Information Economics

Introduction and Review of Optimization

Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Course overview.
- Convexity and optimization.
- ► Applications.

Welcome!

- ► This is Information Economics, NOT Information Economy.
 - ▶ We do not put emphasis on IT, IS, information goods, etc.
 - We focus on **information**.
- We focus on the **economics of information**.
 - ▶ How people behave with different information?
 - What is the value of information?
 - ▶ What information to acquire? How?
 - What are the implications on business and economy?
- ▶ **Information asymmetry** is particularly important.

Information asymmetry

- ▶ The world is full of asymmetric information:
 - ▶ A consumer does not know a retailer's procurement cost.
 - A consumer does not know a product's quality.
 - ▶ A retailer does not know a consumer's valuation.
 - An instructor does not know how hard a student works.
- As the world is **decentralized**:
 - There is the **incentive** issue.
 - There is the **information** issue.
- ▶ As information asymmetry results in inefficiency, we want to:
 - Analyze its impact. If possible, quantify it.
 - ▶ Decide whether it introduces driving forces for some phenomena.
 - ▶ Find a way to deal with it if it cannot be eliminated.
- ▶ This field is definitely fascinating. However:
 - ▶ We need to have some "**weapons**" to explore the world!

Overview

Before you enroll...

- ▶ Prerequisites:
 - Calculus.
 - Probability.
 - Convex optimization.
 - ▶ Game theory.
- This is an **academic methodology** course.
 - ▶ It is directly helpful if you are going to write a thesis with this research methodology.
 - ▶ It can be indirectly helpful for you to analyze the real world. However, we do not train you to do that in this course.
- ▶ This course is about science, not business or engineering.
 - It is about **identifying reasons**.
 - It is not about **solving problems**.
 - It is not about making decisions.

The instructing team

- ▶ Instructor:
 - ▶ Ling-Chieh Kung.
 - Assistant professor.
 - ▶ Office: Room 413, Management Building II.
 - Office hour: by appointment.
 - ▶ E-mail: lckung@ntu.edu.tw.
- There is no teaching assistant for this course.

Related information

- ▶ Classroom: Room 204, Management Building II.
- ▶ Lecture time: 9:10am-12:10pm, Monday.
- ▶ References:
 - ▶ Information Rules by C. Shapiro and H. Varian.
 - ▶ *Freakonomics* by S. Levitt and S. Dubner.
 - Contract Theory by P. Bolton and M. Dewatripont.
 - ► Game Theory for Applied Economists by R. Gibbons.
 - About ten academic papers.

"Flipped classroom"

- ▶ Lectures in **videos**, then discussions in classes.
- ▶ Before each Monday, the instructor uploads a video of lectures.
 - ▶ Ideally, the video will be no longer than one and a half hour.
 - ▶ Students must watch the video by themselves before that Monday.
- ▶ During the lecture, we do three things:
 - Discussing the lecture materials.
 - ▶ Solving lecture problems (to earn points).
 - Further discussions.
- ► Teams:
 - Students form teams to work on class problems and case studies.
 - Each team should have **two or three students**.
 - ▶ Your teammates may be different from week to week.

Pre-lecture problems and class participation

- ► No homework!
 - ▶ Problem sets and solutions will be posted for students to do practices.
- ▶ Pre-lecture problems.
 - One problem to submit per set of lecture videos.
 - ▶ Submit a hard copy at the beginning of a lecture.
- Class participation:
 - Just say something!
 - Use whatever way to impress the instructor.

Paper presentations and projects

- ▶ Paper presentations:
 - ▶ Students will form six teams to present six academic papers. The team size will be determined according to the class size.
 - ▶ On the date that a team present, they should submit one paper summary and their slides.
- ▶ Midterm project:
 - ▶ Students form teams to do a midterm project.
 - ▶ A topic will be assigned, and each team constructs its own models and generate its own findings.
 - A written report is required.
- ► Final project:
 - ▶ Students form teams to do a midterm project.
 - ▶ A direction will be assigned, and each team conducts its own research by defining its own research questions.
 - Each team will submit a proposal for the self-selected topic, make a 30-minute presentation, and submit a report.

