IM 7011: Information Economics

Incentives in Decentralized Systems (Part 1) Lecture 3.1: Incentive Misalignment and Double Marginalization

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 23, 2013

When centralization is impossible

- ▶ We hope people all cooperate to maximize social welfare and then fairly allocate payoffs.
- Complete **centralization**, or **integration**, is the best.
- ▶ However, it is impossible.
 - Each person has her/his **self interest**.
- ▶ Facing a **decentralized** system, we will not try to integrate it.
 - ▶ We will not assume (or try to make) that people act for the society.
 - We will assume that people are all **selfish**.
 - ▶ Then we seek for **mechanisms** improve the efficiency.
 - This is the field of **mechanism design**.

(3.1) Incentive Misalignment and Double Marginalization $\hfill \Box_{\rm Introduction}$

Issues under decentralization

- ▶ What issues arise in a decentralized system?
- ▶ The **incentive** issue:
 - ▶ Workers need incentives to work hard.
 - ▶ Students need incentives to keep labs clean.
 - ▶ Manufacturers need incentives to improve product quality.
 - ▶ Users need incentives to keep using a social network.
- ▶ The **information** issue:
 - Efforts of workers and students are hidden.
 - ▶ Product quality and willingness-to-use are hidden.
- ▶ Information issues **amplify** or even **create** incentive issues.

Incentive alignment

- ▶ The typical goal is to **align** the incentives of different players.
- ▶ As an example, an employer wants her workers to work as hard as possible, but a worker always prefers vacations to works.
- ► There may be **incentive misalignment** between the employer and the employee.
- ▶ To better align their incentives, the employer may put what she cares into the employee's utility function.
- ▶ This is why we see sales bonuses and commissions!

Double marginalization

- ► In a supply chain or distribution channel, incentive misalignment may cause **double marginalization**.
- Consider the pricing in a supply chain problem:
 - The unit cost is c.
 - The manufacturer charges $w^* > c$ with one layer of "marginalization".
 - ▶ The retailer charges $r^* > w^*$ with another layer of marginalization.
 - The equilibrium retail price r^* is **too high**. Both firms are hurt.
- Consider the indirect newsvendor problem:
 - The unit cost is c.
 - ▶ The manufacturer charges $w^* > c$ with one layer of "marginalization".
 - \blacktriangleright The retailer orders a quantity q^* to maximize its expected profit. This is another layer of marginalization.
 - ▶ The equilibrium inventory level q^* is **too low**. Both firms are hurt.
- ► The two systems are both **inefficient** because the equilibrium decisions (retail price or inventory level) are **system-suboptimal**.

(3.1) Incentive Misalignment and Double Marginalization $\hfill \Box_{\rm Introduction}$

What should we do?

- ▶ How to reduce inefficiency?
- Complete integration is the best but impractical.
- ▶ We may make these player **interact differently**.
 - We may change the "game rules".
 - ▶ We may design different mechanisms.
 - ► All we want is to **induce satisfactory behaviors**.
 - Recall the ultimatum game!
- ▶ In these two lectures, we will introduce two seminal papers that show some ways to enhance efficiency.
 - ▶ Pasternack (1985): To change the **contract format**.
 - ▶ McGuire and Staelin (1983): To change the **channel structure**.

Both were published in *Marketing Science*.

References

McGuire, T. W., R. Staelin. 1983. An industry equilibrium analysis of downstream vertical integration. *Marketing Science* 2(1) 115–130.
Pasternack, B. 1985. Optimal pricing and return policies for perishable commodities. *Marketing Science* 4(2) 166–176.

IM 7011: Information Economics

Incentives in Decentralized Systems (Part 1) Lecture 3.2: Return Contracts: Motivation, Example, and Model

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 23, 2013

Introduction

- Pasternack (1985) studies a common practice adopted in distribution channels: return (buy-back) contracts.¹
 - ▶ Why people use return contracts?
 - ▶ What is the benefit of using return contracts?
- ▶ In this lecture, we illustrate the main insights of Pasternack (1985) by a **simplified** model. One is encouraged to read the paper afterwards.
 - ▶ Different notations may be adopted to facilitate understanding.
- ▶ We will mostly adopt this way in this semester.

