IM 7011: Information Economics

Lecture 12: Moral Hazard
Chen and Huang (2013)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

November 25, 2013

Road map

- Introduction.
- Simplified model.
- Analysis.
- Original model and analysis.
- Extensions and conclusions.

Pricing data services

- We use data services everyday.
- Text messages.
- Dial-up or ADSL.
- 3G/4G.
- How do sellers (e.g., ISPs) price these services?
- Text messages: by quantity.
- Dial-up: by time.
- ADSL: by bandwidth.
- 3G/4G: by volume (i.e., quantity).
- Why different data services are priced by different pricing metrics?
- There are certainly supply-side reasons, e.g., technology limits.
- Is there any consumer-side reasons?
- Practitioners often make (effective or ineffective) decisions without using scientific methods.
- We want to know whether pricing metrics are chosen in a "good" way.

Pricing metrics

- Suppose a monopoly data service provider (seller) intends to provide the services to consumers.
- In the basic model, the cost for offering services are omitted.
- The seller wants to find the revenue-maximizing pricing plan.
- Consumers are heterogeneous on their willingness-to-pay for data usage and connection speed.
- As consumer types are hidden, the seller can only adopt second- or third-degree price discrimination. ${ }^{1}$
- We will focus on second-degree price discrimination with the following three pricing metrics:
- Pricing by time (e.g., minutes).
- Pricing by bandwidth (e.g., Mbps).
- Pricing by quantity (e.g., Gigs).
- Which pricing metric is the best?

[^0]
After-sales selections

- Consumers do not just have hidden types.
- They also have hidden (uncontrolled) after-sales selections.
- When I am priced by time, I select connection speed (by selecting software/applications).
- When I am priced by bandwidth, I select my time usage.
- When I am priced by quantity, I select time or speed.
- Each consumer acts to maximize his own utility.
- The selection of pricing metrics must consider:
- The heterogeneity of consumers (hidden information).
- The after-sales selections (hidden action).

Research questions

- The seller wants to find the revenue-maximizing pricing metric.
- By time, bandwidth, or quantity?
- To answer this question, she must be able to find the optimal (second-best) menu under each pricing metric.
- Given each pricing metric, the seller solves a nonlinear pricing problem through contract design.
- Multi-tiered pricing, unlimited usage pricing, or both?
- To solve the nonlinear pricing problem, the seller must be able to anticipate each consumers' after-sales selection.
- As researchers, we want to find the driving forces for a pricing metric to be revenue-maximizing.
- When one is better than the other, and why?

Road map

- Introduction.
- Simplified model.
- Analysis.
- Original model and analysis.
- Extensions and conclusions.

Pricing metrics

- A monopoly risk-neutral seller is facing three options:
- Pricing by minutes (M).
- Pricing by bandwidth (B).
- Pricing by quantity $(Q \equiv B M)$.
- For pricing by M and Q, we exclude fixed-up-to plans.
- Fixed-up-to plans may arise as a consequence of optimization.
- We do not specifically focus on such a restriction.
- Given a pricing metric, the seller designs a price schedule.
- For example, under pricing by minutes, the seller designs a function $P^{M}(M)$ to translate a time usage M to a payment $P^{M}(M)$.
- A price schedule can be implemented as a menu of contracts.
- For example, $P^{M}(\cdot)$ can be implemented as $\left\{\left(M(\theta), P^{M}(\theta)\right)\right\}$, where θ is the consumer's type (to be detailed later).
- A price schedule is an indirect mechanism; a menu is a direct one.

Consumers' utility function

- Let $\theta \sim \operatorname{Uni}(0,1)$ be the consumers' type.
- In the simplified model, ${ }^{2}$ the type- θ consumer's utility is ${ }^{3}$

$$
u(B, M, \theta)=\left\{\begin{array}{lll}
\theta B M-\frac{1}{2}(B M)^{2} & +\theta B-\frac{1}{2} B^{2} & \text { if } B M \leq \theta \text { and } B \leq \theta \\
\frac{1}{2} \theta^{2} & +\theta B-\frac{1}{2} B^{2} & \text { if } B M>\theta \text { and } B \leq \theta \\
\theta B M-\frac{1}{2}(B M)^{2} & +\frac{1}{2} \theta^{2} & \text { if } B M \leq \theta \text { and } B>\theta \\
\frac{1}{2} \theta^{2} & +\frac{1}{2} \theta^{2} & \text { if } B M>\theta \text { and } B>\theta
\end{array}\right.
$$

- The first part $\left(\theta B M-\frac{1}{2}(B M)^{2}\right.$ and $\left.\frac{1}{2} \theta^{2}\right)$ makes $u(\cdot)$ increasing and concave in Q.
- They also make $u(\cdot)$ increasing and concave in M when B is fixed.
- The second part $\left(\theta B-\frac{1}{2} B^{2}\right.$ and $\left.\frac{1}{2} \theta^{2}\right)$ makes $u(\cdot)$ increasing and concave in B when Q is fixed.
- Unlimited usage does not give unlimited utility.

