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Introduction

When centralization is impossible

I We hope people all cooperate to maximize social welfare and then
fairly allocate payoffs.

I Complete centralization, or integration, is the best.

I However, it is impossible.
I Each person has her/his self interest.

I Facing a decentralized system, we will not try to integrate it.
I We will not assume (or try to make) that people act for the society.
I We will assume that people are all selfish.
I Then we seek for mechanisms improve the efficiency.
I This is the field of mechanism design.
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Introduction

Issues under decentralization

I What issues arise in a decentralized system?

I The incentive issue:
I Workers need incentives to work hard.
I Students need incentives to keep labs clean.
I Manufacturers need incentives to improve product quality.
I Users need incentives to keep using a social network.

I The information issue:
I Efforts of workers and students are hidden.
I Product quality and willingness-to-use are hidden.

I Information issues amplify or even create incentive issues.



(3.1) Incentive Misalignment and Double Marginalization 4 / 7

Introduction

Incentive alignment

I The typical goal is to align the incentives of different players.

I As an example, an employer wants her workers to work as hard as
possible, but a worker always prefers vacations to works.

I There may be incentive misalignment between the employer and
the employee.

I To better align their incentives, the employer may put what she cares
into the employee’s utility function.

I This is why we see sales bonuses and commissions!
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Introduction

Double marginalization

I In a supply chain or distribution channel, incentive misalignment may
cause double marginalization.

I Consider the pricing in a supply chain problem:
I The unit cost is c.
I The manufacturer charges w∗ > c with one layer of “marginalization”.
I The retailer charges r∗ > w∗ with another layer of marginalization.
I The equilibrium retail price r∗ is too high. Both firms are hurt.

I Consider the indirect newsvendor problem:
I The unit cost is c.
I The manufacturer charges w∗ > c with one layer of “marginalization”.
I The retailer orders a quantity q∗ to maximize its expected profit. This is

another layer of marginalization.
I The equilibrium inventory level q∗ is too low. Both firms are hurt.

I The two systems are both inefficient because the equilibrium
decisions (retail price or inventory level) are system-suboptimal.
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Introduction

What should we do?

I How to reduce inefficiency?

I Complete integration is the best but impractical.

I We may make these player interact differently.
I We may change the “game rules”.
I We may design different mechanisms.
I All we want is to induce satisfactory behaviors.
I Recall the ultimatum game!

I In these two lectures, we will introduce two seminal papers that show
some ways to enhance efficiency.
I Pasternack (1985): To change the contract format.
I McGuire and Staelin (1983): To change the channel structure.

Both were published in Marketing Science.
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Introduction
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Introduction

I Pasternack (1985) studies a common practice adopted in distribution
channels: return (buy-back) contracts.1

I Why people use return contracts?
I What is the benefit of using return contracts?

I In this lecture, we illustrate the main insights of Pasternack (1985) by
a simplified model. One is encouraged to read the paper afterwards.
I Different notations may be adopted to facilitate understanding.

I We will mostly adopt this way in this semester.

1Pasternack, B. 1985. Optimal pricing and return policies for perishable
commodities. Marketing Science 4(2) 166–176.
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Motivation
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Motivation

Why return contracts?

I In many distribution channels, the manufacturer signs a wholesale
contract with the retailer.
I What happened in the indirect newsvendor problem?
I The inventory level (order/production/supply quantity) is too low.
I The inventory level is optimal for the retailer but too low for the system.

I Why the retailer orders an inefficiently low quantity?

I Demand is uncertain:
I The retailer takes all the risks while the manufacturer is risk-free.
I When the unit cost increases (from c to w), overstocking becomes more

harmful. The retailer thus lower the inventory level.

I How to induce the retailer to order more?
I Reducing the wholesale price? No way!
I A practical way is for the manufacturer to share the risk.
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Motivation

Why return contracts?

I A return (buy-back) contract is a risk-sharing mechanism.

I When the products are not all sold, the retailer is allowed to return (all
or some) unsold products to get credits.

I Contractual terms:
I w is the wholesale price.
I r is the buy-back price (return credit).
I R is the percentage of products that can be returned.

I Several alternatives:
I Full return with full credit: R = 1 and r = w.
I Full return with partial credit: R = 1 and r < w.
I Partial return with full credit: R < 1 and r = w.
I Partial return with partial credit: R < 1 and r < w.

I In practice, the manufacturer may pay the retailer without asking for
the physical goods. Why?
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Motivation

Pros and cons of return contracts

I Bad news 1: A return contract is harder to design.

I Bad news 2: A bad return contract may be worse than a good
wholesale contract.