¹Pasternack, B. 1985. Optimal pricing and return policies for perishable commodities. *Marketing Science* **4**(2) 166–176.

(3.2) Return contracts: motivation, example, and model $\buildrel _{\rm Motivation}$

Road map

► Motivation.

- ► Example.
- ► Model.

(3.2) Return contracts: motivation, example, and model $\buildrel _{\rm Motivation}$

Why return contracts?

- ► In many distribution channels, the manufacturer signs a wholesale contract with the retailer.
 - ▶ What happened in the indirect newsvendor problem?
 - ► The inventory level (order/production/supply quantity) is too low.
 - ▶ The inventory level is optimal for the retailer but too low for the system.
- ▶ Why the retailer orders an inefficiently low quantity?
- ▶ Demand is uncertain:
 - ▶ The retailer takes all the **risks** while the manufacturer is **risk-free**.
 - When the unit cost increases (from c to w), overstocking becomes more harmful. The retailer thus lower the inventory level.
- ▶ How to induce the retailer to order more?
 - ▶ Reducing the wholesale price? No way!
 - A practical way is for the manufacturer to **share the risk**.

Why return contracts?

- ► A **return** (buy-back) contract is a **risk-sharing** mechanism.
- ▶ When the products are not all sold, the retailer is allowed to return (all or some) unsold products to get credits.
- Contractual terms:
 - w is the wholesale price.
 - r is the buy-back price (return credit).
 - \blacktriangleright R is the percentage of products that can be returned.
- Several alternatives:
 - Full return with full credit: R = 1 and r = w.
 - Full return with partial credit: R = 1 and r < w.
 - Partial return with full credit: R < 1 and r = w.
 - Partial return with partial credit: R < 1 and r < w.
- ▶ In practice, the manufacturer may pay the retailer without asking for the physical goods. Why?

Pros and cons of return contracts

- ▶ Bad news 1: A return contract is harder to design.
- ▶ Bad news 2: A bad return contract may be worse than a good wholesale contract.
- ▶ Good news 1: A wholesale contract is a return contract.
 - Given any wholes ale contract, setting r = 0 creates an equivalent return contract.
- ► Good news 2: A good return contract can be **win-win**.
- ▶ Good news 3: A well-designed return contract can be **efficient**.
- ▶ Before we jump into the analytical model, let's get the idea with a numerical example.

(3.2) Return contracts: motivation, example, and model $\hfill _{\rm Example}$

Road map

- ► Motivation.
- ► Example.
- ► Model.

A numerical example

- ▶ Consider a distribution channel in which a manufacturer (she) sells a product to a retailer (he), who then sells to end consumers.
- ► Suppose that:
 - ▶ The unit production cost is \$10.
 - ▶ The unit retail price is \$50.
 - ▶ The random demand follows a uniform distribution between 0 and 100.

(3.2) Return contracts: motivation, example, and model $\hfill \hfill \$

Benchmark: integration

- ▶ As a benchmark, let's first find the **efficient inventory level**, which will be implemented when the two firms are integrated.
- \blacktriangleright Let Q_T^* be the efficient inventory level that maximizes the expected system profit, we have

$$\frac{Q_T^*}{100} = 1 - \frac{10}{50} \quad \Rightarrow \quad Q_T^* = 80.$$

• The expected system profit, as a function of Q, is

$$\pi_T(Q) = 50 \left\{ \int_0^Q x \left(\frac{1}{100}\right) dx + \int_Q^{100} Q \left(\frac{1}{100}\right) dx \right\} - 10Q$$
$$= -\frac{1}{4}Q^2 + 40Q.$$

• The optimal system profit is $\pi_T^* = \pi_T(Q_T^*) =$ \$1600.

