Prisoners' dilemma 00000	Nash equilibrium 00000	Cournot competition 0000000	Backward induction	Pricing in a supply chain 00000000	

Information Economics Introduction to Game Theory

Ling-Chieh Kung

Department of Information Management National Taiwan University

Prisoners' dilemma 00000	Nash equilibrium 00000	Cournot competition 0000000	Backward induction 0000000	Pricing in a supply chain 00000000

Introduction

- ▶ Today we introduce **games** under **complete information**.
 - Complete information: All the information are publicly known.
 - ► They are **common knowledge**.
- ▶ We will introduce **static** and **dynamic** games.
 - ▶ Static games: All players act simultaneously (at the same time).
 - ▶ Dynamic games: Players act sequentially.
- ► We will illustrate the **inefficiency** caused by decentralization (lack of cooperation).
- ▶ We will show how to **solve** a game, i.e., to predict what players will do in **equilibrium**.

•00000 000000 (0000000	000000	0000000

Road map

▶ Prisoners' dilemma.

- ▶ Static games: Nash equilibrium.
- ▶ Cournot competition.
- ▶ Dynamic games: Backward induction.
- ▶ Pricing in a supply chain.

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
0000	00000	000000	000000	0000000

Prisoners' dilemma: story

- ▶ A and B broke into a grocery store and stole some money. Before police officers caught them, they hided those money carefully without leaving any evidence. However, a monitor got their images when they broke the window.
- ► They were kept in two separated rooms. Each of them were offered two choices: **Denial or confession**.
 - If both of them deny the fact of stealing money, they will both get one month in prison.
 - ▶ If one of them confesses while the other one denies, the former will be set free while the latter will get nine months in prison.
 - ▶ If both confesses, they will both get six months in prison.
- ► They **cannot communicate** and they must make their choices **simultaneously**.
- ▶ All they want is to be in prison as short as possible.
- ▶ What will they do?

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Prisoners' dilemma: matrix representation

▶ We may use the following matrix to formulate this "game":

		Player 2	
		Denial	Confession
Player 1	Denial	-1, -1	-9,0
	Confession	0, -9	-6, -6

- There are two **players**, each has two possible **actions**.
- ► For each combination of actions, the two numbers are the **utilities** of the two players: the first for player 1 and the second for player 2.
- Prisoner 1 thinks:
 - "If he denies, I should confess."
 - "If he confesses, I should still confess."
 - "I see! I should confess anyway!"
- ▶ For prisoner 2, the situation is the same.
- ▶ The solution (outcome) of this game is that both will confess.

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Prisoners' dilemma: discussions

- ▶ In this game, confession is said to be a **dominant strategy**.
- ▶ This outcome can be "improved" if they can **cooperate**.
- ▶ Lack of cooperation can result in a lose-lose outcome.
 - Such a situation is **socially inefficient**.
- ▶ We will see more situations similar to the prisoners' dilemma.

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Solutions for a game

- ▶ Is it always possible to solve a game by finding dominant strategies?
- ▶ What are the solutions of the following games?

▶ We need a new solution concept: Nash equilibrium!

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	•0000	000000	000000	0000000

Road map

- Prisoners' dilemma.
- ▶ Static games: Nash equilibrium.
- ▶ Cournot competition.
- ▶ Dynamic games: Backward induction.
- ▶ Pricing in a supply chain.

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	0000	000000	000000	0000000

Nash equilibrium: definition

▶ The most fundamental equilibrium concept is the **Nash equilibrium**:

Definition 1

For an n-player game, let S_i be player *i*'s action space and u_i be player *i*'s utility function, i = 1, ..., n. An action profile $(s_1^*, ..., s_n^*)$, $s_i^* \in S_i$, is a (pure-strategy) Nash equilibrium if

$$u_i(s_1^*, \dots, s_{i-1}^*, s_i^*, s_{i+1}^*, \dots, s_n^*) \\\geq u_i(s_1^*, \dots, s_{i-1}^*, s_i, s_{i+1}^*, \dots, s_n^*)$$

for all $s_i \in S_i$, i = 1, ..., n.