I Good news 1: A wholesale contract is a return contract.
I Given any wholesale contract, setting r = 0 creates an equivalent return

contract.

I Good news 2: A good return contract can be win-win.

I Good news 3: A well-designed return contract can be efficient.

I Before we jump into the analytical model, let’s get the idea with a
numerical example.
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Example

Road map
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Example

A numerical example

I Consider a distribution channel in which a manufacturer (she) sells a
product to a retailer (he), who then sells to end consumers.

I Suppose that:
I The unit production cost is $10.
I The unit retail price is $50.
I The random demand follows a uniform distribution between 0 and 100.
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Example

Benchmark: integration

I As a benchmark, let’s first find the efficient inventory level, which
will be implemented when the two firms are integrated.

I Let Q∗T be the efficient inventory level that maximizes the expected
system profit, we have

Q∗T
100

= 1− 10

50
⇒ Q∗T = 80.

I The expected system profit, as a function of Q, is

πT (Q) = 50

{∫ Q

0

x

(
1

100

)
dx+

∫ 100

Q

Q

(
1

100

)
dx

}
− 10Q

= −1

4
Q2 + 40Q.

I The optimal system profit is π∗T = πT (Q∗T ) = $1600.
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Example

Wholesale contract

I Under the wholesale contract, we have the indirect newsvendor
problem.

I We know that in equilibrium, the manufacturer sets the wholesale price
w∗ = 50+10

2 = 30 and the retailers orders Q∗R = 40.

I The retailer’s expected profit, as a function of Q, is

πR(Q) = 50

{∫ Q

0

x

(
1

100

)
dx+

∫ 100

Q

Q

(
1

100

)
dx

}
− 30Q

= −1

4
Q2 + 20Q.

I The retailer’s expected profit is π∗R = πR(Q∗R) = $400.

I The manufacturer’s expected profit is π∗M = 40× (30− 10) = $800.

I The expected system profit is π∗R + π∗M = $1200 < π∗T = $1600.
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Example

Return contract 1

I Consider the following return contract:
I The wholesale price w = 30.
I The return credit r = 5.
I The percentage of allowed return R = 1.

I The retailer’s expected profit, as a function of Q, is

π
(1)
R (Q) = 50

{∫ Q

0

x

100
dx+

∫ 100

Q

Q

100
dx

}
+ 5

∫ Q

0

Q− x
100

dx− 30Q

= −1

4
Q2 +

1

40
Q2 + 20Q ⇒ Q

(1)
R =

400

9
≈ 44.44.

I The retailer’s expected profit is π
(1)
R = πR(Q

(1)
R ) ≈ $444.44 > π∗R.

I The manufacturer’s expected profit is

π
(1)
M = ( 400

9 )(30− 10)− 4000
81 ≈ 888.89− 49.38 = $839.51 > π∗M .

I The expected system profit is π
(1)
R + π

(1)
M = $1283.95 < π∗T = $1600.
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Example

Return contract 2

I Consider a more generous return contract:
I The wholesale price w = 30.
I The return credit r = 10.
I The percentage of allowed return R = 1.

I The retailer’s expected profit, as a function of Q, is

π
(2)
R (Q) = 50

{∫ Q

0

x

100
dx+

∫ 100

Q

Q

100
dx

}
+ 5

∫ Q

0

Q− x
100

dx− 30Q

= −1

4
Q2 +

1

20
Q2 + 20Q ⇒ Q

(2)
R = 50.

I The retailer’s expected profit is π
(2)
R = πR(Q

(2)
R ) = $500 > π

(1)
R .

I The manufacturer’s expected profit is

π
(2)
M = 50× (30− 10)− 125 ≈ 1000− 125 = $875 > π

(1)
M .

I The expected system profit is π
(2)
R + π

(2)
M = $1375 < π∗T = $1600.
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Example

Comparison

I The performance of these contracts:

(w, r,R) Q πR πM πR + πM

(30, 0, 1) 40 400 800 1200
(30, 5, 1) 44.44 444.44 839.51 1283.95
(30, 10, 1) 50 500 875 1375

I Will Q keep increasing when r increases?
I Will πR and πM keep increasing when r increases?
I Will Q = Q∗

T = 80 for some r? Will πR + πM = π∗
T = 1600 for some r?

I There are so many questions!
I What if w 6= 30? What if R < 1?
I What if the demand is not uniform?

I The main question: When may we achieve channel coordination,
i.e., the retailer is induced to order the system-optimal quantity 80?

I We need a general analytical model to really deliver insights.
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Model

Road map

I Motivation.
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Model

Model
I We consider a manufacturer-retailer relationship in an indirect channel.

I The product is perishable and the single-period demand is random.