Wholesale contract

- ▶ Under the wholesale contract, we have the indirect newsvendor problem.
- ▶ We know that in equilibrium, the manufacturer sets the wholesale price $w^* = \frac{50+10}{2} = 30$ and the retailers orders $Q_R^* = 40$.
- The retailer's expected profit, as a function of Q, is

$$\pi_R(Q) = 50 \left\{ \int_0^Q x \left(\frac{1}{100}\right) dx + \int_Q^{100} Q \left(\frac{1}{100}\right) dx \right\} - 30Q$$
$$= -\frac{1}{4}Q^2 + 20Q.$$

- The retailer's expected profit is $\pi_R^* = \pi_R(Q_R^*) = $400.$
- ▶ The manufacturer's expected profit is $\pi_M^* = 40 \times (30 10) = \800 .
- ▶ The expected system profit is $\pi_R^* + \pi_M^* = \$1200 < \pi_T^* = \$1600.$

(3.2) Return contracts: motivation, example, and model $\hfill \hfill \$

Return contract 1

• Consider the following return contract:

- The wholesale price w = 30.
- The return credit r = 5.
- The percentage of allowed return R = 1.

• The retailer's expected profit, as a function of Q, is

$$\pi_R^{(1)}(Q) = 50 \left\{ \int_0^Q \frac{x}{100} dx + \int_Q^{100} \frac{Q}{100} dx \right\} + 5 \int_0^Q \frac{Q-x}{100} dx - 30Q$$
$$= -\frac{1}{4}Q^2 + \frac{1}{40}Q^2 + 20Q \quad \Rightarrow \quad Q_R^{(1)} = \frac{400}{9} \approx 44.44.$$

• The retailer's expected profit is $\pi_R^{(1)} = \pi_R(Q_R^{(1)}) \approx \$444.44 > \pi_R^*$.

• The manufacturer's expected profit is $\pi_M^{(1)} = (\frac{400}{9})(30-10) - \frac{4000}{81} \approx 888.89 - 49.38 = \$839.51 > \pi_M^*.$

▶ The expected system profit is $\pi_R^{(1)} + \pi_M^{(1)} = \$1283.95 < \pi_T^* = \$1600.$

(3.2) Return contracts: motivation, example, and model $\hfill \hfill \$

Return contract 2

Consider a more generous return contract:

- The wholesale price w = 30.
- The return credit r = 10.
- The percentage of allowed return R = 1.

• The retailer's expected profit, as a function of Q, is

$$\pi_R^{(2)}(Q) = 50 \left\{ \int_0^Q \frac{x}{100} dx + \int_Q^{100} \frac{Q}{100} dx \right\} + 5 \int_0^Q \frac{Q-x}{100} dx - 30Q$$
$$= -\frac{1}{4}Q^2 + \frac{1}{20}Q^2 + 20Q \quad \Rightarrow \quad Q_R^{(2)} = 50.$$

► The retailer's expected profit is $\pi_R^{(2)} = \pi_R(Q_R^{(2)}) = \$500 > \pi_R^{(1)}$.

• The manufacturer's expected profit is $\pi_M^{(2)} = 50 \times (30 - 10) - 125 \approx 1000 - 125 = \$875 > \pi_M^{(1)}.$

► The expected system profit is $\pi_R^{(2)} + \pi_M^{(2)} = \$1375 < \pi_T^* = \$1600.$

Comparison

(w, r, R)	Q	π_R	π_M	$\pi_R + \pi_M$
(30, 0, 1)	40	400	800	1200
(30, 5, 1)	44.44	444.44	839.51	1283.95
(30, 10, 1)	50	500	875	1375

► The **performance** of these contracts:

- Will Q keep increasing when r increases?
- Will π_R and π_M keep increasing when r increases?
- Will $Q = Q_T^* = 80$ for some r? Will $\pi_R + \pi_M = \pi_T^* = 1600$ for some r?
- ▶ There are so many questions!
 - What if $w \neq 30$? What if R < 1?
 - What if the demand is not uniform?
- The main question: When may we achieve channel coordination, i.e., the retailer is induced to order the system-optimal quantity 80?
- ▶ We need a general analytical model to really deliver insights.

