Information Economics

The Continuous-type Screening Model

Ling-Chieh Kung

Department of Information Management National Taiwan University

Introduction •00000	Preliminaries 0000000000	Optimal contracts 0000000000000	Implications 0000

Road map

► Introduction.

- ▶ Preliminaries.
- ▶ Optimal contracts.
- ▶ Implications.

Introduction 000000	Preliminaries 000000000	Optimal contracts 0000000000000	Implications 0000

Screening

▶ Recall our monopoly pricing screening problem:

- There are two kinds of consumers:
 - ▶ $\theta \in \{\theta_L, \theta_H\}$ where $\theta_L < \theta_H$, is the consumer's private information.
 - The seller believes that $Pr(\theta = \theta_L) = \beta = 1 Pr(\theta = \theta_H)$.
- When obtaining q units by paying t, a type- θ consumer's utility is

$$u(q, t, \theta) = \theta v(q) - t.$$

- v(q) is strictly increasing and strictly concave. v(0) = 0.
- The unit production cost of the seller is $c < \theta_{\rm L}$.
- ▶ By selling q units and receiving t, the seller earns t cq.
- ▶ How would you price your product to maximize your expected profit?
- Because we assume that there are two kinds of consumers, this is a two-type screening model.

Introduction 00000	Preliminaries 000000000	Optimal contracts 0000000000000	Implications 0000

Two-type screening

▶ The two-type screening problem can be formulated:

$$\max_{q_{\mathrm{H}}, t_{\mathrm{H}}, q_{\mathrm{L}}, t_{\mathrm{L}}} \quad \beta \left[t_{\mathrm{L}} - cq_{\mathrm{L}} \right] + (1 - \beta) \left[t_{\mathrm{H}} - cq_{\mathrm{H}} \right]$$
s.t.
$$\theta_{\mathrm{H}} v(q_{\mathrm{H}}) - t_{\mathrm{H}} \ge \theta_{\mathrm{H}} v(q_{\mathrm{L}}) - t_{\mathrm{L}}$$

$$\theta_{\mathrm{L}} v(q_{\mathrm{L}}) - t_{\mathrm{L}} \ge \theta_{\mathrm{L}} v(q_{\mathrm{H}}) - t_{\mathrm{H}}$$

$$\theta_{\mathrm{H}} v(q_{\mathrm{H}}) - t_{\mathrm{H}} \ge 0$$

$$\theta_{\mathrm{L}} v(q_{\mathrm{L}}) - t_{\mathrm{L}} \ge 0.$$

- ▶ The first two are the incentive-compatible (truth-telling) constraints.
- The last two are the individual-rationality (participation) constraints.
 If θ_H-θ_L/θ_H < β, the optimal menu {(q^{*}_L, t^{*}_L), (q^{*}_H, t^{*}_H)} satisfies

$$\theta_{\rm H} v'(q_{\rm H}^*) = c \quad \text{and} \quad \theta_{\rm L} v'(q_{\rm L}^*) = c \left[\frac{1}{1 - \left(\frac{1-\beta}{\beta} \frac{\theta_{\rm H} - \theta_{\rm L}}{\theta_{\rm L}}\right)} \right]$$

▶ May we generalize this problem to *n* types?

Introduction	Preliminaries	Optimal contracts	Implications
000000	0000000000	0000000000000	0000

n-type screening

- Let θ ∈ {θ₁, θ₂, ..., θ_n}, where θ₁ < θ₂ < ··· < θ_n and Pr(θ = θ_i) = β_i.
 Of course we have β_i > 0 and Σⁿ_{i=1} β_i = 1.
- ▶ The *n*-type screening problem can be formulated:

$$\begin{split} \max_{\{q_i,t_i\}} & \sum_{i=1}^n \beta_i(t_i - cq_i) \\ \text{s.t.} & \theta_i v(q_i) - t_i \geq \theta_i v(q_j) - t_j \quad \forall i = 1, ..., n, j = 1, ..., n \\ & \theta_i v(q_i) - t_i \geq 0 \qquad \quad \forall i = 1, ..., n. \end{split}$$

- ▶ The first set is the set of IC constraints.
- The second set is the set of IR constraints.
- ▶ How to find the optimal menu?

