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Road map
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Welcome!

I This is Information Economics, NOT Information Economy.
I We do not put emphasis on IT, IS, information goods, etc.
I We focus on information.

I We focus on the economics of information.
I How people behave with different information?
I What is the value of information?
I What information to acquire? How?
I What are the implications on business and economy?

I Information asymmetry is particularly important.
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Information asymmetry

I The world is full of asymmetric information:
I A consumer does not know a retailer’s procurement cost.
I A consumer does not know a product’s quality.
I A retailer does not know a consumer’s valuation.
I An instructor does not know how hard a student works.

I As the world is decentralized:
I There is the incentive issue.
I There is the information issue.

I As information asymmetry results in inefficiency, we want to:
I Analyze its impact. If possible, quantify it.
I Decide whether it introduces driving forces for some phenomena.
I Find a way to deal with it if it cannot be eliminated.

I This field is definitely fascinating. However:
I We need to have some “weapons” to explore the world!
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Before you enroll...

I Prerequisites:
I Calculus.
I Probability.
I Convex optimization.
I Game theory.

I This is an academic methodology course.
I It is directly helpful if you are going to write a thesis with this research

methodology.
I It can be indirectly helpful for you to analyze the real world. However,

we do not train you to do that in this course.

I This course is about science, not business or engineering.
I It is about identifying reasons.
I It is not about solving problems.
I It is not about making decisions.
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The instructing team

I Instructor:
I Ling-Chieh Kung.
I Assistant professor.
I Office: Room 413, Management Building II.
I Office hour: by appointment.
I E-mail: lckung@ntu.edu.tw.

I There is no teaching assistant for this course.
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Related information

I Classroom: Room 204, Management Building II.

I Lecture time: 9:10am-12:10pm, Monday.

I References:
I Information Rules by C. Shapiro and H. Varian.
I Freakonomics by S. Levitt and S. Dubner.
I Contract Theory by P. Bolton and M. Dewatripont.
I Game Theory for Applied Economists by R. Gibbons.
I About ten academic papers.
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“Flipped classroom”

I Lectures in videos, then discussions in classes.

I Before each Monday, the instructor uploads a video of lectures.
I Ideally, the video will be no longer than one and a half hour.
I Students must watch the video by themselves before that Monday.

I During the lecture, we do three things:
I Discussing the lecture materials.
I Solving lecture problems (to earn points).
I Further discussions.

I Teams:
I Students form teams to work on class problems and case studies.
I Each team should have two or three students.
I Your teammates may be different from week to week.
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Pre-lecture problems and class participation

I No homework!
I Problem sets and solutions will be posted for students to do practices.

I Pre-lecture problems.
I One problem to submit per set of lecture videos.
I Submit a hard copy at the beginning of a lecture.

I Class participation:
I Just say something!
I Use whatever way to impress the instructor.
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Paper presentations and projects
I Paper presentations:

I Students will form six teams to present six academic papers. The team
size will be determined according to the class size.

I On the date that a team present, they should submit one paper summary
and their slides.

I Midterm project:
I Students form teams to do a midterm project.
I A topic will be assigned, and each team constructs its own models and

generate its own findings.
I A written report is required.

I Final project:
I Students form teams to do a midterm project.
I A direction will be assigned, and each team conducts its own research by

defining its own research questions.
I Each team will submit a proposal for the self-selected topic, make a

30-minute presentation, and submit a report.
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Grading

I Not dropping this course: 10%.

I Class participation: 10%.

I Pre-lecture problems: 10%.

I Paper presentations: 20%.

I Midterm project: 20%.

I Final project: 30%.

I The final letter grades will be given according to the following
conversion rule:

Letter Range Letter Range Letter Range

A+ [90, 100] B+ [77, 80) C+ [67, 70)
A [85, 90) B [73, 77) C [63, 67)
A− [80, 85) B− [70, 73) C− [60, 63)
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Important dates, tentative plan, and websites

I Tentative plan:
I Incentives: 5 weeks.
I Information: 5 weeks.
I Student presentations: 4 weeks.
I Review and preview: 1 week.