- Alternatively, $s_i^* \in \underset{s_i \in S_i}{\operatorname{argmax}} \left\{ u_i(s_1^*, ..., s_{i-1}^*, s_i, s_{i+1}^*, ..., s_n^*) \right\}$ for all i.
- ▶ In a Nash equilibrium, no one has an incentive to **unilaterally deviate**.
- ▶ The term "pure-strategy" will be explained later.

Prisoners' dilemma 00000	Nash equilibrium 00●00	Cournot competition	Backward induction	Pricing in a supply chain 00000000

Nash equilibrium: an example

• Consider the following game with no dominant strategy:

	Player 2		
	\mid L \mid C \mid R		
	T 0,4 4,0 5,3		
Player 1	$M \ \ 4,0 \ \ 0,4 \ \ 5,3$		
	B 3,5 3,5 6,6		

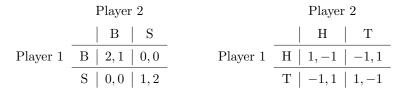
- ▶ What is a Nash equilibrium?
 - ▶ (T, L) is not: Player 1 will deviate to M or B.
 - ▶ (T, C) is not: Player 2 will deviate to L or R.
 - ▶ (B, R) is: No one will unilaterally deviate.
 - Any other Nash equilibrium?
- ▶ Why a Nash equilibrium is an "outcome"?
 - Imagine that they takes turns to make decisions until no one wants to move. What will be the outcome?

00000 00000 0000000 00000000					Pricing in a supply chain 00000000
-------------------------------------	--	--	--	--	------------------------------------

Nash equilibrium: More examples

▶ Is there any Nash equilibrium of the prisoners' dilemma?

▶ How about the following two games?



Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Existence of a Nash equilibrium

	Н	Т
Н	1, -1	-1, 1
T	-1,1	1, -1

- The last game does not have a "pure-strategy" Nash equilibrium.
- What if we allow randomized (mixed) strategy?
- ▶ In 1950, John Nash proved the following theorem regarding the **existence** of "mixed-strategy" Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action spaces are all finite, there exists at least one mixed-strategy Nash equilibrium.

- ▶ This is a sufficient condition. Is it necessary?
- ▶ In most business applications of Game Theory, people focus only on pure-strategy Nash equilibria.

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	•000000	000000	0000000

Road map

- Prisoners' dilemma.
- ▶ Static games: Nash equilibrium.
- ► Cournot competition.
- ▶ Dynamic games: Backward induction.
- ▶ Pricing in a supply chain.

Prisoners' dilemma 00000	Nash equilibrium 00000	Cournot competition $0 \bullet 00000$	Backward induction 0000000	Pricing in a supply chain 00000000

Cournot Competition

- ► In 1838, Antoine Cournot introduced the following quantity competition between two retailers.
- Let q_i be the production quantity of firm i, i = 1, 2.
- ▶ Let P(Q) = a Q be the market-clearing price for an aggregate demand $Q = q_1 + q_2$.
- Unit production cost of both firms is c < a.
- Each firm wants to maximize its profit.
- Our questions are:
 - ▶ In this environment, what will these two firms do?
 - ▶ Is the outcome satisfactory?
 - What is the difference between duopoly and monopoly (i.e., decentralization and integration)?

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Cournot Competition

- ▶ Players: 1 and 2.
- Action spaces: $S_i = [0, \infty)$ for i = 1, 2.
- Utility functions:

$$u_1(q_1, q_2) = q_1 \Big[a - (q_1 + q_2) - c \Big]$$
 and
 $u_2(q_1, q_2) = q_2 \Big[a - (q_1 + q_2) - c \Big].$

▶ As for an outcome, we look for a Nash equilibrium.

▶ If (q_1^*, q_2^*) is a Nash equilibrium, it must solve

$$\begin{aligned} q_1^* &\in \underset{q_1 \in [0,\infty)}{\operatorname{argmax}} \ u_1(q_1, q_2^*) = \underset{q_1 \in [0,\infty)}{\operatorname{argmax}} \ q_1 \Big[a - (q_1 + q_2^*) - c \Big] \text{ and} \\ q_2^* &\in \underset{q_2 \in [0,\infty)}{\operatorname{argmax}} \ u_2(q_1^*, q_2) = \underset{q_2 \in [0,\infty)}{\operatorname{argmax}} \ q_2 \Big[a - (q_1^* + q_2) - c \Big]. \end{aligned}$$

Prisoners' dilemma 00000	Nash equilibrium 00000	Cournot competition $000 \bullet 000$	Backward induction 0000000	Pricing in a supply chain 00000000

Solving the Cournot competition

▶ For firm 1, we first see that the objective function is strictly concave:

•
$$u_1'(q_1, q_2^*) = a - q_1 - q_2^* - c - q_1$$

• $u_1''(q_1, q_2^*) = -2 < 0.$

• The FOC condition suggests $q_1^* = \frac{1}{2}(a - q_2^* - c)$.