Grading

- ▶ Not dropping this course: 10%.
- ▶ Class participation: 10%.
- ▶ Pre-lecture problems: 10%.
- ▶ Paper presentations: 20%.
- ▶ Midterm project: 20%.
- ▶ Final project: 30%.
- ▶ The final letter grades will be given according to the following conversion rule:

Letter	Range	Letter	Range	Letter	Range
$\substack{A+\\A}{A-}$	$\begin{array}{c} [90,100] \\ [85,90) \\ [80,85) \end{array}$	B+ B B-	$[77, 80) \\ [73, 77) \\ [70, 73)$	C+ C C-	[67, 70) [63, 67) [60, 63)

Important dates, tentative plan, and websites

- ▶ Tentative plan:
 - ▶ Incentives: 5 weeks.
 - ▶ Information: 5 weeks.
 - ▶ Student presentations: 4 weeks.
 - ▶ Review and preview: 1 week.
- ► CEIBA.
 - Viewing your grades.
- http://www.ntu.edu.tw/~lckung/courses/IE16/.
 - Downloading course materials.
 - Linking to lecture videos.
- https://piazza.com/ntu.edu.tw/fall2016/im7011/.
 - On-line discussions.
 - ▶ Receiving announcements.

▶ Now it is time for a quiz!

Road map

- ► Course overview.
- Convexity and optimization.
- ► Applications.

Convex sets

Definition 1 (Convex sets)

A set F is **convex** if

$$\lambda x_1 + (1 - \lambda) x_2 \in F$$

for all $\lambda \in [0,1]$ and $x_1, x_2 \in F$.

Convex functions

Definition 2 (Convex functions)

For a convex domain F, a function $f(\cdot)$ is convex over F if

$$f(\lambda x_1 + (1-\lambda)x_2) \le \lambda f(x_1) + (1-\lambda)f(x_2)$$

for all $\lambda \in [0,1]$ and $x_1, x_2 \in F$.

\sim	
()	verview
~~	

Some examples

- ► Convex sets?
 - $X_1 = [10, 20].$
 - $X_2 = (10, 20).$
 - $X_3 = \mathbb{N}$.
 - $\blacktriangleright X_4 = \mathbb{R}.$
 - $X_5 = \{(x, y) | x^2 + y^2 \le 4\}.$
 - $X_6 = \{(x, y) | x^2 + y^2 \ge 4\}.$

- Convex functions?
 - $f_1(x) = x + 2, x \in \mathbb{R}$.
 - $f_2(x) = x^2 + 2, x \in \mathbb{R}.$
 - $f_3(x) = \sin(x), x \in (0, 2\pi).$
 - $f_4(x) = \sin(x), x \in (\pi, 2\pi).$
 - $f_5(x) = \log(x), x \in (0, \infty).$
 - $f_6(x,y) = x^2 + y^2, (x,y) \in \mathbb{R}^2.$

Strictly convex and concave functions

Definition 3 (Strictly convex functions)

For a convex domain F, a function $f(\cdot)$ is strictly convex over F if

$$f\left(\lambda x_1 + (1-\lambda)x_2\right) < \lambda f(x_1) + (1-\lambda)f(x_2)$$

for all $\lambda \in (0,1)$ and $x_1, x_2 \in F$ such that $x_1 \neq x_2$.

Definition 4 ((Strictly) concave functions)

For a convex domain F, a function $f(\cdot)$ is (strictly) concave over F if $-f(\cdot)$ is (strictly) convex.

Derivatives of convex functions

- ▶ In this course, most of the functions are twice-differentiable with continuous second-order derivatives.
- ▶ Recall a function's gradient and Hessian:
 - ► For an *n*-dimensional differentiable function f(x), its gradient is the n × 1 vector

$$\nabla f \equiv \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}.$$

For an *n*-dimensional twice-differentiable function $f(x_1, ..., x_n)$, its **Hessian** is the $n \times n$ matrix

$$\nabla^2 f \equiv \begin{bmatrix} \frac{\partial^2 f}{\partial x_1^2} & \cdots & \frac{\partial^2 f}{\partial x_1 \partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial^2 f}{\partial x_n \partial x_1} & \cdots & \frac{\partial^2 f}{\partial x_n^2} \end{bmatrix}$$

► (Calculus) If the second-order derivatives are all continuous, the Hessian is symmetric.