Introduction 000000	Preliminaries 000000000	Optimal contracts 00000000000000	Implications 0000

n-type screening

▶ The *n*-type screening problem can be reduced to:

$$\max_{\{q_i, t_i\}} \sum_{i=1}^n \beta_i (t_i - cq_i)$$

s.t. $\theta_i v(q_i) - t_i \ge \theta_i v(q_{i-1}) - t_{i-1} \quad \forall i = 2, ..., n$
 $\theta_1 v(q_1) - t_1 \ge 0.$

- ▶ Only local downward IC constraints (LDIC) are necessary.
- Only the IR constraint for the lowest type is necessary.
- Monotonicity, efficiency at top, and no rent at bottom still hold.
- ► May we generalize this problem to infinitely many types on a continuum?

Introduction 00000●	Preliminaries 000000000	Optimal contracts 0000000000000	Implications 0000

Continuous-type screening

- ▶ Let $\theta \in S = [\theta_0, \theta_1]$, where $\theta_0 < \theta_1$, with f and F as the pdf and cdf.
- ▶ The continuous-type screening problem can be formulated:

$$\begin{split} \max_{\{q(\theta),t(\theta)\}} & \int_{\theta_0}^{\theta_1} \Big[t(\theta) - cq(\theta) \Big] f(\theta) d\theta \\ \text{s.t.} & \theta v(q(\theta)) - t(\theta) \geq \theta v(q(\hat{\theta})) - t(\hat{\theta}) \quad \forall \theta \in S, \hat{\theta} \in S \\ & \theta v(q(\theta)) - t(\theta) \geq 0 \qquad \forall \theta \in S. \end{split}$$

- ▶ The first set is the set of IC constraints.
- The second set is the set of IR constraints.
- ▶ How to find the optimal menu?

Introduction	Preliminaries	Optimal contracts	Implications
000000	•000000000	0000000000000	0000

Road map

- ▶ Introduction.
- ▶ Preliminaries.
- ▶ Optimal contracts.
- ▶ Implications.

Preliminaries

- ▶ Before we try to solve for the optimal menu, we need to get some mathematical tools.
 - ▶ Hazard (failure) rates.
 - Integration by parts.
 - Envelope theorem.

Introduction 000000	Preliminaries 000000000	Optimal contracts 0000000000000	Implications 0000

Failure (hazard) rates

• Consider a bulb whose life is $X \ge 0$. Let $X \sim f, F$.

- $F(t) = \Pr(X \le t)$ is the probability for the bulb to fail by time t.
- $F(t+\epsilon) F(t)$ is the probability for the bulb to fail within $[t, t+\epsilon]$.
- ► $f(t) = \frac{d}{dt}F(t) = \lim_{\epsilon \to 0} [F(t+\epsilon) F(t)]$ is the probability density for the bulb to fail at time t.
- ▶ The failure (hazard) rate of the bulb h(t) is the likelihood for the bulb to fail at time t, given that the bulb has not failed by time t:

$$h(t) = \lim_{\epsilon \to 0} \Pr\left(X \in [t, t+\epsilon] \middle| X \ge t\right) = \lim_{\epsilon \to 0} \frac{\Pr(X \in [t, t+\epsilon], X \ge t)}{\Pr(X \ge t)}$$
$$= \lim_{\epsilon \to 0} \frac{\Pr(X \in [t, t+\epsilon])}{1 - F(t)} = \frac{f(t)}{1 - F(t)}.$$

I

Introduction 000000	Preliminaries 000000000	Optimal contracts 0000000000000	Implications 0000

Failure (hazard) rates

- ► Some examples:
 - If $X \sim \text{Uni}(0, 1)$, we have f(x) = 1, F(x) = x, and thus $h(x) = \frac{1}{1-x}$. The hazard rate is increasing.
 - If $X \sim \text{Exp}(\lambda)$, we have $f(x) = \lambda e^{-\lambda x}$, $F(x) = 1 e^{-\lambda x}$, and thus $h(x) = \lambda$. The hazard rate is constant.
- In general, for a random variable with pdf $f(\cdot)$ and cdf $F(\cdot)$, its failure rate is $h(\cdot) = \frac{f(\cdot)}{1 F(\cdot)}$.
- ▶ For our private type θ , we impose the following assumption:

Assumption 1 (Increasing failure rate (IFR))

The failure rate of θ is (weakly) increasing: Let $H(\theta) = \frac{1-F(\theta)}{f(\theta)}$, then $H(\theta)$ is (weakly) decreasing in θ .

