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Welcome!

» This is Information Economics, NOT Information Economy.

» We talk about IT, IS, information goods, etc.
» We talk about information.
» We focus on the economics of information.
» How people behave with different information?
» What is the value of information?
» What information to acquire? How?
» What are the implications on the information economy?

» In this course, we focus on information asymmetry.
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Information asymmetry

» The world is full of asymmetric information:
» A consumer does not know a retailer’s procurement cost.

A consumer does not know a product’s quality.

A retailer does not know a consumer’s valuation.

An instructor does not know how hard a student works.

> As information asymmetry results in inefficiency, we want to:
» Analyze its impact. If possible, quantify it.
» Decide whether it introduces driving forces for some phenomena.
» Find a way to deal with it if it cannot be eliminated.

» This field is definitely fascinating. However:
» We need to have some “weapons” to explore the world!

vvyy
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Before you enroll...

» Prerequisites:
» Calculus.
» Convex optimization.
» Probability.
» Game theory.
» Language: “All” English.

All materials (including course videos) are in English.

Students are encouraged (but not required) to speak English in class.
The instructor speak Chinese or English in office hour.

The instructor will speak Chinese in lectures when it helps.

v
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The instructing team

» Instructor:

Ling-Chieh Kung.

Third-year assistant professor.

Office: Room 413, Management Building II.

Office hour: 10:30am-noon, Thursday or by appointment.
E-mail: lckung@ntu.edu.tw.

v

vvyVvYyy

» Teaching assistant:

Chia-Hao (Jack) Chen.

Second-year master student.

Office: Room 320C, Management Teaching and Research Building.
E-mail: r02725018@ntu.edu.tw.

v
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Related information

v

Classroom: Room 204, Management Building II.

v

Lecture time: 9:10am-12:10pm, Monday.
References:

v

Information Rules by C. Shapiro and H. Varian.
Freakonomics by S. Levitt and S. Dubner.

Contract Theory by P. Bolton and M. Dewatripont.
Game Theory for Applied Economists by R. Gibbons.

vy vy VY

v

Reading list:
» Around four academic papers.
» Around four cases.

| |
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“Flipped classroom”

v

Lectures in videos, then discussions in classes.

v

Before each Monday, the instructor uploads a video of lectures.

> Ideally, the video will be no longer than one and a half hour.
> Students must watch the video by themselves before that Monday.

v

During the lecture, we do three things:
» Discussing the lecture materials (0.5 to 1 hour).
» Solving class problems (1 to 2 hours).
» Further discussions (0.5 to 1 hour).

> Teams:

» Students form teams to work on class problems and case studies.

» Each team should have three students.

» If it really helps, teams may be reformed by the instructor after the
midterm exam.
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Homework, participation, and office hour

» No homework!

» Except Homework 1.

» Problem sets and solutions will be posted for students to do practices.
» Class participation:

> Just say something!

» Use whatever way to impress the instructor.
» Office hour:

» 10:30am-noon, Thursday.

» Come to discuss any question (or just chat) with me!

> If the regular time does not work for you, just send me an e-mail.
» My “open-door” policy.

|
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Projects and exams

» Project:
> Please form a new team of at most n students, where the value of n will
be determined according to the class size.
» Each team will write a research proposal for a self-selected topic, make a
30-minute presentation, and submit a report.
» All team members must be in class for the team to present.

» Two exams:

» In-class and open whatever you have (including all electronic devices).
» No information is allowed to be transferred among students.
» The final exam covers only materials taught after the midterm exam.

|
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Grading

Homework 1: 5%.

Class participation: 10%.
Class problems: 20%.

Case reports: 20%.

Two Exams: 20% (10% each).
Project: 25%.

The final letter grades will be given according to the following
conversion rule:

vV V. vV vV VvV VY

Letter Range | Letter = Range | Letter = Range

A+ [90,100] | B+  [77,80) | C+  [67,70)
A 85, 90) B [73,77) C 63, 67)
A—  [80,85) | B—  [70,73) | C—  [60,63)
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Important dates and tentative plan

» Important dates:

Week 4 (2014/10/6): No class because the instructor is in the military.
Week 9 (2014/11/10): Midterm exam.