Overview

Derivatives of convex functions

 \blacktriangleright Let f be twice-differentiable with continuous second-order derivatives:

Proposition 1

For $f : \mathbb{R} \to \mathbb{R}$ over an interval $F \subseteq \mathbb{R}$:

- f is (strictly) convex over F if and only if $f''(x) \ge 0$ (> 0) for all $x \in F$.
- f is (strictly) concave over F if and only if $f''(x) \leq 0$ (< 0) for all $x \in F$.

Proposition 2

For $f : \mathbb{R}^n \to \mathbb{R}$ over a region $F \subseteq \mathbb{R}^n$:

- ▶ f is (strictly) convex over F if and only if $\nabla^2 f(x)$ is positive (semi)definite for all $x \in F$.
- ▶ f is (strictly) concave over F if and only if $\nabla^2 f(x)$ is negative (semi)definite for all $x \in F$.
- ▶ (Linear Algebra) A symmetric $n \times n$ matrix A is called positive (semi)definite if $y^T A y \ge 0$ (> 0) for all $y \in \mathbb{R}^n$.

Some examples revisited

- ► $f_1(x) = x + 2, x \in \mathbb{R}$: $f_1''(x) = 0$, convex and concave.
- ► $f_2(x) = x^2 + 2, x \in \mathbb{R}$: $f_2''(x) = 2 > 0$, strictly convex.
- $f_3(x) = \sin(x), x \in (0, 2\pi), f_3''(x) = -\sin(x)$, neither.
- $f_4(x) = \sin(x), x \in (\pi, 2\pi), f_4''(x) = -\sin(x) > 0$, strictly convex.
- $f_5(x) = \log(x), x \in (0, \infty)$: $f_5''(x) = -\frac{1}{x^2} < 0$, strictly concave.
- ► $f_6(x,y) = x^2 + y^2, (x,y) \in \mathbb{R}^2$: $\nabla^2 f_6(x,y) = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$ is positive definite, strictly convex.

Linear programming

▶ Consider the problem

$$z^* = \max \quad x_1 + x_2$$

s.t.
$$x_1 + 2x_2 \le 6$$

$$2x_1 + x_2 \le 6$$

$$x_i \ge 0 \quad \forall i = 1, 2.$$

- ▶ The feasible region is the shaded area.
- ► An optimal solution is (x^{*}₁, x^{*}₂) = (2, 2). Is it unique?
- The corresponding objective value $z^* = 6$.
- ► An optimization problem is a **linear program** (LP) if the objective function and constraints are all linear.

Nonlinear programming

- ► An optimization problem is a nonlinear program (NLP) if it is not a linear program.
- Consider the problem

$$z^* = \max \quad x_1 + x_2$$

s.t. $x_1^2 + x_2^2 \le 16$
 $x_1 + x_2 \ge 1.$

- ▶ What is the feasible region?
- ▶ What is an optimal solution? Is it unique?
- What is the value of z^* ?
- ► An optimization problem is a **convex program** if in it we maximize a concave function over a convex feasible region.
- ▶ All convex programs can be solved efficiently.
- ▶ It may not be possible to solve a nonconvex program efficiently.

Infeasible and unbounded problems

- ▶ Not all problems have an optimal solution.
- ▶ A problem is **infeasible** if there is no feasible solution.
 - E.g., $\max\{x^2 | x \le 2, x \ge 3\}.$
- ► A problem is **unbounded** if given any feasible solution, there is another feasible solution that is better.
 - E.g., $\max\{e^x | x \ge 3\}.$
 - How about $\min\{\sin x | x \ge 0\}$?
- ▶ A problem may be infeasible, unbounded, or finitely optimal (i.e., having at least one optimal solution).