▶ This is true for most of the well-known distributions (uniform, exponential, normal, gamma, beta, etc.).

Introduction	Preliminaries	Optimal contracts	Implications
000000	000000000	000000000000	0000

Integration by parts

• Let u(x) and v(x) be two functions of x defined over [a, b]. We have

$$\frac{d}{dx}\Big[u(x)v(x)\Big] = \Big[u(x)v(x)\Big]' = u(x)v'(x) + v(x)u'(x).$$

• Integrating both sides with respect to x:

$$\int_{a}^{b} \frac{d}{dx} \Big[u(x)v(x) \Big] dx = \int_{a}^{b} u(x)v'(x)dx + \int_{a}^{b} v(x)u'(x)dx$$
$$\Leftrightarrow \quad \int_{a}^{b} u(x)v'(x)dx = \Big[u(x)v(x) \Big] \Big|_{a}^{b} - \int_{a}^{b} v(x)u'(x)dx.$$

▶ The (abbreviated) formula of **integration by parts**:

$$\int u dv = uv - \int v du.$$

Introduction	Preliminaries	Optimal contracts	Implications
000000	0000000000	0000000000000	0000

Integration by parts: examples

Introduction	Preliminaries	Optimal contracts	Implications
000000	0000000000	0000000000000	0000

A parameter's impact on the objective value

• Consider a function $f(x, \theta)$ and an optimization problem

$$z^*(\theta) = \max_x f(x, \theta).$$

We will interpret x as the decision variable and θ as the parameter. $z^*(\theta)$ is the maximum attainable objective value given θ .

▶ Let $x^*(\theta) \in \operatorname{argmax}_x f(x, \theta)$ be an optimal solution. Then we have

$$z^*(\theta) = f(x^*(\theta), \theta).$$

Question: What is d/dθ z*(θ), the impact of θ on the objective value?
 One application: the impact of a parameter on the equilibrium utility.

Introduction	Preliminaries	Optimal contracts	Implications
000000	00000000000	00000000000000	0000

Envelope theorem

- ▶ An example: Let $f(x, \theta) = \theta (x \theta)^2$. Given θ fixed, we have $x^*(\theta) = \theta$ and $z^*(\theta) = \theta (\theta \theta)^2 = \theta$. Therefore, $\frac{d}{d\theta} z^*(\theta) = 1$.
- ▶ To find $\frac{d}{d\theta} z^*(\theta)$ in general:
 - Find $x^*(\theta)$, plug in $x^*(\theta)$, and then take the derivative.
 - ▶ May we "reverse the order?"
- ▶ With the **envelope theorem**, we can:
 - Find $x^*(\theta)$, take the derivative (typically easier), and then plug in $x^*(\theta)$.

Proposition 1 (Envelope theorem)

Given $f(x,\theta)$, let $x^*(\theta) \in \operatorname{argmax}_x f(x,\theta)$ and $z^*(\theta) = f(x^*(\theta),\theta)$. Then we have

$$\left. \frac{d}{d\theta} z^*(\theta) = \frac{\partial f(x,\theta)}{\partial \theta} \right|_{x=x^*(\theta)}$$

Introduction 000000	Preliminaries 00000000●0	Optimal contracts 0000000000000	Implications 0000