I CEIBA.
I Viewing your grades.

I http://www.ntu.edu.tw/~lckung/courses/IE16/.
I Downloading course materials.
I Linking to lecture videos.

I https://piazza.com/ntu.edu.tw/fall2016/im7011/.
I On-line discussions.
I Receiving announcements.
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Quiz

I Now it is time for a quiz!
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Road map
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I Applications.
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Convex sets

Definition 1 (Convex sets)

A set F is convex if

λx1 + (1− λ)x2 ∈ F

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Convex functions

Definition 2 (Convex functions)

For a convex domain F , a function f(·) is convex over F if

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2)

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Some examples

I Convex sets?
I X1 = [10, 20].

I X2 = (10, 20).

I X3 = N.

I X4 = R.

I X5 = {(x, y)|x2 + y2 ≤ 4}.
I X6 = {(x, y)|x2 + y2 ≥ 4}.

I Convex functions?
I f1(x) = x+ 2, x ∈ R.

I f2(x) = x2 + 2, x ∈ R.

I f3(x) = sin(x), x ∈ (0, 2π).

I f4(x) = sin(x), x ∈ (π, 2π).

I f5(x) = log(x), x ∈ (0,∞).

I f6(x, y) = x2 + y2, (x, y) ∈ R2.

Overview 17 / 45 Ling-Chieh Kung (NTU IM)



Course overview Convexity and optimization Applications

Strictly convex and concave functions

Definition 3 (Strictly convex functions)

For a convex domain F , a function f(·) is strictly convex over F if

f
(
λx1 + (1− λ)x2

)
< λf(x1) + (1− λ)f(x2)

for all λ ∈ (0, 1) and x1, x2 ∈ F such that x1 6= x2.

Definition 4 ((Strictly) concave functions)

For a convex domain F , a function f(·) is (strictly) concave over
F if −f(·) is (strictly) convex.
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Derivatives of convex functions
I In this course, most of the functions are twice-differentiable with

continuous second-order derivatives.
I Recall a function’s gradient and Hessian:

I For an n-dimensional
differentiable function f(x), its
gradient is the n× 1 vector

Of ≡


∂f

∂x1
...
∂f

∂xn

 .

I For an n-dimensional
twice-differentiable function
f(x1, ..., xn), its Hessian is the
n× n matrix

O2f ≡



∂2f

∂x21
· · · ∂2f

∂x1 ∂xn
...

. . .
...

∂2f

∂xn ∂x1
· · · ∂2f

∂x2n

 .

I (Calculus) If the second-order derivatives are all continuous, the
Hessian is symmetric.
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Derivatives of convex functions
I Let f be twice-differentiable with continuous second-order derivatives:

Proposition 1

For f : R→ R over an interval F ⊆ R:
I f is (strictly) convex over F if and only if f ′′(x) ≥ 0 (> 0) for all x ∈ F .
I f is (strictly) concave over F if and only if f ′′(x) ≤ 0 (< 0) for all x ∈ F .

Proposition 2

For f : Rn → R over a region F ⊆ Rn:
I f is (strictly) convex over F if and only if O2f(x) is positive

(semi)definite for all x ∈ F .
I f is (strictly) concave over F if and only if O2f(x) is negative

(semi)definite for all x ∈ F .

I (Linear Algebra) A symmetric n× n matrix A is called positive
(semi)definite if yTAy ≥ 0 (> 0) for all y ∈ Rn.
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Some examples revisited

I f1(x) = x+ 2, x ∈ R: f ′′1 (x) = 0, convex and concave.

I f2(x) = x2 + 2, x ∈ R: f ′′2 (x) = 2 > 0, strictly convex.

I f3(x) = sin(x), x ∈ (0, 2π), f ′′3 (x) = − sin(x), neither.

I f4(x) = sin(x), x ∈ (π, 2π), f ′′4 (x) = − sin(x) > 0, strictly convex.

I f5(x) = log(x), x ∈ (0,∞): f ′′5 (x) = − 1
x2 < 0, strictly concave.

