utility functions

» In 1947, Von Neumann and Morgenstern established a unified
framework to describe preferences under uncertainty by utilities.

» They showed that, for a “rational” person, there exists a real-valued
utility function u(-) such that

strictly prefering A to B < E[u(A)} >E [u(B)}

for any two random payoffs A and B.
» “Rationality” here include four axioms, such as “preferring A to B and
preferring B to C implies preferring A to C.”
» How about weak preferences?
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Examples

» Consider again the following two options:
» Let “random” payoff A satisfy Pr(A=1) =1.
» Let random payoff B satisfy Pr(B = 0) = Pr(B = 2) = 1.

> If Alice’s utility function is u1(z) = z, which payoff will be preferred?

z ifz<1

. . o
1 ifrs1 which payoff will be preferred?

> If Bob’s is ua(z) = {
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VN-M Utility functions

» Under the framework of VN-M utilities, every rational person acts for
the same goal: to maximize her expected utility.

» It is just that different people have different utility functions.

» Traditionally, people care about things having concrete monetary values.
» Other issues (utilitarianism, fairness, etc.) are also considered recently.

» Though VN-M utility functions are also criticized, it is still the most
common assumption in economics and business studies.
» We will follow it in this course for most of the time, if not always.

» At least this is valid for most business decisions.
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Risk attitudes

» Consider again:
> Payoff A: Pr(A=1)=1.
» Payoff B: Pr(B=0)=Pr(B=2) = 1.
» People have different preferences due to different risk attitudes.
» If one prefers A, she is typically believed to be risk-averse.
» If one prefers B, she is said to be risk-seeking (or risk-loving).
» If one feels indifferent, she tends to be risk-neutral.
z ifz2<1
1 ifz>1
is risk-neutral and Bob is risk-averse (at least for these two payoffs).

» With the utility functions u;(z) = z and uz(z) = , Alice
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Risk attitudes vs. utility functions

» Though in practice it is hard to fully describe one’s risk attitude, we
adopt the conventional assumption:

Assumption 1

The shape of one’s utility function u(-) decides her risk attitude:

> One is risk-averse if and only if u(-) is concave.
> One 1is risk-seeking if and only if u(-) is convex.
> One is risk-neutral if and only if u(-) is linear.

> We said that Alice is risk-neutral and Bob is risk-averse. Are their
utility functions really linear and concave?

» But this example is restricted. Is the assumption reasonable in general?
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General random payoffs

» Consider a random payoff X and a concave
utility function u(-):
> Jensen’s inequality: E[u(X)] < u(IE[X])
What does this mean?
» No matter what the original plan is, I always
prefer to be offered the expected payoff! I just
hate risks!
> A high payoff creates a relatively low utility.
» What if u(-) is convex?

» E[u(X)] and u(E[X]), which is higher?

> A high payoff creates a really high utility.
» What if u(-) is linear?

> Maximizing the expected utility is the same as
maximizing the expected payoff.
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Beliefs

How risky an action is?
Risks are sometimes objective.

However, one may need to be subjective on how risky an action is.

vV v v Y

In general, one acts according to her belief.

> I believe this dice is fair.
» I believe the chance for tomorrow to be sunny is 30%.

v

One’s belief is a probability distribution.

v

Different people may have different beliefs on a certain event.
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Introduction

» Here we introduce static games under complete information.

> Static games: All players act simultaneously (at the same time).
» Complete information: All the utility functions are publicly known.
They are assumed to be common knowledge.

> We will illustrate the inefficiency caused by decentralization (lack of
cooperation).

» We will show how to solve a game, i.e., to predict what players will do
in equilibrium.
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Prisoners’ dilemma

Prisoners’ dilemma: story

v

A and B broke into a grocery store and stole some money. Before
police officers caught them, they hided those money carefully without
leaving any evidence. However, a monitor got their images when they
broke the window.
They were kept in two separated rooms. Each of them were offered two
choices: Denial or confession.
» If both of them deny the fact of stealing money, they will both get one
month in prison.
» If one of them confesses while the other one denies, the former will be set
free while the latter will get nine months in prison.
» If both confesses, they will both get six months in prison.

They cannot communicate and they must make their choices
simultaneously.

All they want is to be in prison as short as possible.