Week 16 (2014/12/29): Final exam.

Weeks 17 and 18 (2015/1/5 and 2015/1/12): Project presentations.

» Tentative plan:

v

vvyy

v

Decentralization and inefficiency.

The screening theory.

Pricing and versioning information goods.
The signaling theory

Recognizing and managing lock-in.

vV vyVvVvyy
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Related courses that are not that math-intensive

» “Electronic Commerce” by professor Ming-Hui Huang.
» Wednesday afternoon.
» In English.
» No math, no paper, full of cases.
» “Revenue Management and Pricing” by professor Chia-Wei Kuo.
» Thursday morning.
» In Chinese.
» Some math, no paper, full of cases.

> Also “Strategic Management,” “Industrial Economics,” etc.

| |
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Online resources

CEIBA.

» Viewing your grades.
> Receiving announcements.

http://www.ntu.edu.tw/~1lckung/courses/IE-Fal4/.
» Downloading course materials.

The bulletin board “NTUIM-Ickung” on PTT.
» Discussions.

YouTube:
» Watching lecture videos.

v

v

v

v
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Convex sets

Definition 1 (Convex sets)

A set F is convex if
Az + (1 = )\)Iz eF

for all A € [0,1] and z1,x5 € F.

| |
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Convex functions

Definition 2 (Convex functions)

For a convex domain F', a function f(-) is convex over F if

f()ml +(1- )\)a:2> <Af(@1) + (1= N f(xe2)

for all X € [0,1] and z1,25 € F.

| |
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Convex functions

2 1
gf(xl) + §f($2)

>
Il
Wi o

\/

T T2
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Some examples

» Convex sets?

» X =[10,20].
> X5 =(10,20).
» X3 =N.
» Xy =R

> X5 ={(z,y)|z* +y° < 4}.
> Xo ={(z,y)|2* +y° > 4}.

» Convex functions?

>

>

>

v

v

)
fo(z)=2*+2,z€R
fa(x) = sin(z),x € [0, 27].
fa(z) = sin(z), x € [m, 27].
fs(z) =log(z),z € (0,00).
fo(z,y) =2 + 9%, (z,y) € R%.

Overview
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Strictly convex and concave functions

Definition 3 (Strictly convex functions)

For a convex domain F, a function f(-) is strictly convex over F if
£+ (1= Nw2) < Af(@r) + (1= Nf(w2)

for all X € (0,1) and x1, 25 € F such that x1 # 5.

Definition 4 ((Strictly) concave functions)

For a convex domain F, a function f(-) is (strictly) concave over
F if —f(-) is (strictly) convez.

| |
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Derivatives of convex functions

» When a function is twice-differentiable, testing its convexity is simple:

Proposition 1

Consider a single-variate twice-differentiable function f(-) over an
interval F = [a,b]:

> f(-) is conver over F if and only if f"'(x) >0 for all z € F.

> f(-) is strictly convex over F if and only if f"'(z) >0 for allxz € F.

Proposition 2

Consider a single-variate twice-differentiable function f(-) over an
interval F = [a,b]:

> f(-) is concave over F if and only if f'(x) <0 for allx € F.

> f(-) is strictly concave over F if and only if f'(z) <0 for allz € F.

: :
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Some examples revisited

» Convex functions?

> filz)=x+2,2z€R.

> fz(m):x2+2,xE]R.

> fa(x) =sin(x),z € [0, 27].

> fa(z) =sin(z), z € [, 27].

> f5(z) = log(m) z € (0, 00).

> fola,y) = 2° + 42, (z,y) € R

| |
Overview 23 /41 Ling-Chieh Kung (NTU IM)




Syllabus Quiz Convexity Optimization problems Optimality conditions
0000000000000 [©] 00000000 900000 000000000000

Road map

Syllabus.
Quiz.
Convexity.

Optimization problems.

vV V. v v Y

Optimality conditions.