I f6(x, y) = x2 + y2, (x, y) ∈ R2: O2f6(x, y) =

[
2 0
0 2

]
is positive

definite, strictly convex.
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Linear programming

I Consider the problem

z∗ = max x1 + x2

s.t. x1 + 2x2 ≤ 6

2x1 + x2 ≤ 6

xi ≥ 0 ∀i = 1, 2.

I The feasible region is the shaded area.
I An optimal solution is (x∗1, x

∗
2) = (2, 2). Is

it unique?
I The corresponding objective value z∗ = 6.

I An optimization problem is a linear
program (LP) if the objective function
and constraints are all linear.
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Nonlinear programming
I An optimization problem is a nonlinear program (NLP) if it is not a

linear program.

I Consider the problem

z∗ = max x1 + x2

s.t. x21 + x22 ≤ 16

x1 + x2 ≥ 1.

I What is the feasible region?
I What is an optimal solution? Is it unique?
I What is the value of z∗?

I An optimization problem is a convex program if in it we maximize a
concave function over a convex feasible region.

I All convex programs can be solved efficiently.

I It may not be possible to solve a nonconvex program efficiently.
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Infeasible and unbounded problems

I Not all problems have an optimal solution.

I A problem is infeasible if there is no feasible solution.
I E.g., max{x2|x ≤ 2, x ≥ 3}.

I A problem is unbounded if given any feasible solution, there is
another feasible solution that is better.
I E.g., max{ex|x ≥ 3}.
I How about min{sinx|x ≥ 0}?

I A problem may be infeasible, unbounded, or finitely optimal (i.e.,
having at least one optimal solution).
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Set of optimal solutions

I The set of optimal solutions of a problem max{f(x)|x ∈ X} is

argmax{f(x)|x ∈ X}.

I For f(x) = cosx and X = [0, 2π], we have

argmax
{

cosx
∣∣∣x ∈ [0, 2π]

}
= {0, 2π}.

I If x∗ is an optimal solution of max{f(x)|x ∈ X}, we should write

x∗ ∈ argmax{f(x)|x ∈ X},

NOT x∗ = argmax{f(x)|x ∈ X}!
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Global optima
I For a function f(x) over a feasible region F :

I A point x∗ is a global minimum if f(x∗) ≤ f(x) for all x ∈ F .
I A point x′ is a local minimum if for some ε > 0 we have

f(x′) ≤ f(x) ∀x ∈ B(x′, ε) ∩ F,

where B(x0, ε) ≡ {x|d(x, x0) ≤ ε} and d(x, y) ≡
√∑n

i=1(xi − yi)2.

I Global maxima and local maxima are defined accordingly.
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First-order necessary condition

I Consider an unconstrained problem

max
x∈Rn

f(x).

Proposition 3 (Unconstrained FONC)

For a differentiable function f : Rn → R, a point x∗ is a local
maximum of f only if
I f ′(x∗) = 0 if n = 1.
I Of(x∗) = 0 if n ≥ 2.
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Examples

I Consider the problem

max
x∈R

x3 − 9

2
x2 + 6x+ 2

The FONC yields

3(x2 − 3x+ 2) = 0.

Solving the equation gives us 1
and 2 as two candidates of local
maxima.
I It is easy to see that x∗ = 1 is a

local maxima but x̃ = 2 is NOT.

I Consider the problem

max
x∈R2

f(x) = x21 − x1x2 + x22 − 6x2.

The FONC yields

Of(x) =

[
2x1 − x2

−x1 + 2x2 − 6

]
=

[
0
0

]
.

Solving the linear system gives us
(2, 4) as the only candidate of
local maxima.
I Note that it is NOT necessarily a

local maximum!
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Second-order necessary condition

I Let’s proceed further.

Proposition 4 (Unconstrained SONC)

Suppose f : Rn → R is twice-differentiable. For a point x∗ to be a
local maximum of f , we need:
I f ′′(x∗) ≤ 0 if n = 1.
I O2f(x∗) is negative semidefinite if n ≥ 2.

