Information Economics, Fall 2015 Pre-lecture Problems for Lecture 8

Instructor: Ling-Chieh Kung Department of Information Management National Taiwan University

Note. The deadline of submitting the pre-lecture problem is *9:20am*, *November 16*, *2015*. Please submit a hard copy of your work to the instructor in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

1. (0 points) Consider the transfer $t(\theta)$ derived on page 27 of the slides:

$$t(\theta) = \theta v(q(\theta)) - \int_{\theta_0}^{\theta} v(q(x)) dx,$$

where $q(\theta)$ is the quantity intended for the type- θ consumer. Show that $t(\theta)$ is increasing in θ .

- 2. (0 points) Consider the continuous-type screening model introduced in the lecture videos. Assume that there is no information asymmetry.
 - (a) Formulate the contract design problem for the type- θ consumer.
 - (b) Find the first-best contract $(q^{\text{FB}}(\theta), t^{\text{FB}}(\theta))$ for the type- θ consumer.
- 3. (10 points) Consider the continuous-type screening model introduced in the lecture videos. Let $\theta \sim \text{Uni}(1,2), v(q) = q \frac{1}{2}q^2$, and c = 0.5.
 - (a) (3 points) Find $f(\theta)$, $F(\theta)$, and $\frac{1-F(\theta)}{f(\theta)}$ over [1,2].
 - (b) (4 points) By applying the FOC derived on page 30 of the slides,

$$\left(\theta - \frac{1 - F(\theta)}{f(\theta)}\right) v'(q^*(\theta)) = c,$$

find a closed-form expression for $q^*(\theta)$.

(c) (3 points) Depict $q^*(\theta)$.¹

 $^{^1} One \ powerful \ graphing \ calculator \ is \ \texttt{https://www.desmos.com/calculator}.$