Information Economics

Past, Future, and Why

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- Review of this semester.
- Future directions.
- ▶ What and why for scientific research.

What was in the syllabus?

- ► This is Information Economics, NOT Information Economy.
 - ▶ We do not put emphasis on IT, IS, information goods, etc.
 - We focus on **information**.
- We focus on the **economics of information**.
 - ▶ How people behave with different information?
 - What is the value of information?
 - ▶ What information to acquire? How?
 - What are the implications on business and economy?
- ▶ **Information asymmetry** is particularly important.

Why information asymmetry?

- The world is **decentralized**.
 - Especially systems consisting of multiple decision makers.
- ▶ How to optimize (or at least improve) a decentralized system?
 - We cannot control everyone directly.
 - We can only **induce** them to do something indirectly.
 - We can only **design rules**.
- We do **mechanism design**.
 - ▶ Issue 1: Incentive.
 - ► Issue 2: Information.

Information asymmetry

▶ The world is full of asymmetric information:

- ▶ A consumer does not know a retailer's procurement cost.
- ▶ A consumer does not know a product's quality.
- ▶ A retailer does not know a consumer's valuation.
- ▶ An instructor does not know how hard a student works.
- ▶ As information asymmetry results in inefficiency, we want to:
 - ▶ Analyze its impact. If possible, quantify it.
 - ▶ Decide whether it introduces driving forces for some phenomena.
 - ▶ Find a way to deal with it if it cannot be eliminated.
- ▶ This field is definitely fascinating. However:
 - ▶ We need to have some "**weapons**" to explore the world!

Before you enroll...

- ► Prerequisites:
 - Calculus.
 - Convex optimization.
 - Probability.
 - ▶ Game theory.
- ► This is an **academic methodology** course.
 - ▶ It is directly helpful if you are going to write a thesis with this research methodology.
 - ▶ It can be indirectly helpful for you to analyze the real world. However, we do not train you to do that in this course.

Topics

- ▶ Decentralized decision making.
- ► Adverse selection: screening.
- Adverse selection: signaling.
- ▶ Moral hazard.

Schedule: first half

Week	Topic	
1	Optimization	
2	Game theory	
3	No class: Mid-autumn Festival	
4	McGuire and Staelin (1983)	
5	Pasternack (1985)	
6	Two-type screening	
7	Taylor and Xiao (2009)	
8	Kung and Chen (2014)	
9	Midterm exam	

Schedule: second half

Week	Topic
10	Continuous-type screening
11	Signaling
12	Moral hazard
13	Desai (2001), Villas-Boas (1998)
14	Sundararajan (2004), Taylor and Xiao (2010)
15	Chen (2005) , Kung and Chen (2011)
16	Review
17	Project presentations (1)
18	Project presentations (2)

Road map

- ▶ Review of this semester.
- ► Future directions.
- ▶ What and why for scientific research.

Topics not covered in this course

- ▶ Many materials in screening, signaling, and moral hazard are skipped.
- Auction.
- ▶ Double-sided information asymmetry.
- ▶ Multidimensional screening.
- ▶ Common agency.
- ▶ Dynamic mechanism design.
- Bounded rationality
 - ▶ Behavioral economics.
 - Behavioral finance.
 - Behavioral marketing.
 - Behavioral operations management.
 - Behavioral information systems.

Review 00000000	Future directions 000000000	What and why for scientific research 000000000000

Auction

- ► A seller sells **a single unit** of product to **a set of** consumers.
- ▶ Consumers have i.i.d. valuations, which is hidden to the seller.
- ▶ The best way to reveal the hidden valuations: **auction**!
- Various auction formats:
 - ► First-price $(p = \max_{i} \{b_i\})$ vs. second-price $(p = \max_{j:b_j < \max_i \{b_i\}} \{b_j\})$.

$$u_i(x_i) = \begin{cases} x_i - p & \text{if } b_i \ge b_j \quad \forall j \\ 0 & \text{otherwise} \end{cases}$$

- English (ascending) vs. Dutch (descending).
- ▶ Which format is revenue-maximizing?
- ▶ **Revenue equivalence theorem**: All the same!
 - ▶ Not true if consumers are risk averse.
 - ▶ Not true if valuations are correlated.
 - ▶ Not true if there are multiple units.