I Production is under MTO and the retailer is a newsvendor.

I We use the following notations:

Symbol Meaning

c Unit production cost
w Unit wholesale price
r Unit return credit
R Percentage of allowed return
Q Order quantity
F Distribution function of demand
f Density function of demand

I Assumptions:
I c < w < p.
I r ≤ w.
I f(x) = 0 for all x < 0.
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Model

Utility functions
I Under the return contract, the retailer’s expected profit is

πR(Q) =−Qw

+

∫ (1−R)Q

0

(xp+RQr)f(x)dx

+

∫ Q

(1−R)Q

[
xp+ (Q− x)r

]
f(x)dx

+

∫ ∞
Q

Qpf(x)dx.

I The manufacturer’s expected profit is

πM (Q) = Q(w − c)−
∫ (1−R)Q

0

RQrf(x)dx−
∫ Q

(1−R)Q

(Q− x)rf(x)dx.

I The expected system profit is

πT (Q) = −cQ+

∫ Q

0

xpf(x)dx+

∫ ∞
Q

Qpf(x)dx.
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Model

Timing

I First a return contract is signed by the manufacturer and retailer.
I We do not specify how the contractual terms are determined.

I Then the retailer places an order.

I The manufacturer produces and ships products to the retailer.

I The sales season starts, the demand is realized, and the allowed unsold
products (if any) are returned to the manufacturer.
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Analysis

Road map

I Analysis.

I Insights.
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Analysis

System-optimal inventory level

I The expected system profit is

πT (Q) = −cQ+

∫ Q

0

xpf(x)dx+

∫ ∞
Q

Qpf(x)dx.

I The system optimal inventory level Q∗T satisfies the equation

F (Q∗T ) = 1 − c

p
.

I We hope that there is a return contract (w, r,R) that makes the
retailer order Q∗T .
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Analysis

Retailer’s ordering strategy

I Under the return contract, the retailer’s expected profit is

πR(Q) = −Qw +

∫ (1−R)Q

0

(xp+RQr)f(x)dx

+

∫ Q

(1−R)Q

[
xp+ (Q− x)r

]
f(x)dx+

∫ ∞
Q

Qpf(x)dx.

I Let’s differentiate it... How?!?!?!

I We need the Leibniz integral rule: Suppose f(x, y) is a function such
that ∂

∂yf(x, y) exists and is continuous, then we have

d

dy

∫ b(y)

a(y)

f(x, y)dx

= f(b(y), y)b′(y) − f(a(y), y)a′(y) +

∫ b(y)

a(y)

∂

∂y
f(x, y)dx
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Analysis

Retailer’s ordering strategy
I Let’s apply the Leibniz integral rule

d

dy

∫ b(y)

a(y)
f(x, y)dx = f(b(y), y)b′(y)− f(a(y), y)a′(y) +

∫ b(y)

a(y)

∂

∂y
f(x, y)dx

to the retailer’s expected profit function πR(Q):

Inside πR(Q) Inside π′R(Q)

−Qw −w

∫ (1−R)Q

0
(xp+RQr)f(x)dx

(1−R)
[
(1−R)Qp+RQr

]
f
(
(1−R)Q

)
+

∫ (1−R)Q

0
Rrf(x)dx

∫ Q

(1−R)Q

[
xp+ (Q− x)r

]
f(x)dx

Qpf(Q)

−(1−R)
[
(1−R)Qp−RQr

]
f
(
(1−R)Q

)
+

∫ Q

(1−R)Q
rf(x)dx∫ ∞

Q
Qpf(x)dx −Qpf(Q) +

∫ ∞
Q

pf(x)dx



(3.3) Return contracts: analysis and insights 6 / 17

Analysis

Retailer’s ordering strategy

I We then have

π′R(Q) = −w +

∫ (1−R)Q

0

Rrf(x)dx+

∫ Q

(1−R)Q

rf(x)dx+

∫ ∞
Q

pf(x)dx

= w +RrF
(

(1 −R)Q
)

+ r
[
F (Q) − F

(
(1 −R)Q

)]
+ p
[
1 − F (Q)

]
= −w + p− (p− r)F (Q) − (1 −R)rF

(
(1 −R)Q

)
.

I Given (w, r,R), the retailer may numerically search for Q∗R that
satisfies π′R(Q∗R) = 0. This is the retailer’s ordering strategy.
I Why π′R(Q) = 0 always has a unique root?
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Analysis

Inducing the system-optimal inventory level

I The system-optimal inventory level Q∗T satisfies

F (Q∗T ) = 1 − c

p
=
p− c

p
.

