Information Economics, Fall 2015
 Suggested Solution for Midterm Exam

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. (a) The manufacturer solves $\pi_{M}=$

$$
\begin{aligned}
\max & Q w-\frac{1}{2} c Q^{2} \\
\text { s.t. } & Q \leq q
\end{aligned}
$$

and obtains $Q^{*}=\min \left\{\frac{w}{c}, q\right\}$.
(b) The retailer solves $\pi_{R}=$

$$
\max \quad \int_{0}^{q} x f(x) d x+\int_{q}^{1} q f(x) d x-w q
$$

and obtains $q^{*}=1-w$.
(c) When $1-w \leq \frac{w}{c}, Q^{*}=q^{*}=1-w$. Plug Q^{*} into π_{M}, solve it, and we obatin $w_{1}=\frac{1+c}{2+c}$. When $1-w \geq \frac{w}{c}, Q^{*}=\frac{w}{c}$. Plug Q^{*} into π_{M}, solve it, and we obtain $w_{2}=\frac{c}{1+c}$.
Now, we replace w in π_{M} by w_{1} or w_{2}, and find out that $w^{*}=w_{1}=\frac{1+c}{2+c}$ is the optimal wholesale price.
(d) When the wholesale contract may lead to low order quantity (e.g., when the retail price is too low) and the production cost is small enough, the manufacturer would offer a positive return credit in equilibrium.
2. (a) Under integration, $p_{1}=p_{2}=p$. Maximize $p q=p(1-p+\theta p)$ and we can obtain $p^{*}=\frac{1}{2-2 \theta}$.
(b) Maximize $p_{i} q_{i}=p_{i}\left(1-p_{i}+\theta p_{3-i}\right)$ for $i=1,2$ and we can obtain $p_{1}^{*}=p_{2}^{*}=\frac{1}{2-\theta}$.
(c) Maximize $\left(p_{1}-w_{1}\right)\left(1-p_{1}+\theta p_{2}\right)+\left(p_{2}-w_{2}\right)\left(1-p_{2}+\theta p_{1}\right)$ and we can obtain $p_{i}^{*}=\frac{1}{2-2 \theta}+\frac{w_{i}}{2}$ for $i=1,2$.
(d) Maximize $w_{i}\left(1-\left(\frac{1}{2-2 \theta}+\frac{w_{i}}{2}\right)+\theta\left(\frac{1}{2-2 \theta}+\frac{w_{3-i}}{2}\right)\right)$ for $i=1,2$, and we can obtain $w_{i}^{*}=\frac{1}{2-\theta}$.
(e) Under ID, the profit function for the retailer and the firms would be:

$$
\pi_{R}=\left(p_{1}-w_{1}\right)\left(1-p_{1}+\theta p_{2}\right) \quad \pi_{2}^{M}=p_{2}\left(1-p_{2}+\theta p_{1}\right) \quad \pi_{1}^{M}=w 1\left(1-p_{1}+\theta p_{2}\right)
$$

First, we may find the optimal p_{1}^{*} and p_{2}^{*} by solving the F.O.C. of π_{R} and π_{2}^{M} :

$$
\begin{gathered}
\frac{\partial \pi_{R}}{\partial p_{1}}=1-2 p_{1}+\theta p_{2}+w_{1}=0 \quad \frac{\partial \pi_{2}^{M}}{\partial p_{2}}=1-2 p_{2}+\theta p_{1}=0 \\
p_{1}^{*}=\frac{1}{2-\theta}+\frac{2 w_{1}}{4-\theta^{2}} \quad p_{2}^{*}=\frac{1}{2-\theta}+\frac{\theta w_{1}}{4-\theta^{2}}
\end{gathered}
$$