[^1]
More about consumers' utility function

- The functional form

$$
\theta B M-\frac{1}{2}(B M)^{2}+\theta B-\frac{1}{2} B^{2}
$$

has its limitations.

- Consumers who have stronger preference for Q also have stronger preference for B.
- Nevertheless, multi-dimensional screening is too hard.
- A higher time usage results in a higher utility only if it corresponds to a higher data usage.
- Consuming more time itself does not make one happier.
- As there is no cost for offering the service, the socially efficient consumption maximizes each consumer's utility.
- The FOC gives $B=\frac{\theta(1+M)}{1+M^{2}}$ and $M=\frac{\theta}{B}$, which imply $B=\theta$ and $M=1$.
- Will there be efficiency loss?

Timing

- The seller determines the pricing metric.
- The seller announces a pricing menu.
- For example, if she prices by minutes, she announces $\left\{\left(M(\theta), P^{M}(\theta)\right)\right\}$.
- Each consumer self-selects one contract in the menu.
- Each consumer adjusts the variable not specified in the contract.
- For example, if the seller prices by minutes, the consumer chooses his own connection speed.

Road map

- Introduction.
- Simplified model.
- Analysis.
- Pricing by minutes.
- Pricing by bandwidth.
- Pricing by quantity.
- Comparisons.
- Original model and analysis.
- Extensions and conclusions.

Pricing by minutes: after-sales selection

- Suppose the type- θ consumer has chosen $\left(M(\hat{\theta}), P^{M}(\hat{\theta})\right)$ in stage 3 .
- In stage 4 , he determines the bandwidth B to maximize his net utility

$$
U^{M}(B \mid \theta, \hat{\theta})=\theta B M(\hat{\theta})-\frac{1}{2}(B M(\hat{\theta}))^{2}+\theta B-\frac{1}{2} B^{2}-P^{M}(\hat{\theta}) .
$$

- To maximize his net utility, the consumer chooses the bandwidth

$$
B^{*}(\theta, \hat{\theta})=\theta\left[\frac{1+M(\hat{\theta})}{1+M(\hat{\theta})^{2}}\right] .
$$

- The effective utility of choosing $\left(M(\hat{\theta}), P^{M}(\hat{\theta})\right)$ is

$$
U^{M}(\theta, \hat{\theta})=\frac{\theta^{2}}{2} \frac{[1+M(\hat{\theta})]^{2}}{1+M(\hat{\theta})^{2}}-P^{M}(\hat{\theta})
$$

- Let $U^{M}(\theta) \equiv \max \left\{U^{M}(\theta, \theta), 0\right\} \equiv\left[U^{M}(\theta, \theta)\right]^{+}$.

Pricing by minutes: contract design

- In stage 2, the seller solves

$$
\begin{aligned}
\Pi^{M}=\max _{M(\cdot), P^{M}(\cdot)} & \mathbb{E}\left[P^{M}(\theta)\right] \\
\text { s.t. } & U^{M}(\theta) \geq U^{M}(\theta, \hat{\theta}) \quad \forall \theta, \hat{\theta} \\
& U^{M}(\theta) \geq 0 \quad \forall \theta .
\end{aligned}
$$

- To solve this problem, we apply the standard technique for continuous-type problems and other recent results.

Pricing by minutes: optimal menu

- It turns out that a fixed-fee pricing plan is optimal.

Lemma 1

Under pricing by minutes, the optimal pricing plan is to charge a single fixed fee $P^{M}=\frac{4}{9}$ for an unlimited usage. The seller's expected revenue is $\Pi^{M}=\frac{4}{27}$.

- By buying the unlimited time usage, the type- θ consumer's net utility becomes

$$
\frac{1}{2} \theta^{2}+\frac{1}{2} \theta^{2}-P^{M}
$$

Therefore, he buys the service if and only if $\theta \geq \sqrt{P^{M}}$.

- The seller then maximizes the expected revenue $P^{M}\left(1-\sqrt{P^{M}}\right)$.
- Price discrimination is suboptimal.
- In equilibrium the seller does not screen consumers!