- If $q_2^* < a c$, q_1^* is optimal for firm 1.
- ▶ Similarly, $q_2^* = \frac{1}{2}(a q_1^* c)$ is firm 2's optimal decision if $q_1^* < a c$.
- ▶ So if (q_1^*, q_2^*) is a Nash equilibrium such that $q_i^* < a c$ for i = 1, 2, it must satisfy

$$q_1^* = \frac{1}{2}(a - q_2^* - c)$$
 and $q_2^* = \frac{1}{2}(a - q_1^* - c).$

- ▶ The unique solution to this system is $q_1^* = q_2^* = \frac{a-c}{3}$.
 - Does this solution make sense?
 - ▶ As $\frac{a-c}{3} < a-c$, this is indeed a Nash equilibrium. It is also unique.

Prisoners' dilemma Na	ash equilibrium (Cournot competition	Backward induction	Pricing in a supply chain
00000 00	0000 0	0000000	000000	0000000

Distortion due to decentralization

- ▶ What is the "cost" of decentralization?
- ► Suppose the two firms' are **integrated** together to jointly choose the aggregate production quantity.
- ► They together solve

$$\max_{Q \in [0,\infty)} Q[a - Q - c],$$

whose optimal solution is $Q^* = \frac{a-c}{2}$.

- First observation: $Q^* = \frac{a-c}{2} < \frac{2(a-c)}{3} = q_1^* + q_2^*$.
- Why does a firm intend to increase its production quantity under decentralization?

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	0000000	000000	0000000

Inefficiency due to decentralization

- ▶ May these firms improve their profitability with integration?
- \blacktriangleright Under decentralization, firm i earns

$$\pi_i^D = \frac{(a-c)}{3} \left[a - \frac{2(a-c)}{3} - c \right] = \left(\frac{a-c}{3} \right) \left(\frac{a-c}{3} \right) = \frac{(a-c)^2}{9}.$$

▶ Under integration, the two firms earn

$$\pi^{C} = \frac{(a-c)}{2} \left[a - \frac{a-c}{2} - c \right] = \left(\frac{a-c}{2} \right) \left(\frac{a-c}{2} \right) = \frac{(a-c)^{2}}{4}.$$

▶ $\pi^C > \pi_1^D + \pi_2^D$: The integrated system is more **efficient**.

- ▶ Through appropriate profit splitting, both firm earns more.
 - ▶ Integration can result in a **win-win** solution for firms!
- ▶ However, under monopoly the aggregate quantity is lower and the price is higher. Consumers **benefits** from **firms' competition**.

			Pricing in a supply chain
00000 00000	000000	0000000	0000000

The two firms' prisoners' dilemma

- ▶ Now we know the two firms should together produce $Q = \frac{a-c}{2}$.
- What if we suggest them to produce $q'_1 = q'_2 = \frac{a-c}{4}$?
- ▶ This maximizes the total profit but is **not** a Nash equilibrium:
 - If he chooses $q' = \frac{a-c}{4}$, I will move to

$$q'' = \frac{1}{2}(a - q' - c) = \frac{3(a - c)}{8}.$$

- ▶ So both firms will have incentives to unilaterally deviate.
- ▶ These two firms are engaged in a prisoners' dilemma!

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	●000000	0000000

Road map

- Prisoners' dilemma.
- ▶ Static games: Nash equilibrium.
- ▶ Cournot competition.
- ► Dynamic games: Backward induction.
- ▶ Pricing in a supply chain.