Set of optimal solutions

▶ The set of optimal solutions of a problem $\max\{f(x)|x \in X\}$ is $\operatorname{argmax}\{f(x)|x \in X\}.$

For
$$f(x) = \cos x$$
 and $X = [0, 2\pi]$, we have

$$\operatorname{argmax} \left\{ \cos x \, \middle| \, x \in [0, 2\pi] \right\} = \{0, 2\pi\}.$$

• If x^* is an optimal solution of $\max\{f(x)|x \in X\}$, we should write $x^* \in \operatorname{argmax}\{f(x)|x \in X\},$

NOT $x^* = \operatorname{argmax} \{ f(x) | x \in X \}!$

Global optima

- For a function f(x) over a feasible region F:
 - ▶ A point x^* is a global minimum if $f(x^*) \leq f(x)$ for all $x \in F$.
 - A point x' is a **local minimum** if for some $\epsilon > 0$ we have

 $f(x') \le f(x) \quad \forall x \in B(x', \epsilon) \cap F,$

where $B(x^0, \epsilon) \equiv \{x | d(x, x^0) \le \epsilon\}$ and $d(x, y) \equiv \sqrt{\sum_{i=1}^n (x_i - y_i)^2}$.

▶ Global maxima and local maxima are defined accordingly.

First-order necessary condition

▶ Consider an **unconstrained** problem

 $\max_{x \in \mathbb{R}^n} f(x).$

Proposition 3 (Unconstrained FONC)

For a differentiable function $f : \mathbb{R}^n \to \mathbb{R}$, a point x^* is a local maximum of f only if

•
$$f'(x^*) = 0$$
 if $n = 1$.

$$\blacktriangleright \ \nabla f(x^*) = 0 \ if \ n \ge 2.$$

Examples

• Consider the problem

$$\max_{x \in \mathbb{R}} x^3 - \frac{9}{2}x^2 + 6x + 2$$

The FONC yields

 $3(x^2 - 3x + 2) = 0.$

Solving the equation gives us 1 and 2 as two candidates of local maxima.

► It is easy to see that x^{*} = 1 is a local maxima but x̃ = 2 is NOT.

▶ Consider the problem

 $\max_{x \in \mathbb{R}^2} f(x) = x_1^2 - x_1 x_2 + x_2^2 - 6x_2.$

The FONC yields

$$\nabla f(x) = \begin{bmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - 6 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

Solving the linear system gives us (2,4) as the only candidate of local maxima.

Note that it is NOT necessarily a local maximum!

Second-order necessary condition

▶ Let's proceed further.

Proposition 4 (Unconstrained SONC)

Suppose $f : \mathbb{R}^n \to \mathbb{R}$ is twice-differentiable. For a point x^* to be a local maximum of f, we need:

- $f''(x^*) \le 0$ if n = 1.
- $\nabla^2 f(x^*)$ is negative semidefinite if $n \ge 2$.
- ▶ Note that we do not need the function to be concave; we only need f'' or $\nabla^2 f$ to be negative or negative definite **at the point** x^* .
- ▶ In this course, we will not apply the SONC a lot.
- ▶ Here our point is that a local maximum requires NOT just

$$\frac{\partial^2 f}{\partial x_i^2} \leq 0 \quad \forall i = 1, ..., n.$$

We want more than candidates!

- ▶ The FONC and SONC produce candidates of local maxima/minima.
- ▶ What's next?
 - We need some ways to ensure local optimality.
 - ▶ We need to find a global optimal solution.
- ▶ If the function is **convex or concave**, things are much easier:

Proposition 5

For a differentiable convex (concave) function $f : \mathbb{R}^n \to \mathbb{R}$:

- x^* is a global minimum (maximum) if and only if $\nabla f(x^*) = 0$.
- ▶ The global optimum is unique if f is strictly convex or concave.

Remarks

- ▶ When you are asked to solve a problem:
 - ► First check whether the objective function is convex/concave. If so the problem typically becomes much easier.
- ► All the conditions for unconstrained problems apply to **interior** points of a feasible region.
- One common strategy for solving constrained problems proceeds in the following steps:
 - **Ignore** all the constraints.
 - Solve the unconstrained problem.
 - ▶ Verify that the unconstrained optimal solution satisfies all constraints.
- ▶ If the strategy fails, we seek for other ways.

Binding constraints and boundary solutions

- ▶ An optimal solution may lie on the boundary of the feasible region.
 - ► It is a **boundary solution** or a **corner solution**.
- ▶ We need to take a look at those **binding** (or **active**) constraints:

Definition 5

Let $g(\cdot) \leq b$ be an inequality constraint and \bar{x} be a solution. $g(\cdot)$ is binding at \bar{x} if $g(\bar{x}) = b$.