» What will they do?
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Prisoners’ dilemma

Prisoners’ dilemma: matrix representation

» We may use the following matrix to formulate this “game”:

Player 2
‘ Denial ‘ Confession
Player 1 Denial ‘ —-1,-1 ‘ -9,0
Confession ‘ 0,—9 ‘ —6,—6

» There are two players, each has two possible actions.
» For each combination of actions, the two numbers are the utilities of the
two players: the first for player 1 and the second for player 2.
» Prisoner 1 thinks:

» “If he denies, I should confess.”
» “If he confesses, I should still confess.”
» “I see! I should confess anyway!”

» For prisoner 2, the situation is the same.

» The solution (outcome) of this game is that both will confess.
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Prisoners’ dilemma

Prisoners’ dilemma: discussions

v

In this game, confession is said to be a dominant strategy.

v

This outcome can be “improved” if they can cooperate.

v

Lack of cooperation can result in a lose-lose outcome.

> Such a situation is socially inefficient.

v

We will see more situations similar to the prisoners’ dilemma.
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Prisoners’ dilemma

Solutions for a game

» Is it always possible to solve a game by finding dominant strategies?

» What are the solutions of the following games?

Player 2 Player 2
| B | S | H | T
Player 1 B | 2,1 0,0 Player 1 H | 1,-1 | -1,1
S |0,0]1,2 T|-1,1]1,-1

» We need a new solution concept: Nash equilibrium!
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Nash equilibrium: definition

» The most fundamental equilibrium concept is the Nash equilibrium:

Definition 1

For an n-player game, let S; be player i’s action space and u; be
player i’s utility function, i = 1,...,n. An action profile (s3,...,s}),
sf €8, is a (pure-strategy) Nash equilibrium if

* * * % *
Ui(8], -y 871555 Sip 151 50)

* * * *
> Ui(ST, s S;_ 155> Siq1s -1 50)
foralls; € S;,i=1,...,n.

» Alternatively, s; € argmax {ui(sf, vy 811y Siy Sit1ys ey 32)} for all i.
S; €S,

» In a Nash equilibrium, no one has an incentive to unilaterally deviate.

» The term “pure-strategy” will be explained later.
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Nash equilibrium: an example

» Consider the following game with no dominant strategy:
Player 2
| L | C|R
T |0,4]4,0]5,3
M |4,0]04]5,3
B |3,5]35]6,6

Player 1

» What is a Nash equilibrium?

(T, L) is not: Player 1 will deviate to M or B.
(T, C) is not: Player 2 will deviate to L or R.
(B, R) is: No one will unilaterally deviate.
Any other Nash equilibrium?

vVYyVvyy

» Why a Nash equilibrium is an “outcome”?

» Imagine that they takes turns to make decisions until no one wants to
move. What will be the outcome?
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Nash equilibrium: More examples

» Is there any Nash equilibrium of the prisoners’ dilemma?

Player 2
‘ Denial ‘ Confession
Player 1 Denial | =1,—1] —=9,0
Confession‘ 0,-9 ‘ —6,—6

» How about the following two games?

Player 2 Player 2
| B[S | B | T
Player 1 B ‘ 2,1 ‘ 0,0 Player 1 H ‘ 1,-1 ‘ -1,1

S|0,0]|1,2 T|-1,1]1-1
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Existence of a Nash equilibrium

‘ H ‘ T » The last game does not have a
“pure-strategy” Nash equilibrium.

H|1,-1] -1,1
‘ ! ‘ ’ » What if we allow randomized

T|-1,1]1,-1 (mixed) strategy?

» In 1950, John Nash proved the following theorem regarding the
existence of “mixed-strategy” Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action
spaces are all finite, there exists at least one mized-strateqy Nash
equilibrium.

» This is a sufficient condition. Is it necessary?

» In most business applications of Game Theory, people focus only on
pure-strategy Nash equilibria.
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LCournot competition

Cournot Competition

» In 1838, Antoine Cournot introduced the following quantity
competition between two retailers.

» Let g; be the production quantity of firm ¢, i = 1, 2.

> Let P(Q) = a — @ be the market-clearing price for an aggregate
demand Q = q; + go.

» Unit production cost of both firms is ¢ < a.

» Each firm wants to maximize its profit.

» Our questions are:

» In this environment, what will these two firms do?

> Is the outcome satisfactory?

» What is the difference between duopoly and monopoly (i.e.,
decentralization and integration)?
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LCournot competition

Cournot Competition

» Players: 1 and 2.
» Action spaces: S; = [0,00) for i =1,2.

