Information Economics, Fall 2016 Problem Set 1

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. Please answer the following questions.
(a) Let $f\left(x_{1}, x_{2}\right)=2 x_{1}^{5}+3 x_{1}^{2} x_{2}-x_{2}^{3}+3 x_{1}$. Find the gradient $\nabla f\left(x_{1}, x_{2}\right)$ and Hessian $\nabla^{2} f\left(x_{1}, x_{2}\right)$.
(b) Let $f(x)=\ln \left(x^{3}+2 x\right) e^{3 x}$. Find $\frac{d}{d x} f(x)$.
(c) Let $f(x)=x_{1} x_{2}^{2}+e^{2 x_{2}} x_{1}$. Find $\int f(x) d x_{2}$ (you may ignore the constant).
(d) Find $\frac{d}{d x} \int_{0}^{x}\left(t^{3}+3 x-2\right) d t$.
(e) Let X be the outcome of rolling an unfair dice whose probability distribution is summarized in the following table:

x	1	2	3	4	5	6
$\operatorname{Pr}(X=x)$	0.2	0.3	0.1	0.1	0.1	0.2

Find the expected value and variance of X.
(f) Let $f(x)=k x^{1.5}$ be the probability density of a continuous random variable $X \in[0,2]$. Find the value of k. Then find $\mathbb{E}[X]$.
(g) Is $f(x)=x^{2.5}+3 x^{2}$ a convex function over $[0, \infty)$? Prove it mathematically.
(h) Over what region is $g(x)=\ln x+2 x^{2}$ a strictly convex function? Prove it mathematically.
2. Consider the following nonlinear program

$$
\begin{aligned}
z^{*}=\max & x_{1}-x_{2} \\
\text { s.t. } & x_{2} \geq-1 \\
& -x_{1}^{2}-\left(x_{2}+2\right)^{2} \leq-4 .
\end{aligned}
$$

(a) Draw the feasible region. Is it a convex set?
(b) Graphically solve the problem.
(c) Is there any local maximum that is not a global maximum? If so, find them.
(d) Replace the second constraint by $-x_{1}^{2}-\left(x_{2}+2\right)^{2} \geq-4$. Redo Part (c).
3. Let F and G be two convex sets in \mathbb{R}^{n}. Prove or disprove that their intersection $F \cap G$ is also a convex set in \mathbb{R}^{n}.
4. Consider the monopoly pricing problem discussed in class. Suppose that now there is a competitor who sells the same product at price p_{0}. This competitor sticks to p_{0} for no reason; it does not change the price no matter what happens. If a consumer wants to buy the product, she purchases the product from you only if your price is no greater than that from your competitor. In other words, if your price $p>p_{0}$, you will sell nothing for sure.
(a) Formulate the seller's problem for maximizing its total expected profit. Show that it is a convex program.
(b) Note that your program is a convex constrained program. For one-dimensional convex constrained program, the following strategy typically works: (1) find an unconstrained optimal solution, (2) if it is feasible, it is optimal, and (3) otherwise, find a boundary point that is closest to the unconstrained optimal solution. As you already know, the unique unconstrained optimal solution is $p^{*}=\frac{b+c}{2}$. As p^{*} may be greater than or less than p_{0}, apply the above strategy to analytically solve the seller's problem with this competitor who does not change its price.
(c) How does p^{*} change when a, b, or c changes? Provide economic intuitions to these mathematical results.
5. Consider the newsvendor problem discussed in class. Suppose that now unsold products can be sold to a recycling site at a price $\$ d$ per unit. Obviously, we have $0<d<c$.
(a) Formulate the seller's problem of maximizing the expected profit.
(b) Solve the problem and find the unique analytical optimal order quantity q^{*}.
(c) How does q^{*} change when r, c, or d changes? Provide economic intuitions to these mathematical results.