I Note that we do not need the function to be concave; we only need f ′′

or O2f to be negative or negative definite at the point x∗.

I In this course, we will not apply the SONC a lot.

I Here our point is that a local maximum requires NOT just

∂2f

∂x2i
≤ 0 ∀i = 1, ..., n.

Overview 29 / 45 Ling-Chieh Kung (NTU IM)



Course overview Convexity and optimization Applications

We want more than candidates!

I The FONC and SONC produce candidates of local maxima/minima.

I What’s next?
I We need some ways to ensure local optimality.
I We need to find a global optimal solution.

I If the function is convex or concave, things are much easier:

Proposition 5

For a differentiable convex (concave) function f : Rn → R:
I x∗ is a global minimum (maximum) if and only if Of(x∗) = 0.
I The global optimum is unique if f is strictly convex or concave.
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Remarks

I When you are asked to solve a problem:
I First check whether the objective function is convex/concave. If so the

problem typically becomes much easier.

I All the conditions for unconstrained problems apply to interior points
of a feasible region.

I One common strategy for solving constrained problems proceeds in the
following steps:
I Ignore all the constraints.
I Solve the unconstrained problem.
I Verify that the unconstrained optimal solution satisfies all constraints.

I If the strategy fails, we seek for other ways.
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Binding constraints and boundary solutions

I An optimal solution may lie on the boundary of the feasible region.
I It is a boundary solution or a corner solution.

I We need to take a look at those binding (or active) constraints:

Definition 5

Let g(·) ≤ b be an inequality constraint and x̄ be a solution. g(·) is
binding at x̄ if g(x̄) = b.

I x1 + x2 ≤ 10 is binding at (x1, x2) = (2, 8).
I 2x1 + x2 ≥ 6 is nonbinding at (x1, x2) = (2, 8).
I x1 + 3x2 = 9 is binding at (x1, x2) = (6, 1).

I Remarks:
I An inequality is nonbinding (inactive) at a point if it is strictly satisfied.
I An equality constraint is always binding at any feasible solution.
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Binding constraints and boundary solutions

I Consider a single-dimensional constrained optimization problem

max f(x)

s.t. gi(x) ≤ 0 ∀i = 1, ...,m.

I If f(·) is strictly concave:
I Apply the FOC to obtain a candidate solution x̄.
I If x̄ is feasible, it is optimal.
I Otherwise, the feasible point that is closest to x̄ is optimal.

I In general:
I Apply the FONC and SONC to obtain a set of candidate solutions.
I Include all the boundary points as candidate solutions.
I Compare all the candidate solutions to find an optimal one.

I For a multi-dimensional constrained optimization problem, more
advanced techniques are required (e.g., the KKT condition).
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Monopoly pricing

I Suppose a monopolist sells a single product to consumers.

I Consumers are heterogeneous in their willingness-to-pay, or
valuation, of this product.

I One’s valuation, θ, lies on the interval [0, b] uniformly.
I He buys the product if and only if his valuation is above the price.
I Consumers’ decisions are independent.
I The total number of consumers is a.
I Given a price p, in expectation the number of consumers who buy the

product is

aPr(θ ≥ p) = a

(
1− p

b

)
.

I The unit production cost is c.

I The seller chooses a unit price p to maximize her total expected profit.
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Formulation

I The endogenous decision variable is p.

I The exogenous parameters are a, b, and c.

I The only constraint is p ≥ 0.

I Let π(p) be the profit under price p. We have

π(p) = (p− c)a
(

1− p

b

)
.

I The complete problem formulation is

max (p− c)a
(

1− p

b

)
s.t. p ≥ 0.

I It is without loss of generality to normalize the population size a to 1.
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Solving the problem

I Given that π(p) = a
b (p− c)(b− p), let’s show it is strictly concave:

I π′(p) =
a

b
(b+ c− 2p).

I π′′(p) = −2

(
a

b

)
< 0.

I Great! Now let’s ignore the constraint p ≥ 0.

I Applying the FOC, the unconstrained optimal solution is

b+ c− 2p̄ = 0 ⇔ p̄ =
b+ c

2
.