» Utility functions:

u1(q1,q2) = @1 [a — (1 + @) — c} and

u2(q1, q2) = G2 {a — (1 +q2) — c]

v

As for an outcome, we look for a Nash equilibrium.

v

If (¢%,¢3) is a Nash equilibrium, it must solve

qi € argmax u1(q1,q5) = argmax ¢ {a — (1 +¢3) — c} and
q1€[0,00) q1€[0,00)

¢> € argmax u2(q], g2) = argmax ¢ [a — (¢ + q2) — c}.
q2€[0,00) q2€[0,00)
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Solving the Cournot competition

» For firm 1, we first see that the objective function is strictly concave:

> 'Uzll(quq;) =a—q 7q§ —C—{(Q1.
> ui(q1,93) = =2 <0.

» The FOC condition suggests ¢} = 1(a — ¢; — ¢).

» If g5 < a— ¢, gf is optimal for firm 1.
» Similarly, ¢5 = %(a —¢f —¢) is firm 2’s optimal decision if ¢f < a — c.
> So if (g7, ¢5) is a Nash equilibrium such that ¢ < a —c fori=1,2, it

must satisfy

N —

* 1 * * *
Q1:§(G_QQ_C) and g3 = (a—qj —o¢).

a—c

3 -

» The unique solution to this system is ¢f = ¢5 =
» Does this solution make sense?
» As %3¢ < a — ¢, this is indeed a Nash equilibrium. It is also unique.



(2.2) Static games 17/19
LCournot competition

Distortion due to decentralization

» What is the “cost” of decentralization?

» Suppose the two firms’ are integrated together to jointly choose the
aggregate production quantity.

» They together solve

max a—Q—c
outax Qla—Q—d,
whose optimal solution is Q* = 4.
» First observation: Q* = 43¢ < 2(‘1;6) =qi +¢.

» Why does a firm intend to increase its production quantity under
decentralization?
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LCournot competition

Inefficiency due to decentralization

v

May these firms improve their profitability with integration?

v

Under decentralization, firm ¢ earns

D _ (a—c) [GQ(a—c) c] _ (a—c) <a—c> _ (a—¢)?
! 3 3 3 3 9

» Under integration, the two firms earn

O _ (a—c¢) |:a_a—c_c:| _ <a—c> <a—c> _ (a—c)2.
2 2 2 2 4

» 7¢ > 7P + 7L: The integrated system is more efficient.

» Through appropriate profit splitting, both firm earns more.
» Integration can result in a win-win solution for firms!

» However, under monopoly the aggregate quantity is lower and the price
is higher. Consumers benefits from firms’ competition.
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LCournot competition

The two firms’ prisoners’ dilemma

a—c

3 -

v

Now we know the two firms should together produce Q =

v

What if we suggest them to produce ¢y = g5 = 43°7

This maximizes the total profit but is not a Nash equilibrium:

v

» If he chooses ¢’ = ¢3¢, I will move to

1
q”:i(a—q'—c)z

3(a—c).
8

» So both firms will have incentives to unilaterally deviate.

v

These two firms are engaged in a prisoners’ dilemmal
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Dynamic games

Dynamic games

> Recall the game “Bach or Stravinsky”:

Player 2
B | S
Player 1 B | 2,1 0,0
S|0,0]|1,2
» What if the two players make decisions sequentially rather than

simultaneously?
» What will they do in equilibrium?
» How do their payoffs change?
> Is it better to be the leader or the follower?

3/16
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Dynamic games

Game tree for dynamic games

» Suppose player 1 moves first.
» Instead of a game matrix, the game can now
be described by a game tree.
» At each internal node, the label shows who is
making a decision.
» At each link, the label shows an action.
> At each leaf, the numbers show the payoffs.

» The games is played from the root to leaves.

4/16
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Dynamic games

Optimal strategies

» How should player 1 move?
» She must predict how player 2 will response:

» If B has been chosen, choose B.
» If S has been chosen, choose S.

» This is player 2’s best response.

» Player 1 can now make her decision:

» If I choose B, I will end up with 2.
> If I choose S, I will end up with 1.

» So player 1 will choose B.

» An equilibrium outcome is a “path” goes
from the root to a leaf.

> In equilibrium, they play (B, B).
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Sequential moves vs. simultaneous moves

v

In the static version, there are two pure-strategy Nash equilibria:

» (B, B) and (S, S).
When the game is played dynamically with player 1 moves first, there
is only one equilibrium outcome:

» (B, B).