(3.2) Return contracts: motivation, example, and model ${\rm \bigsqcup_{Model}}$

Road map

- ► Motivation.
- ► Example.
- ► Model.

Model

- ▶ We consider a manufacturer-retailer relationship in an indirect channel.
- ▶ The product is perishable and the single-period demand is random.
- ▶ Production is under MTO and the retailer is a newsvendor.
- We use the following notations:

Symbol	Meaning
с	Unit production cost
w	Unit wholesale price
r	Unit return credit
R	Percentage of allowed return
Q	Order quantity
F	Distribution function of demand
f	Density function of demand

► Assumptions:

- $\blacktriangleright \ c < w < p.$
- ▶ $r \leq w$.
- f(x) = 0 for all x < 0.

(3.2) Return contracts: motivation, example, and model $\buildrel _{\rm Model}$

Utility functions

▶ Under the return contract, the retailer's expected profit is

$$\pi_R(Q) = -Qw$$

$$+ \int_0^{(1-R)Q} (xp + RQr)f(x)dx$$

$$+ \int_{(1-R)Q}^Q \left[xp + (Q-x)r\right]f(x)dx$$

$$+ \int_Q^\infty Qpf(x)dx.$$

▶ The manufacturer's expected profit is

$$\pi_M(Q) = Q(w-c) - \int_0^{(1-R)Q} RQrf(x)dx - \int_{(1-R)Q}^Q (Q-x)rf(x)dx.$$

▶ The expected system profit is

$$\pi_T(Q) = -cQ + \int_0^Q xpf(x)dx + \int_Q^\infty Qpf(x)dx$$

Timing

- ▶ First a return contract is signed by the manufacturer and retailer.
 - ▶ We do not specify how the contractual terms are determined.
- ▶ Then the retailer places an order.
- ▶ The manufacturer produces and ships products to the retailer.
- ▶ The sales season starts, the demand is realized, and the allowed unsold products (if any) are returned to the manufacturer.

IM 7011: Information Economics

Incentives in Decentralized Systems Lecture 3.3: Return Contracts: Analysis and Insights

Ling-Chieh Kung

Department of Information Management National Taiwan University

September 23, 2013

(3.3) Return contracts: analysis and insights <u>Analysis</u>

Road map

- ► Analysis.
- ▶ Insights.
- ▶ Remarks.

System-optimal inventory level

▶ The expected system profit is

$$\pi_T(Q) = -cQ + \int_0^Q xpf(x)dx + \int_Q^\infty Qpf(x)dx.$$

▶ The system optimal inventory level Q_T^* satisfies the equation

$$F(Q_T^*) = 1 - \frac{c}{p}.$$

• We hope that there is a return contract (w, r, R) that makes the retailer order Q_T^* .

(3.3) Return contracts: analysis and insights $\[\] Analysis$

Retailer's ordering strategy

▶ Under the return contract, the retailer's expected profit is

$$\pi_R(Q) = -Qw + \int_0^{(1-R)Q} (xp + RQr)f(x)dx + \int_{(1-R)Q}^Q \left[xp + (Q-x)r\right]f(x)dx + \int_Q^\infty Qpf(x)dx.$$

▶ Let's differentiate it... How?!?!?!

