Information Economics, Fall 2015 Homework 1

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

1 Rules

Note 1. For this homework, each student should submit her/his individual work.

Note 2. This homework is due 5:00 pm, September 18, 2015. Please submit a hard copy into the instructor's mail box at the first floor of the Management Building II.

Note 3. All the students who want to enroll in this course *must* submit this homework. If one does not do that, she/he will fail the course if she/he insists to take it.

2 Problems

- 1. (40 points; 5 points each) Please answer the following questions.
 - (a) Let $f(x_1, x_2) = 2x_1^5 + 3x_1^2x_2 x_2^3 + 3x_1$. Find the gradient $\nabla f(x_1, x_2)$ and Hessian $\nabla^2 f(x_1, x_2)$.
 - (b) Let $f(x) = \ln(x^3 + 2x)e^{3x}$. Find $\frac{d}{dx}f(x)$.
 - (c) Let $f(x) = x_1 x_2^2 + e^{2x_2} x_1$. Find $\int f(x) dx_2$ (you may ignore the constant).
 - (d) Find $\frac{d}{dx} \int_0^x (t^3 + 3x 2) dt$.
 - (e) Let X be the outcome of rolling an unfair dice whose probability distribution is summarized in the following table:

x	1	2	3	4	5	6
$\Pr(X = x)$	0.2	0.3	0.1	0.1	0.1	0.2

Find the expected value and variance of X.

- (f) Let $f(x) = kx^{1.5}$ be the probability density of a continuous random variable $X \in [0, 2]$. Find the value of k. Then find $\mathbb{E}[X]$.
- (g) Is $f(x) = x^{2.5} + 3x^2$ a convex function over $[0, \infty)$? Prove it mathematically.
- (h) Over what region is $g(x) = \ln x + 2x^2$ a strictly convex function? Prove it mathematically.
- 2. (20 points; 5 points each) Consider the following nonlinear program

$$z^* = \max x_1 - x_2$$

s.t. $x_2 \ge -1$
 $-x_1^2 - (x_2 + 2)^2 \le -4.$

- (a) Draw the feasible region. Is it a convex set?
- (b) Graphically solve the problem.
- (c) Is there any local maximum that is not a global maximum? If so, find them.
- (d) Replace the second constraint by $-x_1^2 (x_2 + 2)^2 \ge -4$. Redo Part (c).
- 3. (10 points) Let F and G be two convex sets in \mathbb{R}^n . Prove or disprove that their intersection $F \cap G$ is also a convex set in \mathbb{R}^n .

- 4. (15 points; 5 points each) Consider the monopoly pricing problem discussed in class. Suppose that now there is a competitor who sells the same product at price p_0 . This competitor sticks to p_0 for no reason; it does not change the price no matter what happens. If a consumer wants to buy the product, she purchases the product from you only if your price is no greater than that from your competitor. In other words, if your price $p > p_0$, you will sell nothing for sure.
 - (a) Formulate the seller's problem for maximizing its total expected profit. Show that it is a convex program.
 - (b) Note that your program is a convex constrained program. For one-dimensional convex constrained program, the following strategy typically works: (1) find an unconstrained optimal solution, (2) if it is feasible, it is optimal, and (3) otherwise, find a boundary point that is closest to the unconstrained optimal solution. As you already know, the unique unconstrained optimal solution is $p^* = \frac{b+c}{2}$. As p^* may be greater than or less than p_0 , apply the above strategy to analytically solve the seller's problem with this competitor who does not change its price.
 - (c) How does p^* change when a, b, or c changes? Provide economic intuitions to these mathematical results.
- 5. (15 points; 5 points each) Consider the newsvendor problem discussed in class. Suppose that now unsold products can be sold to a recycling site at a price d per unit. Obviously, we have 0 < d < c.
 - (a) Formulate the seller's problem of maximizing the expected profit.
 - (b) Solve the problem and find the unique analytical optimal order quantity q^* .
 - (c) How does q^* change when r, c, or d changes? Provide economic intuitions to these mathematical results.