Double-sided information asymmetry

- A seller sells a product to a consumer.
- ▶ It was assumed in this course that exactly one of the following is true:
 - ► The consumer privately knows the **willingness-to-pay**.
 - The seller privately knows her/his **production cost**.
- What if they happen at the same time?
- ► Another example:
 - ▶ The consumer privately knows her/his degree of risk aversion.
 - ► The seller privately knows the **product quality**.
- ▶ Is a warranty offer a screening tool or a signaling tool?

Review 00000000	Future directions 0000000000	What and why for scientific research 0000000000000

Multidimensional screening

- ▶ An agent may have multiple sources of hidden information.
- ▶ For example, a consumer may have hidden valuations for two products.

$$u(\theta_1, \theta_2) = (\theta_1 q_1 - p_1)^+ + (\theta_2 q_2 - p_2)^+.$$

• A seller may **bundle** the two products:

$$u(\theta_1, \theta_2) = (\theta_1 q_1 + \theta_2 q_2 - p_{\text{bundle}})^+.$$

- ▶ Which strategy is optimal?
 - Selling two products.
 - Selling only a bundle.
 - ▶ Selling two products and a bundle.
 - Selling one product and a bundle.
- ▶ What if there are more than two products?
- ▶ What if valuations are correlated?

Review 00000000	Future directions 0000000000	What and why for scientific research 0000000000000

Common agency

▶ When one company hires a salesperson, there is an IR constraint:

$$\mathbb{E}\left[\alpha(\theta) + \beta(\theta)x - \frac{1}{2}a^2\right] \ge \bar{u},$$

where \bar{u} is the sales person's **outside option**.

▶ If two companies compete in hiring the salesperson:

$$\mathbb{E}\left[\alpha_1(\theta) + \beta_1(\theta)x - \frac{1}{2}a^2\right] \ge \mathbb{E}\left[\alpha_2(\theta) + \beta_2(\theta)x - \frac{1}{2}a^2\right]$$

and vice versa.

Similar situations:

- Two firms competes in quantity discounts.
- ▶ Two firms competes in warranty offers.

Dynamic mechanism design

- ▶ When a manufacturer knows a retailer's forecasting accuracy, it screens the retailer's private demand signal.
- What if the accuracy is also hidden?
 - ► Two-stage screening: accuracy and then signal.
 - ► Stage 2: Knowing the accuracy, offering a **menu of contracts**.
 - ► Stage 1: Offering a **menu of menus**.
- ▶ When a principal and an agent sign contracts **repeatedly**:
 - ▶ In each period, the principal may offer a menu to screen the agent's type.
 - Static IC constraints are not enough.
 - ▶ The agent has incentives to lie. Otherwise, she/he will have no informational advantage in the future.

Bounded rationality

- ▶ People are not always fully rational.
 - ► Consumers, salespeople, bidders, investors, etc.
- ▶ Researchers try to model **bounded rationality**.
- Probabilistic choices:
 - A buyer faces two products, which give her/him utilities u_1 and u_2 .
 - Let $u_1 > u_2$. A fully rational buyer chooses product 1.
 - ▶ A boundedly rational buyer chooses product 1 with probability

$$\frac{e^{ru_1}}{e^{ru_1} + e^{ru_2}},$$

where $r \ge 0$ is the degree of rationality (larger r means more rational).

► Another example: Anchoring effect/reference prices:

$$\theta_t = \theta_{t-1} + \alpha (p_t - p_{t-1}).$$

▶ Emerging fields: behavioral economics/finance/marketing/OM/IS.

