Information Economics, Fall 2015 Pre-lecture Problems for Lecture 9

Instructor: Ling-Chieh Kung

Department of Information Management National Taiwan University

Note. The deadline of submitting the pre-lecture problem is 9:20am, November 23, 2015. Please submit a hard copy of your work to the instructor in class. Late submissions will not be accepted. Each student must submit her/his individual work. Submit ONLY the problem that counts for grades.

1. (0 points) The probability of tossing an unfair coin and get a head is p. We know that $p \in\{0.3,0.5\}$, but we do not know its exact value. Our prior belief on p is $\operatorname{Pr}(p=0.3)=0.2=1-\operatorname{Pr}(p=0.5)$. Let X be 1 if we get a head after one toss and 0 otherwise.
(a) Find the following conditional probabilities: $\operatorname{Pr}(X=1 \mid p=0.5)$ and $\operatorname{Pr}(X=0 \mid p=0.3)$
(b) Find the following joint probabilities: $\operatorname{Pr}(X=1, p=0.5)$ and $\operatorname{Pr}(X=0, p=0.3)$
(c) If we toss once and get $X=0$, find the posterior distribution of $p: \operatorname{Pr}(p=0.3 \mid X=1)$ and $\operatorname{Pr}(p=0.5 \mid X=1)$.
2. (0 points) Consider the warranty example introduced in the video.
(a) Explain why $((1,0),(B, N),(1,0))$ is an equilibrium (cf. page 21 of the slides).
(b) Explain why $((0,1),(N, B),(0,1))$ is not an equilibrium (cf. page 22 of the slides).
(c) Explain why $\left((1,1),(B, B),\left(\frac{1}{2},[0,1]\right)\right)$ is not an equilibrium (cf. page 23 of the slides).
(d) Explain why $\left((1,1),(B, N),\left(\frac{1}{2},[0,1]\right)\right)$ is not an equilibrium (cf. page 23 of the slides).
(e) Explain why $\left((0,0),(B, N),\left(\left[\frac{1}{3}, 1\right], \frac{1}{2}\right)\right)$ is not an equilibrium (cf. page 24 of the slides).
(f) Explain why $\left((0,0),(N, N),\left(\left[0, \frac{1}{3}\right], \frac{1}{2}\right)\right)$ is an equilibrium (cf. page 24 of the slides).
3. (10 points) Consider the warranty example introduced in the video. Suppose that the unreliable firm now earns 1 (instead of -1 of offering a warranty and having the customer buying the product. Will this signaling game has a separating equilibrium? Prove your arguments.