Envelope theorem

Proof. We have

$$\begin{split} \frac{d}{d\theta} z^*(\theta) &= \frac{d}{d\theta} f(x^*(\theta), \theta) \\ &= \left(\frac{\partial f(x, \theta)}{\partial x} \cdot \frac{\partial x^*(\theta)}{d\theta} + \frac{\partial f(x, \theta)}{\partial \theta} \right) \Big|_{x=x^*(\theta)} \\ &= \frac{\partial f(x, \theta)}{\partial x} \Big|_{x=x^*(\theta)} \cdot \frac{\partial x^*(\theta)}{d\theta} + \frac{\partial f(x, \theta)}{\partial \theta} \Big|_{x=x^*(\theta)} \\ &= 0 \cdot \frac{\partial x^*(\theta)}{d\theta} + \frac{\partial f(x, \theta)}{\partial \theta} \Big|_{x=x^*(\theta)} = \frac{\partial f(x, \theta)}{\partial \theta} \Big|_{x=x^*(\theta)} \end{split}$$

The second equation follows the total differential formula. The second last equation comes from the fact that $x^*(\theta)$ satisfies the first-order condition of $f(x, \theta)$.

Introduction 000000	Preliminaries 00000000●	Optimal contracts 0000000000000	Implications 0000

Envelope theorem: examples

• Consider
$$f(x, \theta) = \theta - (x - \theta)^2$$
:

$$\frac{d}{d\theta}z^*(\theta) = \frac{\partial f(x,\theta)}{\partial \theta}\Big|_{x=x^*(\theta)} = \left[1+2(x-\theta)\right]\Big|_{x=\theta} = 1.$$

• Consider
$$f(x,\theta) = -\frac{1}{3}x^3 + \theta x$$
 over $x \in [0,\infty)$ for some $\theta > 0$.

• Without the envelope theorem, we do:

$$x^*(\theta) = \sqrt{\theta}, \quad z^*(\theta) = f(x^*(\theta), \theta) = \frac{2}{3}\sqrt{\theta^3}, \text{ and then } \frac{d}{d\theta}z^*(\theta) = \sqrt{\theta}.$$

▶ With the envelope theorem, we do:

$$x^*(\theta) = \sqrt{\theta}, \quad \frac{\partial f(x,\theta)}{\partial \theta} = x, \text{ and then } \frac{d}{d\theta} z^*(\theta) = x|_{x=\sqrt{\theta}} = \sqrt{\theta}.$$

Note that
$$\frac{\partial f(x,\theta)}{\partial x}|_{x=\sqrt{\theta}} = (-x^2 + \theta)|_{x=\sqrt{\theta}} = 0.$$

CThe Continuous-type Screening Model

000000 000	0000000 0000000 0000000000000000000000	000000 0000

Road map

- ▶ Introduction.
- ▶ Preliminaries.
- ► Optimal contracts.
- ▶ Implications.

Introduction	Preliminaries	Optimal contracts	Implications
000000	0000000000	0000000000000	0000

Solving the contract design problem

▶ Now we are going to solve

$$\begin{split} \max_{\{q(\theta),t(\theta)\}} & \int_{\theta_0}^{\theta_1} \Big[t(\theta) - cq(\theta) \Big] f(\theta) d\theta \\ \text{s.t.} & \theta v(q(\theta)) - t(\theta) \geq \theta v(q(\hat{\theta})) - t(\hat{\theta}) \quad \forall \theta \in S, \hat{\theta} \in S \\ & \theta v(q(\theta)) - t(\theta) \geq 0 \qquad \forall \theta \in S, \end{split}$$

where $S = [\theta_0, \theta_1]$ is the set of types. Note that there are infinitely many variables and constraints.

► Strategy:

- ▶ Monotonicity: Higher types consume more.
- ▶ IR: Show that only the IR constraint for the lowest type is necessary.
- ▶ IC: Show that only local IC constraints are necessary.
- Using binding constraints to get an unconstrained problem.
- Pointwise optimization.