Emerging issues

- ▶ Whenever there is a **new business model**, there is a chance.
- ▶ New business models are often driven by **new technology**.
 - ▶ Physical channels vs. online channels.
 - Online display advertisement.
 - ▶ Information goods, data plans, and could services.
 - ▶ Probabilistic goods (opaque channels).
 - Group buying.
 - In-store referrals.
 - ▶ C2C marketplace and sharing economy.
 - ▶ P2P file sharing, P2P lending, and P2P information sharing.
 - Crowd-sourcing and crowd-financing.
 - Micro-financing.
 - ▶ Data economy.
- ▶ There are just too many things to study!

Economics of Information Systems

- ▶ These issues are in the field of economics of information systems.
 - The intersection of economics, marketing, finance, operations management, and information management.
- ► For each new business model driven by modern information technologies, people ask:
 - **How** to be successful?
 - Why are they successful?
- ▶ What researchers typically answer is **why**, not **how**.
- ▶ Take the game-theoretic modeling approach as an example:
 - Models are "simplified."
 - ▶ Assumptions are needed.
 - ▶ Equilibrium outcomes (prices, stocking levels, etc.) cannot be applied.
- Why do people do this?
- ▶ Why do we teach this (in an engineering department/business school)?

- ▶ Review of this semester.
- Future directions.
- ▶ What and why for scientific research.

Scientific research

- ▶ This course teaches you how to do research.
 - ▶ In particular, scientific research.
 - ▶ Though some people do not consider social sciences as science.
- ▶ This course is special (if not weird).
 - ▶ This is not a typical course is a department of Information Management or Industrial Engineering.
 - There are even not many similar courses in a business school.
 - ► This course talks about science, not engineering or management.
- ▶ What is scientific research? What is science?
- ▶ What is the value generated by scientific research?
 - ▶ If the results cannot be applied in practice?

Science, engineering, and management

- ▶ What are the differences among science, engineering, and management?
- ▶ In my opinion:
 - Engineering is to **solve problems**.
 - Management is to **make decisions**.
 - Science is to **identify factors**.
- Decision making is based on solutions and factors.
 - ▶ And intuitions, experiences, observations, connections, etc.
 - "Management is art and cannot be taught."
- ▶ Let's talk more about engineering and science.

Engineering and management research

- ▶ One kind of engineering research: **optimization**.
 - ► For a given problem with well-defined constrains and objective functions, design an algorithm to find an **optimal solution**.
 - E.g., to make a bridge the most stable.
- ▶ One kind of engineering research: data analytics.
 - ► For a set of data, design an algorithm to **minimize the time** to complete some calculations. E.g., apriori for frequent patterns.
 - ▶ For a set of data, design an algorithm to minimize prediction errors. E.g., regression and support vector machine.
- ▶ One kind of management research: data analytics.
 - ► For a set of data, find hidden facts that were not aware of in the past.
 - E.g., the sales of one kind of candy is high before a typhoon.

Scientific research

- ▶ Scientific research aims to **identify factors** that explain phenomena.
- Recall your junior high school textbook:
 - ▶ Step 1: Observing a phenomenon in practice.
 - ▶ Step 2: Make a hypothesis for possible reasons.
 - ▶ Step 3: Verify or reject the hypothesis (through, e.g., experiments).
 - ▶ Step 4: Let the society examine the results.
 - ▶ Step 5: Convert a hypothesis into a "theorem."
- ▶ Some examples in this semester:
 - ▶ Why does a manufacturer delegate to a retailer?
 - Why is a return contract popular in a channel?
 - ▶ Why is there a minimum fee for usage-based information goods pricing?
- ▶ In many cases, the reasons proposed by the studies are **insignificant**.
 - ▶ Is it really useful?