Then, we can plug in p_{1}^{*} and p_{2}^{*} to π^{M}, solve the F.O.C., and obtain $w_{1}^{*}=\frac{2+\theta}{4-2 \theta^{2}}$.
(f) True. The equilibruim retail prices under II is $p_{i}=\frac{1}{2-2 \theta}+\frac{w_{i}}{2}$ for $i=1,2$, which is greater than prices under pure integration $\left(p_{1}=p_{2}=\frac{1}{2-2 \theta}\right)$.
(g) True. The equilibruim retail prices under II is $p_{i}=\frac{1}{2-2 \theta}+\frac{w_{i}}{2}$ for $i=1,2$, which is greater than prices under DD ($\left.p_{1}=p_{2}=\frac{1}{2-\theta}\right)$.
(h) True. p_{1} under ID is $\frac{1}{2-\theta}+\frac{2 w_{1}}{4-\theta^{2}}$, which is greater than p_{1} under DD $\left(p_{1}=\frac{1}{2-\theta}\right) \cdot p_{2}$ under ID is $\frac{1}{2-\theta}+\frac{\theta w_{1}}{4-\theta^{2}}$, which is also greater than p_{2} under DD $\left(p_{2}=\frac{1}{2-\theta}\right)$.
3. (a) $P_{L B}=\operatorname{Pr}\left(\theta=\theta_{L} \mid s=s_{B}\right)=\frac{\operatorname{Pr}\left(s=s_{B} \cap \theta=\theta_{L}\right)}{\operatorname{Pr}\left(s=s_{B}\right)}=\frac{\operatorname{Pr}\left(s=s_{B} \mid \theta=\theta_{L}\right) \operatorname{Pr}\left(\theta=\theta_{L}\right)}{\operatorname{Pr}\left(s=s_{B}\right)}=\frac{\lambda * \frac{1}{2}}{\frac{1}{2}}=\lambda$.
(b) $N_{B}=E\left[\theta \mid s=s_{B}\right]=\operatorname{Pr}\left(\theta=\theta_{L} \mid s=s_{B}\right) \theta_{L}+\operatorname{Pr}\left(\theta=\theta_{H} \mid s=s_{B}\right) \theta_{H}=\lambda \theta_{L}+(1-\lambda) \theta_{H}$.
(c) $Q_{B}=\operatorname{Pr}\left(s=s_{B}\right)=\frac{1}{2}$.
(d) First, we may define π_{S} as salesperson's utility function,

$$
\pi_{S}=\max _{a_{j k}} \mathbb{E}\left[\left.u_{k}+v_{k} x-\frac{1}{2} a_{j k}^{2} \right\rvert\, s=s_{j}\right]=\max _{a_{j k}}\left(u_{k}+v_{k} N_{j} a_{j k}-\frac{1}{2} a_{j k}^{2}\right) .
$$

We then have the F.O.C.

$$
\pi_{S}^{\prime}=-a_{j k}+v_{k} N_{j}=0
$$

After solving the F.O.C., we have the optimal effort

$$
a_{j k}^{*}=v_{k} N_{j} .
$$

(e) The retailer's objective function can be formulated as

$$
\pi_{R}=\max _{u_{k} u r s ., v_{k} \geq 0} \sum_{j \in\{G, B\}} \frac{1}{2}\left[\left(1-v_{k}\right) N_{j}^{2} v_{k}-u_{k}\right] .
$$

(f) From (d), the salesperson's optimal profit can be formulated as

$$
\pi_{S}^{*}=u_{k}+\frac{1}{2} v_{k}^{2} N_{j}^{2} .
$$

The IR constraints can then be formulated as,

$$
\begin{align*}
& u_{G}+\frac{1}{2} v_{G}^{2} N_{G}^{2} \geq 0 \tag{IR-1}\\
& u_{B}+\frac{1}{2} v_{B}^{2} N_{B}^{2} \geq 0 \tag{IR-2}
\end{align*}
$$

The IC constraints can then be formulated as,

$$
\begin{align*}
& u_{G}+\frac{1}{2} v_{G}^{2} N_{G}^{2} \geq u_{B}+\frac{1}{2} v_{B}^{2} N_{G}^{2} \tag{IC-1}\\
& u_{B}+\frac{1}{2} v_{B}^{2} N_{B}^{2} \geq u_{G}+\frac{1}{2} v_{G}^{2} N_{B}^{2} \tag{IC-2}
\end{align*}
$$