▶ We need the Leibniz integral rule: Suppose f(x, y) is a function such that $\frac{\partial}{\partial y} f(x, y)$ exists and is continuous, then we have

$$\frac{d}{dy} \int_{a(y)}^{b(y)} f(x, y) dx$$

= $f(b(y), y)b'(y) - f(a(y), y)a'(y) + \int_{a(y)}^{b(y)} \frac{\partial}{\partial y} f(x, y) dx$

Retailer's ordering strategy

▶ Let's apply the Leibniz integral rule

$$\frac{d}{dy} \int_{a(y)}^{b(y)} f(x,y) dx = f(b(y),y)b'(y) - f(a(y),y)a'(y) + \int_{a(y)}^{b(y)} \frac{\partial}{\partial y} f(x,y) dx$$

to the retailer's expected profit function $\pi_R(Q)$:

Inside $\pi_R(Q)$	Inside $\pi'_R(Q)$
-Qw	-w
$\int_{0}^{(1-R)Q} (xp + RQr)f(x)dx$	$(1-R)\Big[(1-R)Qp + RQr\Big]f\Big((1-R)Q\Big) + \int_0^{(1-R)Q} Rrf(x)dx$
$\int_{(1-R)Q}^{Q} \left[xp + (Q-x)r \right] f(x) dx$	$Qpf(Q) = -(1-R)\left[(1-R)Qp - RQr\right]f\left((1-R)Q\right) + \int_{(1-R)Q}^{Q} rf(x)dx$
$\int_Q^\infty Qpf(x)dx$	$-Qpf(Q) + \int_Q^\infty pf(x)dx$

Retailer's ordering strategy

We then have

$$\begin{aligned} \pi_R'(Q) &= -w + \int_0^{(1-R)Q} Rrf(x)dx + \int_{(1-R)Q}^Q rf(x)dx + \int_Q^\infty pf(x)dx \\ &= w + RrF\Big((1-R)Q\Big) + r\Big[F(Q) - F\Big((1-R)Q\Big)\Big] + p\Big[1 - F(Q)\Big] \\ &= -w + p - (p-r)F(Q) - (1-R)rF\Big((1-R)Q\Big). \end{aligned}$$

- Given (w, r, R), the retailer may numerically search for Q_R^* that satisfies $\pi'_R(Q_R^*) = 0$. This is the retailer's ordering strategy.
 - Why $\pi'_R(Q) = 0$ always has a unique root?

Inducing the system-optimal inventory level

▶ The system-optimal inventory level Q_T^* satisfies

$$F(Q_T^*) = 1 - \frac{c}{p} = \frac{p-c}{p}$$

► To induce the retailer to order Q_T^* , we must make Q_T^* optimal for the retailer. Therefore, we need $\pi'_R(Q_T^*) = 0$, i.e.,

$$\pi'_R(Q_T^*) = -w + p - (p - r)F(Q_T^*) - (1 - R)rF((1 - R)Q_T^*)$$
$$= -w + p - \frac{(p - c)(p - r)}{p} - (1 - R)rF((1 - R)Q_T^*) = 0.$$

- ▶ To achieve coordination, we need to choose (w, r, R) to make the above equation hold, where Q_T^* is uniquely determined by $F(Q_T^*) = \frac{p-c}{p}$.
- ▶ Is it possible?

(3.3) Return contracts: analysis and insights

Road map

- ► Analysis.
- ► Insights.
- ▶ Remarks.

Extreme 1: full return with full credit

$$\pi'_R(Q_T^*) = w - p + \frac{(p-c)(p-r)}{p} + (1-R)rF\Big((1-R)Q_T^*\Big).$$

▶ Let's consider the most generous return contract.

Proposition 1

If
$$r = w$$
 and $R = 1$, $\pi'_R(Q^*_T) = 0$ if and only if $c = 0$.

Proof. If r = w and R = 1, $\pi'_R(Q_T^*) = 0$ becomes

$$w - p + \frac{(p-c)(p-w)}{p} = (p-w)\left(\frac{p-c}{p} - 1\right) = 0.$$

As p > w, we need $\frac{p-c}{p} = 1$, i.e., c = 0.

▶ Allowing full returns with full credits is generally system suboptimal.