Overview 24 /41 Ling-Chieh Kung (NTU IM)




Syllabus Quiz Convexity Optimization problems Optimality conditions
0000000000000 o] 00000000 0®0000 000000000000

Optimization problems

» In an optimization problem, there are:
» Decision variables.
» The objective function.
» Constraints.
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Linear programming

» Consider the problem

*

z° = max I+ X9 X2
st. 14+ 212<6
201+ 29 <6 6
2x1 + 29 <6

;>0 Vi=1,2.

» The feasible region is the shaded area.
> An optimal solution is (z7,z3) = (2,2). Is

it unique? T1t+22 <6
» The corresponding objective value z* = 6. 1
» An optimization problem is a linear 3 6

program (LP) if the objective function
and constraints are all linear.

| |
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Nonlinear programming

» A problem is a nonlinear program (NLP) if it is not a linear
program.

» Consider the problem

zZ' = max x1+ o
st. o3 +23<16
T1+x2 > 1.

» What is the feasible region?
» What is an optimal solution? Is it unique?
» What is the value of z*7

» An optimization problem is a convex program if in it we maximize a
concave function over a convex feasible region.

» All convex programs can be solved efficiently.

» It may not be possible to solve a nonconvex program efficiently.

|
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Infeasible and unbounded problems

v

Not all problems have an optimal solution.

v

A problem is infeasible if there is no feasible solution.

» E.g., max{z?|z < 2,2 > 3}.
A problem is unbounded if given any feasible solution, there is
another feasible solution that is better.

» E.g., max{e®|z > 3}.

» How about min{sinz|z > 0}7

v

v

A problem may be infeasible, unbounded, or finitely optimal (i.e.,
having at least one optimal solution).

| |
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Set of optimal solutions
> The set of optimal solutions of a problem max{f(z)|z € X} is
argmax{ f(z)|z € X}.
» For f(z) = cosz and X = [0, 27|, we have
argmax { cosx‘m eo, 27r]} = {0, 2~}.
» If z* is an optimal solution of max{f(x)|z € X}, we should write

x* € argmax{f(z)|z € X},

NOT z* = argmax{f(z)|z € X}!

| |
Overview 29 /41 Ling-Chieh Kung (NTU IM)




Syllabus Quiz Convexity Optimization problems Optimality conditions
0000000000000 o] 00000000 000000 @00000000000

Road map

Syllabus.
Quiz.
Convexity.

Optimization problems.

vV V. v v Y

Optimality conditions.

Overview 30 /41 Ling-Chieh Kung (NTU IM)




Syllabus Quiz Convexity Optimization problems Optimality conditions
0000000000000 o] 00000000 000000 0@0000000000
: :

Global optima

» For a function f(z) over a feasible region F:
> A point z* is a global minimum if f(z*) < f(z) for all z € F.
» A point 2’ is a local minimum if for some € > 0 we have

f(@') < f(z) VzeB(z',e)NF,
where B(z°,€) = {z|d(z,2°) < €} and d(z,y) = />, (x: — y:)2.
A

B(x°,¢€)

T
» Global maxima and local maxima are defined accordingly.

| |
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First-order necessary condition

» Consider an unconstrained problem

max f(x).

reR™

Proposition 3 (Unconstrained FONC)

Suppose f: R™ — R is differentiable. For a point x* to be a local
mazimum of f, we need:

> ff(z*)=04fn=1.

> Vf(z*) =014 n>2.

» For an n-dimensional differentiable function f, its gradient is
of
A1
vf=
of
Oz,

| |
Overview 32 /41 Ling-Chieh Kung (NTU IM)




Syllabus Quiz Convexity Optimization problems Optimality conditions

Examples
» Consider the problem » Consider the problem
39 9 6 + 2 max f(z) = x? — x129 + 235 — 622.
iy o = 5o+ Oo+
The FONC yields The FONC yields
3(22 — 3z +2) = 0. _| o |0
( ) Vi) [—a:l + 205 -6 |0

Solving the equation gives us 1 . i .
and 2 as two candidates of local Solving the linear system gives us
maxima. (2,4) as the only candidate of

local maxima.