(g) Let (IR-2) and (IC-1) bind, we have

$$
\begin{gathered}
u_{B}=-\frac{1}{2} v_{B}^{2} N_{B}^{2} \\
u_{G}=-\frac{1}{2} v_{B}^{2} N_{B}^{2}+\frac{1}{2} v_{B}^{2} N_{G}^{2}-\frac{1}{2} v_{G}^{2} N_{G}^{2} .
\end{gathered}
$$

Plug them into the retailer's objective function, we have

$$
\begin{aligned}
\pi_{R} & =\frac{1}{2}\left[\left(1-v_{G}\right) N_{G}^{2} v_{G}+\left(1-v_{B}\right) N_{B}^{2} v_{B}+\frac{1}{2} v_{B}^{2} N_{B}^{2}+\frac{1}{2} v_{B}^{2} N_{B}^{2}-\frac{1}{2} v_{B}^{2} N_{G}^{2}+\frac{1}{2} v_{G}^{2} N_{G}^{2}\right] \\
& =\frac{1}{2}\left[N_{G}^{2} v_{G}+N_{B}^{2} v_{B}-\frac{1}{2} N_{G}^{2} v_{G}^{2}-\frac{1}{2} N_{G}^{2} v_{B}^{2}\right] .
\end{aligned}
$$

Next, we have the partial differential equations

$$
\begin{aligned}
& \frac{\partial \pi_{R}}{\partial v_{G}}=\frac{1}{2}\left[N_{G}^{2}-N_{G}^{2} v_{G}\right]=0, \\
& \frac{\partial \pi_{R}}{\partial v_{B}}=\frac{1}{2}\left[N_{B}^{2}-N_{G}^{2} v_{B}\right]=0 .
\end{aligned}
$$

Finally, we have the optimal $v_{k}: v_{G}^{*}=1 ; v_{B}^{*}=\frac{N_{B}^{2}}{N_{G}^{2}}$,
and the optimal $u_{k}: u_{G}^{*}=\frac{1}{2}\left(-\frac{N_{B}^{6}}{N_{G}^{4}}+\frac{N_{B}^{4} N_{G}^{2}}{N_{G}^{4}}-N_{G}^{2}\right) ; u_{B}^{*}=-\frac{1}{2} \frac{N_{B}^{6}}{N_{G}^{4}}$.
(h) Step 1:

$$
\begin{aligned}
\bar{a} & =\sum_{j \in\{G, B\}} \operatorname{Pr}\left(s=s_{j}\right) a_{j j}^{*} \\
& =\frac{1}{2} v_{G} N_{G}+\frac{1}{2} v_{B} N_{B} \\
& =\frac{1}{2} N_{G}+\frac{1}{2} \frac{N_{B}^{2}}{N_{G}^{2}} N_{B} \\
& =\frac{1}{2} \frac{N_{G}^{3}+N_{B}^{3}}{N_{G}^{2}} \\
& =\frac{1}{2} \frac{\left(\theta_{L}(1-\lambda)+\theta_{H} \lambda\right)^{3}+\left(\theta_{L} \lambda+\theta_{H}(1-\lambda)\right)^{3}}{\left(\theta_{L}(1-\lambda)+\theta_{H} \lambda\right)^{2}} .
\end{aligned}
$$

Step 2:

$$
\begin{aligned}
\frac{\partial \bar{a}}{\partial \lambda} & =\frac{1}{2}\left(-\frac{\left(\theta_{H}-\theta_{L}\right)\left(\theta_{H}+\theta_{L}\right)^{2}\left(\theta_{H}(3 \lambda-2)-\theta_{L}(3 \lambda-1)\right)}{\left(\theta_{L}(\lambda-1)-\theta_{H} \lambda\right)^{3}}\right) \\
& =\frac{1}{2}\left(-\frac{\left(\theta_{H}-\theta_{L}\right)\left(\theta_{H}+\theta_{L}\right)^{2}\left(\left(\theta_{H}-\theta_{L}\right)(3 \lambda-1)-\theta_{H}\right)}{\left(-N_{G}\right)^{3}}\right)
\end{aligned}
$$

Finally, we find that when the difference between θ_{H} and θ_{L} is large enough, λ has positive effects on \bar{a}. In the contrary, when the difference between θ_{H} and θ_{L} is small, even if λ is large, λ still has negative effects on \bar{a}.