Introduction	Preliminaries	Optimal contracts	Implications
000000	000000000	00000000000000	0000

Step 1: Monotonicity

► Consider two types θ and $\hat{\theta}$. Let $\theta > \hat{\theta}$. We have the two IC constraints between them:

$$\theta v(q(\theta)) - t(\theta) \ge \theta v(q(\hat{\theta})) - t(\hat{\theta})$$

and

$$\hat{\theta}v(q(\hat{\theta})) - t(\hat{\theta}) \ge \hat{\theta}v(q(\theta)) - t(\theta).$$

▶ Adding them together, we obtain

$$\begin{split} \theta v(q(\theta)) &+ \hat{\theta} v(q(\hat{\theta})) \geq \theta v(q(\hat{\theta})) + \hat{\theta} v(q(\theta)) \\ \Leftrightarrow & (\theta - \hat{\theta}) v(q(\theta)) \geq (\theta - \hat{\theta}) v(q(\hat{\theta})) \\ \Leftrightarrow & v(q(\theta)) \geq v(q(\hat{\theta})) \\ \Leftrightarrow & q(\theta) \geq q(\hat{\theta}). \end{split}$$

► Therefore, $\theta > \hat{\theta}$ implies $q(\theta) \ge q(\hat{\theta})$. It can be shown to be $q'(\theta) \ge 0$.

CThe Continuous-type Screening Model

Step 2: only one IR constraint is not redundant

• Consider a type $\theta > \theta_0$. We have

 $\theta v(q(\theta)) - t(\theta) \ge \theta v(q(\theta_0)) - t(\theta_0) \ge \theta_0 v(q(\theta_0)) - t(\theta_0) \ge 0.$

- Therefore, only $\theta_0 v(q(\theta_0)) t(\theta_0) \ge 0$ is necessary.
- ► This is the **lowest-type** IR constraint.

Introduction	Preliminaries	Optimal contracts	Implications
000000	0000000000	0000000000000	0000

Step 3: local IC + monotonicity = global IC

► The reduced program:

$$\begin{split} \max_{\{q(\theta),t(\theta)\}} & \int_{\theta_0}^{\theta_1} \Big[t(\theta) - cq(\theta) \Big] f(\theta) d\theta \\ \text{s.t.} & \theta v(q(\theta)) - t(\theta) \geq \theta v(q(\hat{\theta})) - t(\hat{\theta}) \quad \forall \theta \in S, \hat{\theta} \in S \\ & \theta_0 v(q(\theta_0)) - t(\theta_0) \geq 0. \end{split}$$

- We now want to reduce the set of global IC constraints.
- ▶ Let's first rewrite them:

$$\theta \in \operatorname*{argmax}_{\hat{\theta} \in S} \left\{ \theta v(q(\hat{\theta})) - t(\hat{\theta}) \right\} \quad \forall \theta \in S.$$

▶ It should be optimal for a consumer to **report his true type**.

• Our target: local IC + monotonicity = global IC.

0000

Step 3: local IC + monotonicity = global IC

- ► Let $W(\theta, \hat{\theta}) = \theta v(q(\hat{\theta})) t(\hat{\theta})$. This is a type- θ consumer's utility by misreporting his type as $\hat{\theta}$.
- ► Global IC: $\theta \in \underset{\hat{\theta}}{\operatorname{argmax}} W(\theta, \hat{\theta}).$
- If θ is globally optimal, it must also be locally optimal. Therefore, it must satisfy the FOC:

$$\begin{split} & \left. \frac{\partial}{\partial \hat{\theta}} W(\theta, \hat{\theta}) \right|_{\hat{\theta} = \theta} = 0 \\ \Leftrightarrow \left[\theta v'(q(\hat{\theta})) q'(\hat{\theta}) - t'(\hat{\theta}) \right] \Big|_{\hat{\theta} = \theta} = 0 \\ \Leftrightarrow \theta v'(q(\theta)) q'(\theta) - t'(\theta) = 0. \end{split}$$

The last equality is the set of **local IC** constraints.

• Monotonicity: $q'(\theta) \ge 0$.