I To induce the retailer to order Q∗T , we must make Q∗T optimal for the
retailer. Therefore, we need π′R(Q∗T ) = 0, i.e.,

π′R(Q∗T ) = −w + p− (p− r)F (Q∗T ) − (1 −R)rF
(

(1 −R)Q∗T

)
= −w + p− (p− c)(p− r)

p
− (1 −R)rF

(
(1 −R)Q∗T

)
= 0.

I To achieve coordination, we need to choose (w, r,R) to make the above
equation hold, where Q∗T is uniquely determined by F (Q∗T ) = p−c

p .

I Is it possible?
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Insights

Road map

I Analysis.

I Insights.

I Remarks.
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Insights

Extreme 1: full return with full credit

π′R(Q∗T ) = w − p+
(p− c)(p− r)

p
+ (1−R)rF

(
(1−R)Q∗T

)
.

I Let’s consider the most generous return contract.

Proposition 1

If r = w and R = 1, π′R(Q∗T ) = 0 if and only if c = 0.

Proof. If r = w and R = 1, π′R(Q∗T ) = 0 becomes

w − p+
(p− c)(p− w)

p
= (p− w)

(
p− c

p
− 1

)
= 0.

As p > w, we need p−c
p = 1, i.e., c = 0.

I Allowing full returns with full credits is generally system suboptimal.
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Insights

Extreme 2: no return

π′R(Q∗T ) = w − p+
(p− c)(p− r)

p
+ (1−R)rF

(
(1−R)Q∗T

)
.

I Let’s consider the least generous return contract.

Proposition 2

If r = 0 or R = 0, π′R(Q∗T ) = 0 is impossible.

Proof. If r = 0, π′R(Q∗T ) = 0 becomes w − c = 0, which cannot be true.
If R = 0, it becomes

w − c+
(p− c)(p− r)

p
+ rF (Q∗T ) = w − c = 0,

which is again impossible.

I Allowing no return is system suboptimal.
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Insights

Full returns with partial credits

π′R(Q∗T ) = w − p+
(p− c)(p− r)

p
+ (1−R)rF

(
(1−R)Q∗T

)
.

I Let’s consider full returns with partial credits.

Proposition 3

I If R = 1, π′R(Q∗T ) = 0 if and only if w = p− (p−c)(p−r)
p

.
I For any p and c, a pair of r and w such that 0 < r < w can always be

found to satisfy the above equation.

Proof. When R = 1, the first part is immediate. According to the

equation, we need r = p(w−c)
p−c . Then w < p implies p(w−c)

p−c < w and

c < w implies p(w−c)
p−c > 0.

I Allowing full returns with partial credits can be system optimal!

I In this case, we say the return contract coordinates the system.
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Insights

Profit splitting

I Under a full return contract, channel coordination requires

w = p− (p− c)(p− r)

p
= c+

(
p− c

p

)
r.

I The expected system profit is maximized. The “pie” is maximized.
I Is this pie split fairly under a coordinating return contract?
I As fairness means differently in different scenarios, we hope the pie can

be split arbitrarily.

I In one limiting case (though not possible), when w = c, we need r = 0.
In this case, π∗M = 0 and π∗R = π∗T .

I In another limiting case, when w = p, we need r = p. In this case,
π∗M = π∗T and π∗R = 0.

I How about the intermediate cases?



(3.3) Return contracts: analysis and insights 13 / 17

Insights

Profit splitting
I Let’s visualize the set of coordinating full return contracts:

I As πM (·) is continuous in w and r, π∗M must gradually go up from 0
to π∗T as w goes from c to p.
I Though we did not prove that π∗M is nondecreasing in w, it is not needed.
I π∗R must gradually do down as w goes from p to c.
I Arbitrary profit splitting can be done!
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Insights

Coordination and win-win

I We know that return contracts can be coordinating.

I Now we know they can also be win-win.
I We can make the pie the largest.
I We can split the pie in any way we want.
I We can always make both players happy.

I The two players will agree to adopt a coordinating return contract.

I Consumers also benefit from channel coordination. Why?

I Not all coordinating contracts are win-win.
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Remarks

Road map

I Analysis.

I Insights.

I Remarks.
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Remarks

More in the paper

I We only introduced the main idea of the paper.

I There are still a lot untouched:
I Salvage values and shortage costs.
I Monotonicity of the manufacturer’s and retailer’s expected profit.
I Environments with multiple retailers.

I You are encouraged, though not required, to read the paper.
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Remarks

Channel or supply chain coordination

I A hot topic in 1980’s and 1990’s.

I Not so hot now.

I Other contracts to coordinate a channel or a supply chains:
I Two-part tariffs.
I Quantity flexible contracts.
I Revenue-sharing contracts.
I Options.
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