(3.3) Return contracts: analysis and insights \Box Insights

Extreme 2: no return

$$\pi'_R(Q_T^*) = w - p + \frac{(p-c)(p-r)}{p} + (1-R)rF\Big((1-R)Q_T^*\Big).$$

▶ Let's consider the least generous return contract.

Proposition 2

If r = 0 or R = 0, $\pi'_R(Q^*_T) = 0$ is impossible.

Proof. If r = 0, $\pi'_R(Q_T^*) = 0$ becomes w - c = 0, which cannot be true. If R = 0, it becomes

$$w - c + \frac{(p - c)(p - r)}{p} + rF(Q_T^*) = w - c = 0,$$

which is again impossible.

• Allowing no return is system suboptimal.

Full returns with partial credits

$$\pi'_R(Q_T^*) = w - p + \frac{(p-c)(p-r)}{p} + (1-R)rF\Big((1-R)Q_T^*\Big).$$

▶ Let's consider full returns with partial credits.

Proposition 3

• If
$$R = 1$$
, $\pi'_R(Q_T^*) = 0$ if and only if $w = p - \frac{(p-c)(p-r)}{p}$.

For any p and c, a pair of r and w such that 0 < r < w can always be found to satisfy the above equation.

Proof. When R = 1, the first part is immediate. According to the equation, we need $r = \frac{p(w-c)}{p-c}$. Then w < p implies $\frac{p(w-c)}{p-c} < w$ and c < w implies $\frac{p(w-c)}{p-c} > 0$.

- Allowing full returns with partial credits can be system optimal!
- ▶ In this case, we say the return contract **coordinates** the system.

Profit splitting

▶ Under a full return contract, channel coordination requires

$$w = p - \frac{(p-c)(p-r)}{p} = c + \left(\frac{p-c}{p}\right)r.$$

- ▶ The expected system profit is maximized. The "pie" is maximized.
- ▶ Is this pie split **fairly** under a coordinating return contract?
- As fairness means differently in different scenarios, we hope the pie can be split **arbitrarily**.
- In one limiting case (though not possible), when w = c, we need r = 0. In this case, $\pi_M^* = 0$ and $\pi_R^* = \pi_T^*$.
- In another limiting case, when w = p, we need r = p. In this case, $\pi_M^* = \pi_T^*$ and $\pi_R^* = 0$.
- ▶ How about the intermediate cases?

Profit splitting

▶ Let's visualize the set of coordinating full return contracts:

- As $\pi_M(\cdot)$ is continuous in w and r, π_M^* must **gradually** go up from 0 to π_T^* as w goes from c to p.
 - Though we did not prove that π_M^* is nondecreasing in w, it is not needed.
 - π_R^* must gradually do down as w goes from p to c.
 - Arbitrary profit splitting can be done!

14 / 17

Coordination and win-win

- ▶ We know that return contracts can be **coordinating**.
- ▶ Now we know they can also be **win-win**.
 - We can make the pie the largest.
 - We can split the pie in any way we want.
 - ▶ We can always make both players happy.
- ▶ The two players will **agree** to adopt a coordinating return contract.
- ▶ Consumers also benefit from channel coordination. Why?
- ▶ Not all coordinating contracts are win-win.

(3.3) Return contracts: analysis and insights $\[blue]$ Remarks

Road map

- ► Analysis.
- ▶ Insights.
- ► Remarks.

More in the paper

- ▶ We only introduced the main idea of the paper.
- ▶ There are still a lot untouched:
 - ▶ Salvage values and shortage costs.
 - ▶ Monotonicity of the manufacturer's and retailer's expected profit.
 - Environments with multiple retailers.
- ▶ You are encouraged, though not required, to read the paper.

Channel or supply chain coordination

- A hot topic in 1980's and 1990's.
- ▶ Not so hot now.
- ▶ Other contracts to coordinate a channel or a supply chains:
 - ▶ Two-part tariffs.
 - Quantity flexible contracts.
 - ▶ Revenue-sharing contracts.
 - Options.