Pricing by bandwidth: after-sales selection

- Suppose the type- θ consumer has chosen $\left(B(\hat{\theta}), P^{B}(\hat{\theta})\right)$ in stage 3 .
- In stage 4 , he determines the time usage M to maximize

$$
U^{B}(M \mid \theta, \hat{\theta})=\theta B(\hat{\theta}) M-\frac{1}{2}[B(\hat{\theta}) M]^{2}+B(\hat{\theta}) \theta-\frac{1}{2} B(\hat{\theta})^{2}-P^{B}(\hat{\theta}) .
$$

- M only appears in the first part (quantity).
- The consumer chooses the time usage $M^{*}(\theta, \hat{\theta})=\frac{\theta}{B(\hat{\theta})}$.
- The effective utility of choosing $\left(B(\hat{\theta}), P^{B}(\hat{\theta})\right)$ is

$$
U^{B}(\theta, \hat{\theta})=\frac{1}{2} \theta^{2}+B(\hat{\theta}) \theta-\frac{1}{2} B(\hat{\theta})^{2}-P^{B}(\hat{\theta}) .
$$

- Let $U^{B}(\theta) \equiv \max \left\{U^{B}(\theta, \theta), 0\right\} \equiv\left[U^{B}(\theta, \theta)\right]^{+}$.

Pricing by bandwidth: contract design

- In stage 2, the seller solves

$$
\begin{aligned}
\Pi^{B}=\max _{B(\cdot), P^{B}(\cdot)} & \mathbb{E}\left[P^{B}(\theta)\right] \\
\text { s.t. } & U^{B}(\theta) \geq U^{B}(\theta, \hat{\theta}) \quad \forall \theta, \hat{\theta} \\
& U^{B}(\theta) \geq 0 \quad \forall \theta .
\end{aligned}
$$

Pricing by bandwidth: optimal menu

- Now multi-tiered (usage-based) pricing is optimal.

Lemma 2
Under pricing by bandwidth, the optimal pricing plan satisfies

$$
B^{*}(\theta)=2 \theta-1 \quad \text { and } \quad P^{B}(\theta)=2 \theta-\theta^{2}-\frac{1}{2}+\frac{\underline{\theta}\left(2 \underline{\theta}^{2}-\underline{\theta}+3\right)}{2(3 \underline{\theta}-2)}
$$

for $\theta \geq \underline{\theta}$ and $B^{*}(\theta)=P^{B}(\theta)=0$ for $\theta<\underline{\theta}$, where $\underline{\theta}=\frac{3+\sqrt{2}}{7}$ is the lowest type of consumer that is served. The seller's expected revenue is $\Pi^{B}=\frac{1}{6}-\underline{\theta}^{2}\left(\frac{3}{2}-\frac{7}{3} \underline{\theta}\right)$.

- Monotonicity: $B^{*}(\theta)$ is nondecreasing. Also no rent at bottom.
- Efficiency at top: $B^{*}(\theta)=2 \theta-1=\theta \Leftrightarrow \theta=1$.
- Price discrimination is optimal but some consumers should be ignored.
- Quantity discount: $B^{*}(\theta)$ is linear while $P^{B}(\theta)$ is strictly concave.

Pricing by quantity: after-sales selection

- Suppose the type- θ consumer has chosen $\left(Q(\hat{\theta}), P^{Q}(\hat{\theta})\right)$ in stage 3 .
- In stage 4 , he determines the bandwidth B to maximize ${ }^{4}$

$$
U^{Q}(B \mid \theta, \hat{\theta})=\theta Q(\hat{\theta})-\frac{1}{2} Q(\hat{\theta})^{2}+B \theta-\frac{1}{2} B^{2}-P^{Q}(\hat{\theta}) .
$$

- B only appears in the second part (bandwidth).
- The consumer chooses the bandwidth $B^{*}(\theta, \hat{\theta})=\theta$.
- The effective utility of choosing $\left(B(\hat{\theta}), P^{B}(\hat{\theta})\right)$ is

$$
U^{Q}(\theta, \hat{\theta})=Q(\hat{\theta}) \theta-\frac{1}{2} Q(\hat{\theta})^{2}+\frac{1}{2} \theta^{2}-P^{Q}(\hat{\theta}) .
$$

- Let $U^{Q}(\theta) \equiv \max \left\{U^{Q}(\theta, \theta), 0\right\} \equiv\left[U^{Q}(\theta, \theta)\right]^{+}$.