- $x_1 + x_2 \le 10$ is binding at $(x_1, x_2) = (2, 8)$.
- $2x_1 + x_2 \ge 6$ is nonbinding at $(x_1, x_2) = (2, 8)$.
- $x_1 + 3x_2 = 9$ is binding at $(x_1, x_2) = (6, 1)$.
- ▶ Remarks:
 - An inequality is nonbinding (inactive) at a point if it is strictly satisfied.
 - An equality constraint is always binding at any feasible solution.

Binding constraints and boundary solutions

▶ Consider a single-dimensional constrained optimization problem

$$\begin{array}{ll} \max & f(x) \\ \text{s.t.} & g_i(x) \leq 0 \quad \forall i=1,...,m. \end{array}$$

- If $f(\cdot)$ is strictly concave:
 - Apply the FOC to obtain a candidate solution \bar{x} .
 - If \bar{x} is feasible, it is optimal.
 - Otherwise, the feasible point that is closest to \bar{x} is optimal.
- ▶ In general:
 - ▶ Apply the FONC and SONC to obtain a set of candidate solutions.
 - ▶ Include all the boundary points as candidate solutions.
 - Compare all the candidate solutions to find an optimal one.
- ► For a **multi-dimensional** constrained optimization problem, more advanced techniques are required (e.g., the KKT condition).

Road map

- ► Course overview.
- ▶ Convexity and optimization.
- ► Applications.

Monopoly pricing

- ▶ Suppose a monopolist sells a single product to consumers.
- Consumers are heterogeneous in their willingness-to-pay, or valuation, of this product.
- One's valuation, θ , lies on the interval [0, b] uniformly.
 - He buys the product if and only if his valuation is above the price.
 - ▶ Consumers' decisions are independent.
 - The total number of consumers is a.
 - \blacktriangleright Given a price p, in expectation the number of consumers who buy the product is

$$a \Pr(\theta \ge p) = a \left(1 - \frac{p}{b}\right).$$

- The unit production cost is c.
- The seller chooses a unit price p to maximize her total expected profit.

Formulation

- ▶ The **endogenous** decision variable is *p*.
- The **exogenous** parameters are a, b, and c.
- The only constraint is $p \ge 0$.
- Let $\pi(p)$ be the profit under price p. We have

$$\pi(p) = (p-c)a\left(1 - \frac{p}{b}\right).$$

▶ The complete problem formulation is

$$\max (p-c)a\left(1-\frac{p}{b}\right)$$

s.t. $p \ge 0.$

• It is without loss of generality to **normalize** the population size a to 1.

Overview

Solving the problem

- Given that $\pi(p) = \frac{a}{b}(p-c)(b-p)$, let's show it is strictly concave:
 - $\pi'(p) = \frac{a}{b}(b+c-2p).$ $\pi''(p) = -2\left(\frac{a}{b}\right) < 0.$

• Great! Now let's ignore the constraint $p \ge 0$.

▶ Applying the FOC, the unconstrained optimal solution is

$$b + c - 2\bar{p} = 0 \quad \Leftrightarrow \quad \bar{p} = \frac{b + c}{2}.$$

• Does \bar{p} satisfy the ignored constraint? Is it globally optimal?

Managerial/economic implications

- The optimal price $\bar{p} = \frac{b+c}{2}$ tells us something:
 - \bar{p} is increasing in the highest possible valuation b. Why?
 - \bar{p} is increasing in the unit cost c. Why?
 - \bar{p} has nothing to do with the total number of consumer a. Why?

• The optimal profit
$$\pi^* \equiv \pi(\bar{p}) = \frac{a(b-c)^2}{4b}$$
.

- π^* is decreasing in c. Why?
- π^* is increasing in *a*. Why?
- How is π^* affected by b?
- Let's answer it:

$$\frac{\partial}{\partial b}\pi^*=\frac{a(b-c)(b+c)}{4b^2}>0\quad (\text{why }b>c?).$$

- ▶ It is these **qualitative** managerial/economic implications that matters.
- ▶ Never forget to verify your solutions with your **intuitions**.