Introduction 000000	Preliminaries 0000000000	Optimal contracts 0000000000000	Implications 0000

Step 3: local IC + monotonicity = global IC

- ▶ To show that local IC + monotonicity = global IC, we need to show:
 - Local IC + monotonicity \Leftarrow global IC.
 - ▶ Local IC + monotonicity \Rightarrow global IC.
- The first one is obvious: (1) Global IC implies local IC by definition.
 (2) Global IC implies monotonicity has been shown in Step 1.
- ► If the second one is false, there exists θ such that $W(\theta, \hat{\theta}) W(\theta, \theta) > 0$ for some $\hat{\theta}$. Without loss of generality, let $\hat{\theta} > \theta$. We have

$$\begin{split} W(\theta, \hat{\theta}) - W(\theta, \theta) &= \int_{\theta}^{\hat{\theta}} \frac{\partial W(\theta, x)}{\partial x} dx \\ &= \int_{\theta}^{\hat{\theta}} \Big[\theta v'(q(x))q'(x) - t'(x) \Big] dx \leq \int_{\theta}^{\hat{\theta}} \Big[xv'(q(x))q'(x) - t'(x) \Big] dx = 0, \end{split}$$

where the inequality relies on $q'(x) \ge 0$ and the last equality relies on local IC. This contradicts with $W(\theta, \hat{\theta}) - W(\theta, \theta) > 0$.

Introduction	Preliminaries	Optimal contracts	Implications
000000	000000000	00000000000000	0000

Step 4: ignoring monotonicity

▶ The reduced program:

$$\max_{\{q(\theta),t(\theta)\}} \qquad \int_{\theta_0}^{\theta_1} \left[t(\theta) - cq(\theta) \right] f(\theta) d\theta$$

s.t.
$$\theta v'(q(\theta))q'(\theta) - t'(\theta) = 0 \quad \forall \theta \in S$$
$$q'(\theta) \ge 0 \qquad \qquad \forall \theta \in S$$
$$\theta_0 v(q(\theta_0)) - t(\theta_0) \ge 0.$$

▶ Let's **ignore the monotonicity constraints** for a while. We will verify that the optimal solution of the relaxed program satisfies the monotonicity constraints.

000000	0000000000	00000000000000000000000000000000000000	Implications 0000

Step 5: finding the unconstrained program

▶ The reduced program:

$$\max_{\{q(\theta),t(\theta)\}} \int_{\theta_0}^{\theta_1} \left[t(\theta) - cq(\theta) \right] f(\theta) d\theta$$

s.t. $\theta v'(q(\theta))q'(\theta) - t'(\theta) = 0 \quad \forall \theta \in S$
 $\theta_0 v(q(\theta_0)) - t(\theta_0) \ge 0.$

► Let $W(\theta) = W(\theta, \theta) = \max_{\hat{\theta} \in S} W(\theta, \hat{\theta})$ be the type- θ consumer's equilibrium utility under truth-telling. By the **envelope theorem**:

$$W'(\theta) = \frac{\partial}{\partial \theta} W(\theta, \hat{\theta}) \Big|_{\hat{\theta}=\theta} = \frac{\partial}{\partial \theta} \Big[\theta v(q(\hat{\theta})) - t(\hat{\theta}) \Big] \Big|_{\hat{\theta}=\theta}$$
$$= v(q(\hat{\theta})) \Big|_{\hat{\theta}=\theta} = v(q(\theta)) \ge 0.$$

▶ One may prove this by using **local IC** instead of the envelope theorem.

Introduction	Preliminaries	Optimal contracts	Implications
000000	000000000	000000000000000	0000

Step 5: finding the unconstrained program

▶ With $W'(\theta) = v(q(\theta))$, we have

$$W(\theta) = \int_{\theta_0}^{\theta} v(q(x))dx + W(\theta_0),$$

where $W(\theta_0) = \theta_0 v(q(\theta_0)) - t(\theta_0) \ge 0$ is the type- θ_0 consumer's equilibrium utility.

- ▶ Because $v(q(\theta)) \ge 0$ implies $W(\theta) \ge W(\theta_0)$ for all $\theta \ge \theta_0$, we have $W(\theta_0) = 0$ at any optimal solution (otherwise we should increase $t(\theta_0)$).
- ▶ Now the only IR constraint is satisfied (as a binding constraint).
- ▶ Now we have $W(\theta) = \int_{\theta_0}^{\theta} v(q(x)) dx$. Local IC implies

$$t(\theta) = \theta v(q(\theta)) - W(\theta) = \theta v(q(\theta)) - \int_{\theta_0}^{\theta} v(q(x)) dx.$$

• Let's plug in $t(\theta)$ into the objective function.