[^2]
Pricing by quantity: contract design

- In stage 2, the seller solves

$$
\begin{aligned}
\Pi^{Q}=\max _{Q(\cdot), P^{Q}(\cdot)} & \mathbb{E}\left[P^{Q}(\theta)\right] \\
\text { s.t. } & U^{Q}(\theta) \geq U^{Q}(\theta, \hat{\theta}) \quad \forall \theta, \hat{\theta} \\
& U^{Q}(\theta) \geq 0 \quad \forall \theta .
\end{aligned}
$$

Pricing by quantity: optimal menu

- Again, multi-tiered (usage-based) pricing is optimal.

Lemma 3

Under pricing by quantity, the optimal pricing plan satisfies

$$
Q^{*}(\theta)=2 \theta-1 \quad \text { and } \quad P^{Q}(\theta)=2 \theta-\theta^{2}-\frac{1}{2}+\frac{\underline{\theta}\left(2 \underline{\theta}^{2}-\underline{\theta}+3\right)}{2(3 \underline{\theta}-2)}
$$

for $\theta \geq \underline{\theta}$ and $Q^{*}(\theta)=P^{Q}(\theta)=0$ for $\theta<\underline{\theta}$, where $\underline{\theta}=\frac{3+\sqrt{2}}{7}$ is the lowest type of consumer that is served. The seller's expected revenue is $\Pi^{Q}=\frac{1}{6}-\underline{\theta}^{2}\left(\frac{3}{2}-\frac{7}{3} \underline{\theta}\right)$.

- Identical to pricing by bandwidth!
- Consumers' effective utility is:
- $\frac{1}{2} \theta^{2}+B(\hat{\theta}) \theta-\frac{1}{2} B(\hat{\theta})^{2}-P^{B}(\hat{\theta})$ when pricing by bandwidth.
- $Q(\hat{\theta}) \theta-\frac{1}{2} Q(\hat{\theta})^{2}+\frac{1}{2} \theta^{2}-P^{Q}(\hat{\theta})$ when pricing by quantity.

Selection among pricing metrics

- Now we may find the revenue-maximizing pricing metric:

Proposition 1

- A single contract is offered under pricing by minutes. A menu is offered under pricing by bandwidth or quantity.
- Because $\Pi^{M} \approx 0.148<0.155 \approx \Pi^{B}=\Pi^{Q}$, pricing by minutes is not revenue-maximizing.
- Because $1-\frac{2}{3} \approx 0.33<0.37 \approx 1-\underline{\theta}$, more consumers are served under pricing by bandwidth or quantity.
- Pricing by bandwidth and pricing by quantity are equivalent.
- Pricing by minutes cannot screen consumers (with a fixed fee).
- Pricing by minutes is the least effective in alleviating the moral hazard problem.
- Consumers are "too free": They can adjust bandwidth to affect both bandwidth and quantity.
- In the other two cases, only one part can be adjusted.

Robustness of insights

- Are the insights robust?
- Is pricing by minutes always inferior?
- Are pricing by bandwidth and pricing by quantity always identical?
- To answer this question, a more general model is required.

Road map

- Introduction.
- Simplified model.
- Analysis.
- Original model and analysis.
- Extensions and conclusions.

Original consumers' utility function

- In the original model in the paper, the type- θ consumer's utility function is

$$
u(B, M, \theta)=\left\{\begin{array}{lll}
\delta \theta B M-\frac{1}{2 \eta}(B M)^{2} & +\theta B-\frac{1}{2 \gamma} B^{2} & \text { if } B M \leq \theta \text { and } B \leq \theta \\
\frac{1}{2} \eta \delta^{2} \theta^{2} & +\theta B-\frac{1}{2 \gamma} B^{2} & \text { if } B M>\theta \text { and } B \leq \theta \\
\delta \theta B M-\frac{1}{2 \eta}(B M)^{2} & +\frac{1}{2} \gamma \theta^{2} & \text { if } B M \leq \theta \text { and } B>\theta \\
\frac{1}{2} \eta \delta^{2} \theta^{2} & +\frac{1}{2} \gamma \theta^{2} & \text { if } B M>\theta \text { and } B>\theta
\end{array}\right.
$$

- $\delta>1(\delta<1):$ One is more (less) sensitive to changes in Q than B.
- $\eta(\gamma)$ increases: The marginal benefit of quantity (bandwidth) diminishes in a slower rate.
- With the more general utility function, do the results change?

More general insights

- The old results can now be generalized:

Proposition 2

- A single contract is offered under pricing by minutes. A menu is offered under pricing by bandwidth or quantity.
- Because $\Pi^{M}<\Pi^{B}$ and $\Pi^{M}<\Pi^{Q}$, pricing by minutes is not revenue-maximizing.
- Pricing by bandwidth is revenue-maximizing if and only if $\gamma \geq \delta^{2} \eta$.
- Some insights are robust:
- Pricing by minutes still cannot screen consumers.
- Pricing by minutes is still suboptimal.
- Some are not:
- Pricing by bandwidth and pricing by quantity are not identical.
- Both of them may be revenue-maximizing.