I Does p̄ satisfy the ignored constraint? Is it globally optimal?
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Managerial/economic implications

I The optimal price p̄ = b+c
2 tells us something:

I p̄ is increasing in the highest possible valuation b. Why?
I p̄ is increasing in the unit cost c. Why?
I p̄ has nothing to do with the total number of consumer a. Why?

I The optimal profit π∗ ≡ π(p̄) = a(b−c)2
4b .

I π∗ is decreasing in c. Why?
I π∗ is increasing in a. Why?
I How is π∗ affected by b?
I Let’s answer it:

∂

∂b
π∗ =

a(b− c)(b+ c)

4b2
> 0 (why b > c?).

I It is these qualitative managerial/economic implications that matters.

I Never forget to verify your solutions with your intuitions.
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Impact of price control

I Sometimes the price is controlled (e.g., by the government) and has a
cap K.

I For the problem

max (p− c)a
(

1− p

b

)
s.t. p ∈ [0,K],

the first-order solution b+c
2 may be infeasible.

I The optimal price is

p∗ =

{
b+c
2 if b+c

2 ≤ K
K otherwise

.

Overview 39 / 45 Ling-Chieh Kung (NTU IM)



Course overview Convexity and optimization Applications

Newsvendor problem

I In some situations, people sell perishable products.
I They become valueless after the selling season is end.
I E.g., newspapers become valueless after each day.
I High-tech goods become valueless once the next generation is offered.
I Fashion goods become valueless when they become out of fashion.

I In many cases, the seller only have one chance for replenishment.
I E.g., a small newspaper seller can order only once and obtain those

newspapers only at the morning of each day.

I Often sellers of perishable products face uncertain demands.

I How many products one should prepare for the selling season?
I Not too many and not too few!
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Newsvendor model

I Let D be the uncertain demand.

I Let F and f be the cdf and pdf of D (assuming D is continuous).

I Let r and c be the unit sales revenue and purchasing cost, respectively.

I Let q be the order quantity.

I The (expected) profit-maximizing newsvendor solves

max
q≥0

rE
[

min{q,D}
]
− cq.

I Let π(q) = rE[min{q,D}]− cq be the expected profit function.
I The model can be expanded to include salvage values, disposal fees,

shortage costs, etc.
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Convexity of the profit function

I The expected profit function π(q) is

π(q) = rE
[

min{q,D}
]
− cq

= r

{∫ q

0

xf(x)dx+

∫ ∞
q

qf(x)dx

}
− cq

= r

{∫ q

0

xf(x)dx+ q
[
1− F (q)

]}
− cq.

I We have

π′(q) = r

{
qf(q) + 1− F (q)− qf(q)

}
− c = r

[
1− F (q)

]
− c

and π′′(q) = −rf(q) < 0. π(q) is strictly concave.
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Optimizing the order quantity

I Let q̄ be the order quantity that satisfies the FOC, we have

r
[
1− F (q̄

]
− c = 0

⇒ F (q̄) = 1− c

r
or 1− F (q̄) =

c

r
.

I Such q̄ must be positive (for regular demand distributions).
I So q̄ is optimal.
I The quantity q̄ is called the newsvendor quantity.
I The formula applies to any continuous random variable D.
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Interpretations of the newsvendor quantity

I The newsvendor quantity q̄ satisfies
1− F (q̄) = c

r .
I The probability of having a shortage,

1− F (q), is decreasing in q.

I The optimal quantity q̄ is:
I Decreasing in c.
I Increasing in r.

Does that make economic sense?
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Impact of capacity limitation

I Sometimes the capacity is limited and at most K units can be ordered.

I For the problem

max
q∈[0,K]

rE
[

min{q,D}
]
− cq,

the newsvendor quantity q̄ satisfying 1− F (q̄) = c
r may be infeasible.

I The optimal order quantity is

q∗ =

{
q̄ if r

[
1− F (K)

]
− c ≤ 0

K otherwise
,

where r[1− F (K)]− c ≤ 0 is equivalent to q̄ ≤ K (why?).
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