» Note that it is NOT necessarily a
local maximum!

» It is easy to see that z* =11is a
local maxima but £ = 2 is NOT.

| |
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Second-order necessary condition

» Let’s proceed further.

Proposition 4 (Unconstrained SONC)

Suppose f: R™ — R is twice-differentiable. For a point x* to be a
local mazimum of f, we need:

> () <0 ifn=1.

> yTv2f(2*)y <0 for ally € R™ if n > 2.

» For an n-dimensional function f(x1,...,z,) : R" — R that is
twice-differentiable, its Hessian is the n X n matrix

or . _%f
Ox? Oz1 Oz,
vif= : :
LA I o |
Oz, 0x1 o2

| |
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Second-order necessary condition

> Regarding the Hessian:

» (Calculus) If the second-order derivatives are all continuous (which will
be true for almost all functions we will see in this course), the Hessian is
symmetric.

» (Linear Algebra) A symmetric matrix A is called negative
semidefinite if y7 Ay < 0 for all y € R™.

> Therefore, if the second-order derivatives of f all exists and are
continuous, the unconstrained SONC is simply requesting the Hessian to
be negative semidefinite.

» In this course, we will not apply the SONC a lot.

» Here our point is that a local maximum requires NOT just

0% f
— < i =1,...,n.
31?_0 Vi .

: :
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We want more than candidates!

» The FONC and SONC produce candidates of local maxima/minima.
» What’s next?

» We need some ways to ensure local optimality.
» We need to find a global optimal solution.

» If the function is convex or concave, things are much easier:

» Because for a differentiable concave/convex function, the FONC is
necessary AND sufficient (thus called FOC in this case).

» Now points satisfying the FONC are locally optimal.
» We may prove that they are also globally optimal.

| |
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Remarks

» When you are asked to solve a problem:

> First check whether the objective function is convex/concave. If so the
problem typically becomes much easier.

v

All the conditions for unconstrained problems apply to interior points
of a feasible region.
» One common strategy for solving constrained problems proceeds in the
following steps:

» Ignore all the constraints.

» Solve the unconstrained problem.

» Verify that the unconstrained optimal solution satisfies all constraints.

v

If the strategy fails, we seek for other ways.

| |
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Application: Monopoly pricing

» Suppose a monopolist sells a single product to consumers.

» Consumers are heterogeneous in their willingness-to-pay, or
valuation, of this product.

» One’s valuation, 6, lies on the interval [0, b] uniformly.

» He buys the product if and only if his valuation is above the price.
» The total number of consumers is a.
» Given a price p, in expectation how many consumers buy?

» The unit production cost is c.
» The seller chooses a unit price p to maximize her total expected profit.

| |
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Formulation

» The endogenous decision variable is p.
» The exogenous parameters are a, b, and c.

» The only constraint is p > 0.

v

Let 7(p) be the profit under price p. What is 7(p)?

v

What is the complete problem formulation?

» It is without loss of generality to normalize the population size a to 1.

| |
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:
Solving the problem

» Given that 7(p) =

7(p —¢)(b—p), let’s show it is strictly concave

> 7'(p)
» m'(p) =

» Great! Now let’s ignore the constraint p > 0.

» Applying the FOC, what is the unconstrained optimal solution?

> Does p* satisfy the ignored constraint? Is it globally optimal?

I
Overview
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Managerial /economic implications

» The optimal price p* = b;c tells us something:

> p” is increasing in the highest possible valuation b. Why?
» p* is increasing in the unit cost ¢. Why?
» p* has nothing to do with the total number of consumer a. Why?

_ a(b—c)?

» The optimal profit 7* = 7(p*) = ==
7" is decreasing in ¢. Why?

7 is increasing in a. Why?

How is 7" affected by b7 Guess!

Let’s answer it:

vvyVvy

> It is these qualitative managerial/economic implications that matters.
» Never forget to verify your solutions with your intuitions.
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