Insignificant factors

- ▶ Consider the decision of whether to delegate to a retailer.
- ► Why doing so?
 - ▶ The retailer has good reputation.
 - The retailer is good at retailing.
 - ▶ The retailer can monitor the market or salespeople better.
 - ▶ The manufacturer just cannot reach the market.
 - The market competition is too intensive.
- ▶ Business people in practice care about significant factors.
- ► Scientists look for about **insignificant factors**.
- ▶ Why insignificant factors?
 - Because they are nontrivial and surprising.
 - Because they expands humans' knowledge.
- ▶ People can be knowledge-seeking with no reason.
 - ▶ But are insignificant factors "useful"?

Insignificant factors

- ▶ Why does water become air?
 - ▶ The temperature increases.
 - ▶ The air pressure decreases.
- Without knowing that air pressure also affects the boiling point, we cannot explain phenomena on high mountains (and find ways to survive).
- Knowing significant factors helps you in usual cases; knowing insignificant factors helps you in special cases.

(Figure credit: Ho Ho)

Scientific research

- ▶ There are at least three kinds of scientific research in social sciences: theoretical, empirical, and qualitative research.
- Qualitative:
 - ▶ Do not use any mathematical model or numerical data.
 - E.g., pure logical reasoning and case studies.
- **Empirical** (data-driven):
 - ▶ Using statistical or econometric methods to identify factors for outcomes.
 - ▶ E.g., a regression-based study reporting significant independent variables.
- ► **Theoretical** (model-based):
 - ▶ Using game-theoretic models to describe the interaction of a set of decision makers in a system.
 - ▶ Characterizing equilibrium outcomes to predict their decisions.
 - ▶ Identifying conditions for a kind of equilibrium to (maybe uniquely) exist.
 - E.g., all those things we did in this course.

Theoretical studies

- ▶ Theoretical studies need assumptions.
 - ► To make the model **tractible**.
 - ► To allow researchers **isolate the factor** of interest.
- Assumptions can be dangerous.
 - ► Conclusions drawn from an **oversimplified model** are useless.
 - "Something is true for all cases" may be due to a **too narrow focus**.
- ▶ Still, theoretical studies are needed.
 - ▶ Pure logical reasoning can be too hard and controversial.
 - ▶ Case studies are not enough: Some people do not tell the truth.
 - ▶ Empirical studies are not enough: Some data are not available.
- ► Theoretical studies can **make predictions** (qualitatively).
 - ▶ It may be bad to delegate to a better-forecasting retailer.
 - Delegating to a retailer will enlarge quality difference in a product line.
 - Monitoring sales effort is more critical than monitoring market condition, even if they can be done only indirectly.

Management through science and engineering

• Management is to **make decisions**.

- ▶ We need intuitions, experiences, observations, connections, etc.
- Still, solutions and factors help.
- ▶ Therefore, we need engineering and science.
 - Engineering is to **solve problems**.
 - Science is to **identify factors**.
- ▶ Two important engineering methodologies: optimization and statistics.
- One important scientific methodology: theoretical modeling.
- ► That is why...

Management through science and engineering

Objectives of this course

- ▶ In summary, what is the objective of this course?
 - ► To give you a tool for conducting scientific research.
 - ► To give you a tool for (business) **decision making**.
 - ▶ To make you a good researcher and practitioner.
- ▶ There may be one "side effect":
 - ► To make you "think in a different way."
- ▶ For example, after I started to work in this field:
 - ▶ I do not believe that (a large group of) people will collaborate selflessly.
 - ▶ I do not believe that (a large group of) students will voluntarily make a public lobby clean.
 - ► *Freakonomics*: Morals talk about an ideal world world; economics talks about the real world.
 - ▶ I can consider policy issues (e.g., tuition, examination, elections, etc.) more deeply (or at least for a longer time).
- ▶ We may become more ready to debate for rules, policies, and laws.
- ▶ We may become more ready to **participate in our society**.

My expectations and suggestions

- ▶ Sooner or later you will leave the school. Please:
 - ▶ **Identify factors** for phenomena.
 - Care more about the **society**.
 - ▶ Keep learning.
- ▶ To do so, enhance two abilities before you leave the school:
 - **English** (and/or some other languages).
 - ► Mathematics.