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Dynamic games

▶ Recall the game "BoS":

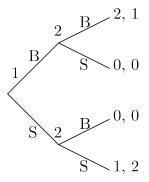
	Player 2		
	В	\mathbf{S}	
Player 1	B 2,1	0,0	
	$S \mid 0, 0 \mid$	1, 2	

- ▶ What if the two players make decisions **sequentially** rather than simultaneously?
 - ▶ What will they do in equilibrium?
 - ▶ How do their payoffs change?
 - ► Is it better to be the **leader** or the **follower**?

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Game tree for dynamic games

- Suppose player 1 moves first.
- Instead of a game matrix, the game can now be described by a **game tree**.
 - At each internal node, the label shows who is making a decision.
 - At each link, the label shows an action.
 - At each leaf, the numbers show the payoffs.
- ▶ The games is played from the root to leaves.



Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Optimal strategies

- ▶ How should player 1 move?
- ▶ She must **predict** how player 2 will response:
 - ▶ If B has been chosen, choose B.
 - ▶ If S has been chosen, choose S.
- ► This is player 2's **best response**.
- ▶ Player 1 can now make her decision:
 - ▶ If I choose B, I will end up with 2.
 - ▶ If I choose S, I will end up with 1.
- ▶ So player 1 will choose B.
- ► An equilibrium outcome is a "path" goes from the root to a leaf.
 - ▶ In equilibrium, they play (B, B).



Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	0000000	0000000

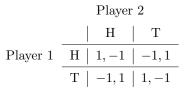
Sequential moves vs. simultaneous moves

- ▶ In the static version, there are two pure-strategy Nash equilibria:
 - ▶ (B, B) and (S, S).
- ▶ When the game is played dynamically with player 1 moves first, there is only one **equilibrium outcome**:
 - ► (B, B).
- ▶ Their equilibrium behaviors change. Is it always the case?
- ▶ Being the leader is beneficial. Is it always the case?

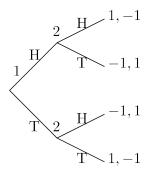
Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	0000000	0000000

Dynamic matching pennies

 Suppose the game "matching pennies" is played dynamically:



- ▶ What is the equilibrium outcome?
- ▶ There are multiple possible outcomes.
- Being the leader **hurts** player 1.



Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Backward induction

- ▶ In the previous two examples, there are a leader and a follower.
- Before the leader can make her decision, she must anticipate what the follower will do.
- ▶ When there are multiple **stages** in a dynamic game, we generally analyze those decision problems **from the last stage**.
 - ▶ The second last stage problem can be solved by having the last stage behavior in mind.
 - ▶ Then the third last stage, the fourth last stage, ...
- ▶ In general, we move **backwards** until the first stage problem is solved.
- ► This solution concept is called **backward induction**.

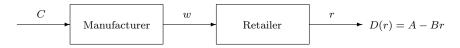
	Prisoners' dilemma 00000	Nash equilibrium 00000	Cournot competition 0000000	Backward induction	Pricing in a supply chain •0000000
--	-----------------------------	---------------------------	--------------------------------	--------------------	---------------------------------------

Road map

- Prisoners' dilemma.
- ▶ Static games: Nash equilibrium.
- ▶ Cournot competition.
- ▶ Dynamic games: Backward induction.
- Pricing in a supply chain.

Pricing in a supply chain

▶ There is a manufacturer and a retailer in a supply chain.



- The manufacturer supplies to the retailer, who then sells to consumers.
- The manufacturer sets the wholesale price w and then the retailer sets the retail price r.
- ▶ The demand is D(r) = A Br, where A and B are known constants.
- The unit production cost is C, a known constant.
- Each of them wants to maximize her or his profit.

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	0000000	000000	0000000

Pricing in a supply chain (illustrative)

- Let's assume A = B = 1 and C = 0 for a while.
- ▶ Let's apply backward induction to **solve** this game.
- ▶ For the retailer, the wholesale price is **given**. He solves

$$\max_{r\geq 0} (r-w)(1-r).$$

• The optimal solution (best response) is $r^*(w) \equiv \frac{w+1}{2}$.

