# Information Economics, Fall 2015 Suggested Solution for Homework 2 

Instructor: Ling-Chieh Kung<br>Department of Information Management<br>National Taiwan University

1. (a) We solve $\max _{p} 2 p(1-p+\theta p)$, whose optimal solution is $p^{*}(\theta)=\frac{1}{2(1-\theta)}$.
(b) The three curves are shown in the figure. $p^{*}(\theta)>p^{D}(\theta)$ when $\theta$ is large, and $p^{D}(\theta)>p^{*}(\theta)$ when $\theta$ is small.

(c) The only value of $\theta$ under which $p^{D}(\theta)=p^{*}(\theta)$ can be found by solving

$$
\frac{2\left(3-\theta^{2}\right)}{(2-\theta)\left(4-\theta-2 \theta^{2}\right)}=\frac{1}{2(1-\theta)} \Leftrightarrow 4-6 \theta-\theta^{2}+2 \theta^{3}=0 .
$$

Numerically we may find a unique within-zero-and-one root 0.6991 . And analytically we can show that the polynomial has exactly one root within zero and one.

Note: When $\theta$ is small,decentralization not only drives the prices up. It makes the prices too high!
2. Full returns with full credits will always induce a too high equilibrium inventory level. To see this, note that if $R=1$ and $r_{2}=r_{1}$, the retailer will order $Q_{R}^{*}$ such that $F\left(Q_{R}^{*}\right)=1$ (from equation (7)). However, the channel-optimal quantity $Q_{T}^{*}$ satisfies

$$
F\left(Q_{T}^{*}\right)=\frac{p+g_{2}-c}{p+g_{2}-c_{3}}<1,
$$

which implies $Q_{R}^{*}>Q_{T}^{*}$.
3. (a) The wholesale contract with the wholesale price $w$ is a special case of the two-part tariff contract ( $w, t$ ) with $t=0$.
(b) The retailer's expected profit can be formulated as

$$
\pi_{\mathrm{R}}(q \mid w, t)=p\left\{\int_{0}^{q} x f(x) d x+q[1-F(q)]\right\}-(w q+t)
$$

if the retailer accepts the contract and chooses a quantity $q$. He should accept the contract if and only if $\pi_{\mathrm{R}}(q \mid w, t) \geq \pi_{\mathrm{R}}^{*}$, where $\pi_{\mathrm{R}}^{*}$ is the retailer's equilibrium expected profit under a wholesale contract.
(c) The manufacturer's problem can be formulated as

$$
\begin{aligned}
\max _{w \geq 0, t} & \pi_{\mathrm{M}}(w, t)=t+(w-c) q^{*} \\
\text { s.t. } & q^{*} \in \arg \max _{q}\left\{\pi_{\mathrm{R}}(q \mid w, t)\right\} \\
& \pi_{\mathrm{R}}\left(q^{*} \mid w, t\right) \geq \pi_{\mathrm{R}}^{*}
\end{aligned}
$$

(d) As long as the manufacturer set the wholesale price $w$ to be the same as his cost $c$, the channel coordination can be achieved. Moreover, the whole system profit can be arbitrarily split by charging different fixed payment $t$. Win-win can thus be achieved.
4. (a) The two-part tariff $(q, t)$ contract can be regarded as a wholesale contract for $q$ units of the product with wholesale price $\frac{t}{q}$.
(b) The retailer's expected profit can be formulated as

$$
\pi_{\mathrm{R}}(q, t)=p\left\{\int_{0}^{q} x f(x) d x+q[1-F(q)]\right\}-t
$$

if the retailer accepts the contract. He should accept the contract if and only if $\pi_{\mathrm{R}}(q, t) \geq \pi_{\mathrm{R}}^{*}$, where $\pi_{\mathrm{R}}^{*}$ is the retailer's equilibrium expected profit under a wholesale contract.
(c) The manufacturer's problem can be formulated as

$$
\begin{aligned}
\max _{q \geq 0, t} & \pi_{\mathrm{M}}(q, t)=t-c q \\
\text { s.t. } & \pi_{\mathrm{R}}(q, t) \geq \pi_{\mathrm{R}}^{*}
\end{aligned}
$$

(d) As long as the whole system profit

$$
p\left\{\int_{0}^{q^{*}} x f(x) d x+q^{*}\left[1-F\left(q^{*}\right)\right]\right\}-c q^{*} \geq 0
$$

where $q^{*}$ satisfies $1-F\left(q^{*}\right)=\frac{c}{p}$, the system can generate a nonnegative profit by ordering the system-optimal quantity $q^{*}$. Then channel coordination can be achieved. For example, if the manufacturer offers $q^{*}$ units with transfer

$$
p\left\{\int_{0}^{q^{*}} x f(x) d x+q^{*}\left[1-F\left(q^{*}\right)\right]\right\}=t^{*}
$$

then $\pi_{\mathrm{R}}\left(q^{*}, t^{*}\right)=0$ and the retailer will accept the contract. Arbitrary profit spliting can also be achieved by lowering $t^{*}$.
5. (a) The worker solves $\max _{a \geq 0} t-\frac{1}{2} a^{2}$ and get the optimal service level $a^{*}=0$. Having this in mind, the retailer solves $\max _{p, t} p(1-p)-t$ such that $t \geq 0$, where the constraint induces participation. The optimal solution is $t^{*}=0$ and $p^{*}=\frac{1}{2}$. The retailer earns $\frac{1}{4}$ and the worker earns 0 .
(b) After solving $\max _{a \geq 0} t+v p(1-p+a)-\frac{1}{2} a^{2}$, we derive the equilibrium service level $a^{*}=v p$ for the worker. And he earns $t+v p(1-p)+\frac{v^{2} p}{2}$.
(c) The retailer solves

$$
\begin{array}{rl}
\max _{p, t, v} & p(1-p+v p)(1-v)-t \\
\text { s.t. } & t+v p(1-p)+\frac{v^{2} p^{2}}{2} \geq 0
\end{array}
$$

At optimality the constraint must be binding, so her problem can be reformulated to

$$
\begin{aligned}
& \max _{p, v} p(1-p+v p)(1-v)+v p(1-p)+\frac{v^{2} p^{2}}{2} \\
= & \max _{p, v} p-p^{2}+v p^{2}-\frac{v^{2} p^{2}}{2}
\end{aligned}
$$

After solving the FOCs,

$$
\begin{gathered}
1-2 p^{*}+2 v p^{*}-\left(v^{*}\right)^{2} p^{*}=0 \quad \text { and } \\
\left(p^{*}\right)^{2}-v^{*}\left(p^{*}\right)^{2}=0,
\end{gathered}
$$

we obtain the equilibrium retail price and commission rate $\left(p^{*}, v^{*}\right)=(1,1)$ and equilibrium fixed payment $t^{*}=-\frac{1}{2}$. Then the retailer earns $\frac{1}{2}$ while the worker earns 0 .
(d) It makes both players (at least weakly) better off. The retailer earns more while the worker remains the same.
(e) We solve $\max _{p, a} p(1-p+a)-\frac{1}{2} a^{2}$ with the FOCs $1-2 p^{*}+a^{*}=0$ and $p^{*}-a^{*}=0$. We then obtain the efficient price and service level $p^{*}=a^{*}=1$ with the whole system profit $\frac{1}{2}$.
(f) The contract with commission is efficient: The equilibrium price, service level, and system profit are all efficient. The reason is the following: The retailer can set $v=1$ to induce the efficient service level and she will be willing to do that because the transfer $t$ allows her to extract surplus from the worker.

