Signaling Games with a Continuous Principal's Action Space

Ling-Chieh Kung*

1 Model

Consider the following signaling problem with a continuous decision space. A manufacturer sells a product of hidden reliability r to a consumer. We have $r \in \{r_L, r_H\}$, and the consumer's prior belief on r is $\Pr(r = r_L) = \beta = 1 - \Pr(r = r_H)$. The manufacturer chooses a price $t \in \mathbb{R}$ and a warranty protection probability $w \in [0, 1]$. By selling the product, the type-i manufacturer's expected utility is

$$u_i^M(t,w) = t - (1 - r_i)wk,$$

where k is the cost of fixing a broken product. By buying the product with r as the expected reliability, the consumer's expected utility is

$$u^C = r\theta + (1-r)\eta w - t,$$

where θ is the utility of using a functional product and η is the utility of using a fixed product. We assume that

$$k > \eta$$
 and $\theta > \eta$.

2 Analysis

2.1 First best

Assume that r is public, let's find the type-i manufacturer's first-best offer (t_i^{FB}, w_i^{FB}) with reliability r_i . The manufacturer's problem is

$$\max_{\substack{t \in \mathbb{R}, w \in [0,1]}} t - (1 - r_i)wk$$

s.t. $r\theta + (1 - r_i)\eta w - t \ge 0,$

^{*}Department of Information Management, National Taiwan University; lckung@ntu.edu.tw.

which reduces to looking for $w \in [0, 1]$ to maximize $r\theta + (1 - r_i)(\eta - k)w$. As $\eta < k$, we have $w^{FB} = 0$ and thus $t^{FB} = r_i\theta$. Note that both types of manufacturers have no incentive to offer a warranty, and the high-type manufacturer earns more.

2.2 Second best

Assume that r is private, let's find the high-type manufacturer's offer (t_H^*, w_H^*) in a separating equilibrium. Suppose that the low-type manufacturer chooses its first-best offer $(t_i^*, w_i^*) = (r_L \theta, 0)$. The high-type manufacturer's problem is

$$\max_{t_H \in \mathbb{R}, w_H \in [0,1]} t_H - (1 - r_H) w_H k$$

s.t. $r_H \theta + (1 - r_H) \eta w_H - t_H \ge 0$ (IR)
 $t_L^* - (1 - r_L) w_L^* k \ge t_H - (1 - r_L) w_H k$ (IC-L)
 $t_H - (1 - r_H) w_H k \ge t_L^* - (1 - r_H) w_L^* k$. (IC-H)

By replacing t_i^* and w_i^* by $r_L \theta$ and 0, the problem reduces to

$$\max_{t_H \in \mathbb{R}, w_H \in [0,1]} t_H - (1 - r_H) w_H k$$

s.t.
$$r_H \theta + (1 - r_H) \eta w_H - t_H \ge 0 \quad (IR)$$
$$r_L \theta \ge t_H - (1 - r_L) w_H k \quad (IC-L)$$
$$t_H - (1 - r_H) w_H k \ge r_L \theta. \quad (IC-H)$$

Let's ignore (IC-H) for a while. Suppose that (IC-L) is not binding, then (IR) is binding, and the problem reduces to

$$\max_{w_H \in [0,1]} r_H \theta + (1 - r_H)(\eta - k) w_H,$$

and the optimal solution is $w_H = 0$ and $t_H = r_H \theta$. This violates (IC-L), so we know (IC-L) must be binding. Therefore, the problem reduces to

$$\max_{\substack{w_H \in [0,1]\\ \text{s.t.}}} r_L \theta + (r_H - r_L) w_H k$$

s.t.
$$r_H \theta + (1 - r_H) \eta w_H - \left[r_L \theta + (1 - r_L) w_H k \right] \ge 0, \quad (\text{IR})$$

where the (IR) constraint is equivalent to

$$(r_H - r_L)\theta + \left[(1 - r_H)\eta - (1 - r_L)k\right]w_H \ge 0.$$

Note that as $r_H > r_L$ and $k > \eta$, we have $(1 - r_H)\eta - (1 - r_L)k < 0$, and thus w_H is bounded above. Moreover, the objective function is clearly maximized when $w_H = 1$. Therefore, we have

$$w_{H}^{*} = \min\left\{1, \frac{(r_{H} - r_{L})\theta}{(1 - r_{L})k - (1 - r_{H})\eta}\right\} \qquad t_{H}^{*} = r_{L}\theta + (1 - r_{L})w_{H}^{*}k.$$

It is straightforward to verify that (IC-H) is satisfied.