Information Economics, Fall 2015
 Homework 1

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1 Rules

Note 1. For this homework, each student should submit her/his individual work.
Note 2. This homework is due 5:00 pm, September 18, 2015. Please submit a hard copy into the instructor's mail box at the first floor of the Management Building II.

Note 3. All the students who want to enroll in this course must submit this homework. If one does not do that, she/he will fail the course if she/he insists to take it.

2 Problems

1. (40 points; 5 points each) Please answer the following questions.
(a) Let $f\left(x_{1}, x_{2}\right)=2 x_{1}^{5}+3 x_{1}^{2} x_{2}-x_{2}^{3}+3 x_{1}$. Find the gradient $\nabla f\left(x_{1}, x_{2}\right)$ and Hessian $\nabla^{2} f\left(x_{1}, x_{2}\right)$.
(b) Let $f(x)=\ln \left(x^{3}+2 x\right) e^{3 x}$. Find $\frac{d}{d x} f(x)$.
(c) Let $f(x)=x_{1} x_{2}^{2}+e^{2 x_{2}} x_{1}$. Find $\int f(x) d x_{2}$ (you may ignore the constant).
(d) Find $\frac{d}{d x} \int_{0}^{x}\left(t^{3}+3 x-2\right) d t$.
(e) Let X be the outcome of rolling an unfair dice whose probability distribution is summarized in the following table:

x	1	2	3	4	5	6
$\operatorname{Pr}(X=x)$	0.2	0.3	0.1	0.1	0.1	0.2

Find the expected value and variance of X.
(f) Let $f(x)=k x^{1.5}$ be the probability density of a continuous random variable $X \in[0,2]$. Find the value of k. Then find $\mathbb{E}[X]$.
(g) Is $f(x)=x^{2.5}+3 x^{2}$ a convex function over $[0, \infty)$? Prove it mathematically.
(h) Over what region is $g(x)=\ln x+2 x^{2}$ a strictly convex function? Prove it mathematically.
2. (20 points; 5 points each) Consider the following nonlinear program

$$
\begin{aligned}
z^{*}=\max & x_{1}-x_{2} \\
\text { s.t. } & x_{2} \geq-1 \\
& -x_{1}^{2}-\left(x_{2}+2\right)^{2} \leq-4 .
\end{aligned}
$$

(a) Draw the feasible region. Is it a convex set?
(b) Graphically solve the problem.
(c) Is there any local maximum that is not a global maximum? If so, find them.
(d) Replace the second constraint by $-x_{1}^{2}-\left(x_{2}+2\right)^{2} \geq-4$. Redo Part (c).
3. (10 points) Let F and G be two convex sets in \mathbb{R}^{n}. Prove or disprove that their intersection $F \cap G$ is also a convex set in \mathbb{R}^{n}.
4. (15 points; 5 points each) Consider the monopoly pricing problem discussed in class. Suppose that now there is a competitor who sells the same product at price p_{0}. This competitor sticks to p_{0} for no reason; it does not change the price no matter what happens. If a consumer wants to buy the product, she purchases the product from you only if your price is no greater than that from your competitor. In other words, if your price $p>p_{0}$, you will sell nothing for sure.
(a) Formulate the seller's problem for maximizing its total expected profit. Show that it is a convex program.
(b) Note that your program is a convex constrained program. For one-dimensional convex constrained program, the following strategy typically works: (1) find an unconstrained optimal solution, (2) if it is feasible, it is optimal, and (3) otherwise, find a boundary point that is closest to the unconstrained optimal solution. As you already know, the unique unconstrained optimal solution is $p^{*}=\frac{b+c}{2}$. As p^{*} may be greater than or less than p_{0}, apply the above strategy to analytically solve the seller's problem with this competitor who does not change its price.
(c) How does p^{*} change when a, b, or c changes? Provide economic intuitions to these mathematical results.
5. (15 points; 5 points each) Consider the newsvendor problem discussed in class. Suppose that now unsold products can be sold to a recycling site at a price $\$ d$ per unit. Obviously, we have $0<d<c$.
(a) Formulate the seller's problem of maximizing the expected profit.
(b) Solve the problem and find the unique analytical optimal order quantity q^{*}.
(c) How does q^{*} change when r, c, or d changes? Provide economic intuitions to these mathematical results.