Step 6: solving the unconstrained program

▶ The reduced program:

$$\begin{split} & \max_{\{q(\theta)\}} \; \int_{\theta_0}^{\theta_1} \Big[t(\theta) - cq(\theta) \Big] f(\theta) d\theta \\ &= \max_{\{q(\theta)\}} \; \int_{\theta_0}^{\theta_1} \Big[\theta v(q(\theta)) - \int_{\theta_0}^{\theta} v(q(x)) dx - cq(\theta) \Big] f(\theta) d\theta. \end{split}$$

▶ How to simplify the objective function?

Introduction	Preliminaries	Optimal contracts	Implications
000000	0000000000	0000000000000000	0000

Step 6: solving the unconstrained program

▶ With integration by parts, we have

$$\int_{\theta_0}^{\theta_1} \underbrace{\int_{\theta_0}^{\theta} v(q(x)) dx}_{u} \underbrace{f(\theta) d\theta}_{dv} = \underbrace{\int_{\theta_0}^{\theta} v(q(x)) dx}_{u} \underbrace{F(\theta)}_{v} \Big|_{\theta_0}^{\theta_1} - \int_{\theta_0}^{\theta_1} \underbrace{F(\theta)}_{v} \underbrace{v(q(\theta)) d\theta}_{du}$$
$$= \int_{\theta_0}^{\theta_1} v(q(\theta)) d\theta - \int_{\theta_0}^{\theta_1} F(\theta) v(q(\theta)) d\theta = \int_{\theta_0}^{\theta_1} \left[1 - F(\theta)\right] v(q(\theta)) d\theta.$$

▶ The reduced program:

$$\max_{\{q(\theta)\}} \int_{\theta_0}^{\theta_1} \left[\theta v(q(\theta)) - \int_{\theta_0}^{\theta} v(q(x)) dx - cq(\theta) \right] f(\theta) d\theta$$
$$= \max_{\{q(\theta)\}} \int_{\theta_0}^{\theta_1} \left[\theta v(q(\theta)) - \frac{1 - F(\theta)}{f(\theta)} v(q(\theta)) - cq(\theta) \right] f(\theta) d\theta.$$

Introduction	Preliminaries	Optimal contracts	Implications
000000	000000000	00000000000000	0000

Step 6: solving the unconstrained program

▶ To solve

$$\max_{\{q(\theta)\}} \int_{\theta_0}^{\theta_1} \left[\left(\theta - \frac{1 - F(\theta)}{f(\theta)} \right) v(q(\theta)) - cq(\theta) \right] f(\theta) d\theta,$$

we do **pointwise optimization**.

► For each θ , maximize $\left(\theta - \frac{1 - F(\theta)}{f(\theta)}\right) v(q(\theta)) - cq(\theta)$ with respect to $q(\theta)$.

► For each θ , the optimal $q^*(\theta)$ satisfies the FOC¹

$$\left(\theta - \frac{1 - F(\theta)}{f(\theta)}\right) v'(q^*(\theta)) = c.$$

▶ $t^*(\theta)$ can be found as $t^*(\theta) = \theta v(q^*(\theta)) - \int_{\theta_0}^{\theta} v(q^*(x)) dx$.

¹If for some θ the equation cannot be satisfied, e.g., when $\theta - \frac{1-F(\theta)}{f(\theta)} < 0$, we have $q^*(\theta) = 0$.