Their equilibrium behaviors change. Is it always the case?

v

v

v

Being the leader is beneficial. Is it always the case?
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Dynamic games

Dynamic matching pennies

v

Suppose the game “matching pennies” is
played dynamically:

Player 2
| H | T
Player 1 H | 1,-1| —1,1
T|-1,1]1,-1

What is the equilibrium outcome?

v

v

There are multiple possible outcomes.

v

Being the leader hurts player 1.

~1,1

~1,1

7/16
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Dynamic games

Backward induction

» In the previous two examples, there are a leader and a follower.
» Before the leader can make her decision, she must anticipate what the
follower will do.

» When there are multiple stages in a dynamic game, we generally
analyze those decision problems from the last stage.

» The second last stage problem can be solved by having the last stage
behavior in mind.
» Then the third last stage, the fourth last stage, ...

» In general, we move backwards until the first stage problem is solved.

» This solution concept is called backward induction.
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Pricing in a supply chain
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Pricing in a supply chain

Pricing in a supply chain

» There is a manufacturer and a retailer in a supply chain.

C w T
— > Manufacturer Retailer

D(r)=A—-Br

» The manufacturer supplies to the retailer, who then sells to consumers.
» The manufacturer sets the wholesale price w and then the retailer sets
the retail price r.

» The demand is D(r) = A — Br, where A and B are known constants.
» The unit production cost is C, a known constant.

» Each of them wants to maximize her or his profit.
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Pricing in a supply chain

Pricing in a supply chain (illustrative)

— > Manufacturer Retailer ———— D(r)=1—7r

Let’s assume A = B =1 and C' = 0 for a while.
Let’s apply backward induction to solve this game.

v

v

v

For the retailer, the wholesale price is given. He solves
—w)(1—r).
max (r —w)(1 —)

. . . _ 1
The optimal solution (best response) is r*(w) = *“5=.

v
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Pricing in a supply chain

12 /16

Pricing in a supply chain (illustrative)

— > Manufacturer Retailer

r
> D(r)=1—r

» The manufacturer predicts the retailer’s decision:

> Given her offer w, the retail price will be r*(w) = 1.
» More importantly, the order quantity (which is the demand) will be

1—w

l—r"(w)=1-— ——— = ——.

2

» The manufacturer’s solves

1—w
max w| —— ).
w>0 2

» The optimal solution is w* = 5

2
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Pricing in a supply chain

Pricing in a supply chain (illustrative)

*

0 ’UJ* = % rT =
—* Manufacturer Retailer > D(r)=A—Br

NI

» As the manufacturer offers w* = %, the resulting retail price is
w'+1 3 1 N

r*=r*(w*) = 5 Z>§=w.

» A common practice called markup.

» The sales volume is D(r*) =1 —r* = %
» The retailer earns (r* — w*)D(r*) = (%)(i) - T16'
» The manufacturer earns w*D(r*) = (%)(i) = %,

» In total, they earn 1—16 + % = %.
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Pricing in a supply chain

Pricing in a supply chain (general)

» For the retailer, the wholesale price is given. He solves
a — A-B
max (r —w)( r)
» The optimal solution is r*(w) = B2tA4,
» The manufacturer predicts the retailer’s decision:
» Given her offer w, the retail price will be 7*(w) = Z2+4.
» More importantly, the order quantity (which is the demand) will be
» The manufacturer’s problem:
A — Bw
ma -O)| ———
wZ?)( (w ) ( 2 )
» The optimal solution is w* = Bg}; 4

14 /16
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Pricing in a supply chain

Pricing in a supply chain (general)

BC+A
2B

» As the manufacturer offers w* =
* — ok x\ _ Bw*+A _ BC+3A
rr=rt(wt) = S5 = S

» The sales volume is D(r*) = A — Br* = A74BC~

* * * — — A— 02
—w*)D(r*) = (A55C)(A=EC) = A

» The manufacturer earns (w* — C)D(r*) = (4589)(4=LC) = (A;gC)Z.

A-BO)? A-BC)? _ 3(A-BC)?
» In total, they earn { 163) + ¢ 3B L= 168 L.

, the resulting retail price is

» The retailer earns (r
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Pricing in a supply chain

Pricing in a cooperative supply chain

Suppose the two firms are cooperative.
They decide the wholesale and retail prices together.
Is there a way to allow both players to be better off?

vV v v Yy

Consider the following proposal:

» Let’s set wf'® =C =0and rfB =
» The sales volume is

(FB: first best).

1
2

1
5"
» The total profit is
1
r" DBy = 2.
4
3

» This is larger than 1z, the total profit generated under decentralization.

» How to split the pie to get a win-win situation?
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