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Pricing in a supply chain (illustrative)

▶ The manufacturer **predicts** the retailer's decision:

- Given her offer w, the retail price will be $r^*(w) \equiv \frac{w+1}{2}$.
- ▶ More importantly, the **order quantity** (which is the demand) will be

$$1 - r^*(w) = 1 - \frac{w+1}{2} = \frac{1-w}{2}$$

▶ The manufacturer's solves

$$\max_{w \ge 0} \ w\left(\frac{1-w}{2}\right).$$

• The optimal solution is $w^* = \frac{1}{2}$.

Overview

Prisoners' dilemma	Nash equilibrium	Cournot competition	Backward induction	Pricing in a supply chain
00000	00000	000000	000000	0000000

Pricing in a supply chain (illustrative)

• As the manufacturer offers $w^* = \frac{1}{2}$, the resulting retail price is

$$r^* \equiv r^*(w^*) = \frac{w^* + 1}{2} = \frac{3}{4} > \frac{1}{2} = w^*.$$

- A common practice called **markup**.
- The sales volume is $D(r^*) = 1 r^* = \frac{1}{4}$.
- The retailer earns $(r^* w^*)D(r^*) = (\frac{1}{4})(\frac{1}{4}) = \frac{1}{16}$.
- ▶ The manufacturer earns $w^*D(r^*) = (\frac{1}{2})(\frac{1}{4}) = \frac{1}{8}$.
- In total, they earn $\frac{1}{16} + \frac{1}{8} = \frac{3}{16}$.

				Pricing in a supply chain
00000	00000	000000	000000	00000000

Pricing in a supply chain (general)

▶ For the retailer, the wholesale price is given. He solves

$$\max_{r\geq 0} (r-w)(A-Br)$$

• The optimal solution is $r^*(w) \equiv \frac{Bw+A}{2B}$.

▶ The manufacturer predicts the retailer's decision:

- Given her offer w, the retail price will be $r^*(w) \equiv \frac{Bw+A}{2B}$.
- More importantly, the order quantity (which is the demand) will be $A Br^*(w) = A \frac{Bw+A}{2} = \frac{A-Bw}{2}$.
- ▶ The manufacturer's problem:

$$\max_{w \ge 0} (w - C) \left(\frac{A - Bw}{2}\right)$$

• The optimal solution is $w^* = \frac{BC+A}{2B}$.

Overview

	Prisoners' dilemma 00000	Nash equilibrium 00000	Cournot competition 0000000	Backward induction 0000000	Pricing in a supply chain 00000000
--	-----------------------------	---------------------------	--------------------------------	-------------------------------	--------------------------------------

Pricing in a supply chain (general)

- ► As the manufacturer offers $w^* = \frac{BC+A}{2B}$, the resulting retail price is $r^* \equiv r^*(w^*) = \frac{Bw^*+A}{2B} = \frac{BC+3A}{4B}$.
- The sales volume is $D(r^*) = A Br^* = \frac{A BC}{4}$.
- The retailer earns $(r^* w^*)D(r^*) = (\frac{A-BC}{4B})(\frac{A-BC}{4}) = \frac{(A-BC)^2}{16B}$.
- ► The manufacturer earns $(w^* C)D(r^*) = (\frac{A BC}{2B})(\frac{A BC}{4}) = \frac{(A BC)^2}{8B}$.
- ▶ In total, they earn $\frac{(A-BC)^2}{16B} + \frac{(A-BC)^2}{8B} = \frac{3(A-BC)^2}{16B}$.

	Prisoners' dilemma 00000	Nash equilibrium 00000	Cournot competition 0000000	Backward induction 0000000	Pricing in a supply chain 0000000.
--	-----------------------------	---------------------------	--------------------------------	-------------------------------	------------------------------------

Pricing in a cooperative supply chain

- Suppose the two firms are **cooperative**.
- ▶ They decide the wholesale and retail prices together.
- ▶ Is there a way to allow both players to be **better off**?
- Consider the following proposal:
 - Let's set $w^{\text{FB}} = C = 0$ and $r^{\text{FB}} = \frac{1}{2}$ (FB: first best).
 - ▶ The sales volume is

$$D(r^{\rm FB}) = 1 - \frac{1}{2} = \frac{1}{2}.$$

The total profit is

$$r^{FB}D(r^{FB}) = \frac{1}{4}.$$

• This is larger than $\frac{3}{16}$, the total profit generated under decentralization.

▶ How to split the pie to get a **win-win** situation?