Revenue maximization and moral hazard

- Why pricing by bandwidth is optimal if and only if $\gamma \geq \delta^{2} \eta$?
- It depends on which pricing metric is more effective in alleviating the moral hazard issue.
- Under pricing by bandwidth, the utility is

$$
\underbrace{\delta \theta B(\hat{\theta}) M-\frac{1}{2 \eta}[B(\hat{\theta}) M]^{2}}_{\text {can be adjusted }}+B(\hat{\theta}) \theta-\frac{1}{2 \gamma} B(\hat{\theta})^{2}
$$

- Under pricing by quantity, the utility is

$$
\delta \theta Q(\hat{\theta})-\frac{1}{2 \eta} Q(\hat{\theta})^{2}+\underbrace{B \theta-\frac{1}{2 \gamma} B^{2}}_{\text {can be adjusted }}
$$

- When γ is large, $B \theta-\frac{1}{2 \gamma} B^{2}$ is large and pricing by quantity leaves the consumer a too large room for adjustment.
- When δ or η is large, $\delta \theta B(\hat{\theta}) M-\frac{1}{2 \eta}[B(\hat{\theta}) M]^{2}$ is large.

Revenue maximization and adverse selection

- Why pricing by bandwidth is optimal if and only if $\gamma \geq \delta^{2} \eta$?
- It also depends on which pricing metric is more effective in alleviating the adverse selection issue.
- For the functional form

$$
\delta \theta B M-\frac{1}{2 \eta}(B M)^{2}+\theta B-\frac{1}{2 \gamma} B^{2}:
$$

- When $\delta<1$, consumers are more heterogeneous in B than in $Q .{ }^{5}$
- Pricing by bandwidth, which screens consumers according to their willingness-to-pay for B, is more effective.
- When $\delta>1$, consumers are more heterogeneous in Q than in B.
- Pricing by quantity becomes more effective.

[^3]
ADSL vs. $3 \mathrm{G} / 4 \mathrm{G}$

- Does our theory apply to the current practices?
- Currently, few data services are priced by minutes.
- Supply side: Controlling the quantity is more direct than controlling time usage.
- Consumer side: Pricing by minutes is not revenue-maximizing.
- ADSL is typically priced by bandwidth.
- ADSL consumers are more heterogeneous in applications they prefer (and thus in bandwidth).
- Therefore, pricing by bandwidth is more effective.
- 3G/4G is typically priced by quantity.
- Few 3G/4G consumers use speed-demanding applications. Most of them spend most of the time on simple browsing/searching. They are less heterogeneous in bandwidth.
- Pricing by quantity is thus more effective.

Road map

- Introduction.
- Simplified model.
- Analysis.
- Original model and analysis.
- Extensions and conclusions.

Extensions

- The model may be further extended in the following ways:
- General utility functions: $U(B, M, \theta)=U^{Q}(Q, \theta)+U^{B}(B, \theta)$.
- Bandwidth-insensitive utility functions: $U(B, M, \theta)=U(Q, \theta)$.
- Aggregate bandwidth costs.
- Disutility of waiting.
- In the presence of the last two supply-side issues:
- Pricing by minutes is still suboptimal.
- Pricing by bandwidth becomes relatively more attractive.

Conclusions

- Three pricing metrics for data services are studied.
- Pricing by minutes, bandwidth, or quantity.
- Either pricing by bandwidth or pricing by quantity can be optimal.
- Pricing by minutes is the worst in mitigating information asymmetry. The remaining moral hazard problem is the most significant.
- Whether the seller should price by bandwidth or quantity also depends on the effectiveness of mitigating information asymmetry.
- Why is information asymmetry critical?
- We want to earn revenues at the consumer side.
- We do not know how consumers like our product.
- We do not know how consumers will use our product.
- After-sales selections are also important when we design returns, warranties, and many other consumer-related policies.

[^0]: ${ }^{1}$ Pricing by usage/choice or attribute/identity.

[^1]: ${ }^{2}$ We remove some parameters from the paper's original model at this moment.
 ${ }^{3}$ The "if" condition in the paper should be a typo. The sign should be reversed.

[^2]: ${ }^{4}$ As long as $Q(\hat{\theta})=B M$, an equivalent result may be obtained by using the time usage M as the variable or by using both B and M as variables.

[^3]: ${ }^{5}$ In fact η and γ also have impacts on the heterogeneity. As the impacts are somewhat less apparent, we do not discuss them here.