Impact of price control

- Sometimes the price is controlled (e.g., by the government) and has a cap K.
- ▶ For the problem

$$\begin{aligned} \max \quad (p-c)a \bigg(1-\frac{p}{b}\bigg) \\ \text{s.t.} \quad p \in [0,K], \end{aligned}$$

the first-order solution $\frac{b+c}{2}$ may be infeasible.

▶ The optimal price is

$$p^* = \begin{cases} \frac{b+c}{2} & \text{if } \frac{b+c}{2} \le K\\ K & \text{otherwise} \end{cases}$$

Newsvendor problem

► In some situations, people sell **perishable products**.

- ▶ They become valueless after the **selling season** is end.
- E.g., newspapers become valueless after each day.
- ▶ High-tech goods become valueless once the next generation is offered.
- ▶ Fashion goods become valueless when they become out of fashion.
- ▶ In many cases, the seller only have **one chance** for replenishment.
 - ▶ E.g., a small newspaper seller can order only once and obtain those newspapers only at the morning of each day.
- ▶ Often sellers of perishable products face **uncertain demands**.
- How many products one should prepare for the selling season?
 - ▶ Not too many and not too few!

Newsvendor model

- Let D be the uncertain demand.
- Let F and f be the cdf and pdf of D (assuming D is continuous).
- Let r and c be the unit sales revenue and purchasing cost, respectively.
- Let q be the order quantity.
- ▶ The (expected) profit-maximizing newsvendor solves

$$\max_{q\geq 0} r\mathbb{E}\Big[\min\{q, D\}\Big] - cq.$$

• Let $\pi(q) = r\mathbb{E}[\min\{q, D\}] - cq$ be the expected profit function.

▶ The model can be expanded to include salvage values, disposal fees, shortage costs, etc.

Convexity of the profit function

▶ The expected profit function $\pi(q)$ is

$$\pi(q) = r\mathbb{E}\Big[\min\{q, D\}\Big] - cq$$

= $r\Big\{\int_0^q xf(x)dx + \int_q^\infty qf(x)dx\Big\} - cq$
= $r\Big\{\int_0^q xf(x)dx + q\Big[1 - F(q)\Big]\Big\} - cq.$

▶ We have

$$\pi'(q) = r \left\{ qf(q) + 1 - F(q) - qf(q) \right\} - c = r \left[1 - F(q) \right] - c$$

and $\pi''(q) = -rf(q) < 0$. $\pi(q)$ is strictly concave.

Optimizing the order quantity

• Let \bar{q} be the order quantity that satisfies the FOC, we have

$$r\left[1 - F(\bar{q})\right] - c = 0$$

$$\Rightarrow F(\bar{q}) = 1 - \frac{c}{r} \quad \text{or} \quad 1 - F(\bar{q}) = \frac{c}{r}.$$

- Such \bar{q} must be positive (for regular demand distributions).
 - So \bar{q} is optimal.
 - The quantity \bar{q} is called the **newsvendor** quantity.
 - ▶ The formula applies to **any** continuous random variable *D*.

Interpretations of the newsvendor quantity

- ► The newsvendor quantity \bar{q} satisfies $1 F(\bar{q}) = \frac{c}{r}$.
 - ▶ The probability of having a shortage,
 - 1 F(q), is decreasing in q.
- The optimal quantity \bar{q} is:
 - ▶ Decreasing in *c*.
 - Increasing in r.

Does that make economic sense?

Impact of capacity limitation

1

- Sometimes the capacity is limited and at most K units can be ordered.
- ▶ For the problem

$$\max_{q \in [0,K]} r \mathbb{E} \Big[\min\{q, D\} \Big] - cq,$$

the newsvendor quantity \bar{q} satisfying $1 - F(\bar{q}) = \frac{c}{r}$ may be infeasible.

▶ The optimal order quantity is

$$q^* = \begin{cases} \bar{q} & \text{if } r \left[1 - F(K) \right] - c \leq 0 \\ K & \text{otherwise} \end{cases},$$

where $r[1 - F(K)] - c \le 0$ is equivalent to $\bar{q} \le K$ (why?).