CThe Continuous-type Screening Model

Introduction	Preliminaries	Optimal contracts $000000000000000000000000000000000000$	Implications
000000	000000000		0000

Step 7: final checks

- Our solution $q^*(\theta)$ satisfies $\left(\theta \frac{1 F(\theta)}{f(\theta)}\right) v'(q^*(\theta)) = c.$
- We need to verify that $q^*(\theta)$ satisfies monotonicity and local IC.
- Monotonicity:
 - By assumption, $\frac{1-F(\theta)}{f(\theta)}$ decreases in θ .
 - Therefore, $\theta \frac{1 F(\theta)}{f(\theta)}$ increases in θ .
 - Therefore, $v'(q^*(\theta))$ decreases in θ .
 - As $v'(\cdot)$ is decreasing, we have $q^*(\theta)$ increases in θ .
- ► Local IC:
 - Our optimal contracts satisfy $t(\theta) = \theta v(q(\theta)) \int_{\theta_0}^{\theta} v(q(x)) dx$.
 - Differentiate both sides with respect to θ :

$$t'(\theta) = \theta v'(q(\theta))q'(\theta) + v(q(\theta)) - v(q(\theta)) = \theta v'(q(\theta))q'(\theta).$$

This is exactly local IC.

Introduction 000000	Preliminaries 000000000	Optimal contracts 0000000000000	Implications 000

Road map

- ▶ Introduction.
- ▶ Preliminaries.
- ▶ Optimal contracts.
- ► Implications.

Introduction 000000	Preliminaries 000000000	Optimal contracts 0000000000000	Implications $0 \bullet 00$

Monotonicity and no rent at bottom

- ▶ Recall the main characteristics of our two-type screening model:
 - ► Monotonicity.
 - Efficiency at top.
 - ▶ No rent at bottom.
- Monotonicity has been verified.
- No rent at bottom is a result of the binding IR constraint for θ_0 .
 - ▶ To see it from the optimal contracts, note that

$$t(\theta_0) = \theta_0 v(q(\theta_0)) - \int_{\theta_0}^{\theta_0} v(q(x)) dx = \theta_0 v(q(\theta_0)).$$

- As $W(\theta) = \theta v(q(\theta)) t(\theta), W(\theta_0) = 0.$
- All higher types earn positive utilities (information rents).
- No rent at bottom becomes no rent only at bottom.

Introduction 000000	Preliminaries 000000000	Optimal contracts 00000000000000	$\begin{array}{c} \text{Implications} \\ \text{OO} \bullet \text{O} \end{array}$

Efficiency at top

► To illustrate **efficiency at top**, note that the first-best quantity $q^{\text{FB}}(\theta)$ and the second-best quantity $q^*(\theta)$ satisfy

$$\theta v'(q^{\mathrm{FB}}(\theta)) = c \quad \text{and} \quad \left(\theta - \frac{1 - F(\theta)}{f(\theta)}\right) v'(q^*(\theta)) = c,$$

respectively.

- As $\frac{1-F(\theta)}{f(\theta)} > 0$ for all $\theta < \theta_1$, we have $\theta > \theta \frac{1-F(\theta)}{f(\theta)}$ for all $\theta < \theta_1$.
- This implies that $v'(q^{\text{FB}}(\theta)) < v'(q^*(\theta))$.
- As $v'(\cdot)$ is decreasing, we have $q^{\text{FB}}(\theta) > q^*(\theta)$ for all $\theta < \theta_1$.
- Only for θ_1 we have $\frac{1-F(\theta_1)}{f(\theta_1)} = 0$ and thus $q^{\text{FB}}(\theta_1) = q^*(\theta_1)$
- Except for θ_1 , there is a **downward distortion on quantity**.
 - Efficiency at top becomes efficiency **only** at top.
 - ▶ This is to prevent a high type from **mimicking a low type**.
 - ► The principal cuts down **information rents** while sacrificing **efficiency**.

Introduction	Preliminaries	Optimal contracts	Implications $000 \bullet$
000000	0000000000	0000000000000	

Summary

- ▶ A screening model with an infinitely many types of agents on a continuum is introduced.
- ▶ Implications from the two-type model are valid and extended:
 - Monotonicity throughout the continuum.
 - Efficiency only at top.
 - ▶ No rent only at bottom.
- ▶ We also learn/review some useful concepts/techniques:
 - ▶ Hazard (failure) rates.
 - Integration by parts.
 - ▶ Envelope theorem.
- ► A continuous-type model can be useful:
 - ▶ More general than the two-type model.
 - ▶ Less tedious than the *n*-type model.