Ling-Chieh Kung

Department of Information Management National Taiwan University

Road map

- ► Introduction.
- ► Model.
- Signaling by prices.
- Signaling by prices and specialization.

Specialization

- ▶ We see **specialization** for some firms.
 - "Paint and wallpaper specialists" vs. "carpentry, paint, and landscaping services providers".
 - "We do it all" vs. "brake people".
- By specializing rather than providing a product mix, some potential profits go away.
 - ▶ When there is a synergy among multiple products/services.
 - Economies of scale.
 - ► Complementarity among products/services.
- ▶ Why?
- ▶ Sometimes they have no choice: technology or capacity constraints.
- ▶ Sometimes specialization enhances quality or reduces costs.
- ► Any other reason?

Specialization as a signaling device

- ► Kalra and Li (2008) shows that a firm may signal its hidden quality through specialization.¹
- ▶ This is especially true for **effort-intensive** areas.
 - Specialization enhances quality or reduces costs.
 - Quality varies a lot for different services.
 - Consumers are quite uncertain about the quality.
- ▶ It may be beneficial to specialize.
 - ▶ In the **secondary category**, I lose some profit.
 - However, I also save some costs.
 - ► Moreover, I earn more in the **primary category** because consumers know that my quality is high.

¹Karla, A. and S. Li, 2008, "Signaling quality through specialization," Marketing Science 27(2), 168–184.

Key intuitions

- Is a separation really possible?
- Suppose there are two firms, one's quality is high and one's is low.
- ► Consumers cannot tell whose quality is high. They pay an average price for both services.
 - ▶ The high-quality firm tries to signal to win higher payments.
 - ▶ Why the low-quality firm chooses not to **mimic** the high-type one?
- ▶ Offering a low-quality service incurs a low service cost.
 - ▶ The **cost reduction** from specialization is low.
 - ► The **opportunity cost** of giving up a category is high.
- ▶ The **cost of specialization** is higher for the low-quality firm. It is too costly for a low-quality firm to specialize.

Pricing and specialization

- ▶ No matter a firm specializes or not, it has the **pricing decision**.
- ▶ A firm may signal through prices only.
 - ► The high-quality firm charges higher prices.
- ▶ A firm may at the same time signal through specialization.
 - ► Specialization serves as a **complement** to the price signal.
 - ▶ It helps the high-quality firm to further differentiate itself.
- ▶ Other signaling devices (not discussed here):
 - ▶ Advertising, umbrella branding, retailer reputation, money back guarantees, slotting allowance, warranties, salesforce compensation, etc.

Road map

- Introduction.
- Model.
- Signaling by prices.
- Signaling by prices and specialization.

Model

•0000

Firms

- ▶ There is a firm facing two **categories**, categories 1 and 2.
 - ▶ The firm is able to enter both categories at the same time.
 - It may also **specialize** in only category 1.
 - ▶ The demands for the two categories are **independent**.
- \blacktriangleright The firm's quality may be either **high or low** (label: h or l).
 - ▶ High in both categories or low in both categories.

Costs and prices

- ▶ Serving multiple markets (label: m) or specializing in one market (label: s) require different unit service costs.
- ▶ If multiple services are offered:
 - C_{im}^{j} = unit cost of service $i \in \{1, 2\}$ if the quality is $j \in \{l, h\}$.
 - $C_{i-}^{h} > C_{i-}^{l}$ for i = 1, 2.
- ▶ If a single service is offered:
 - ▶ $C_{1 \circ}^{j}$ is the unit cost for category 1 if the quality is j.
- $C_{1m}^j = \alpha C_{1s}^j$ where $\alpha > 1$: There is a **cost reduction** for specialization.
- ▶ Unit prices for the two categories are chosen by the firm.
 - ▶ P_{im}^{j} = price of service $i \in \{1, 2\}$ offered by the firm of type $j \in \{l, h\}$.
 - ▶ P_{1s}^j = price of service 1 offered by the specializing firm of type $j \in \{l, h\}$.

Demands

- ▶ The consumer's willingness-to-pay of service i is θ_i , $i \in \{1, 2\}$.
 - \bullet $\theta_1 \sim \text{Uni}(0,1)$ and $\theta_2 \sim \text{Uni}(0,\delta)$.
 - \triangleright δ may be greater than, equal to, or less than 1.
- ▶ The consumer's utility is $U_i^j = \theta_i q_i^j P_i^j$ for buying service i from a type-i firm.
 - ► This can be evaluated if the quality is **public** or the two types of firm play a separating equilibrium.
 - ▶ If the consumer cannot tell the quality, he buys the product if the expected utility $\theta_i[\lambda q_i^h + (1-\lambda)q_i^l] - P_i \ge 0$. λ is the **prior belief**.
- ▶ Given a price P for a service, the **demand** is $D = 1 \frac{P}{Q}$, where Q is the quality (under a separation) or expected quality (under pooling).
- ▶ The **profit** in that category is $\Pi = D(P C)$.
- ▶ The firm can always make money in either category.

²Or $\delta - \frac{P}{O}$ for category 2.

³Proper indices are needed for Π_{it}^j , $j \in \{l, h\}$, $i \in \{1, 2\}$, $t \in \{s, m\}$.

Timing

- ▶ The sequence of events is as follows:
 - ▶ Nature selects the firm's quality according to the prior λ .
 - ▶ The firm decides whether to enter both categories or just category 1.
 - The firm determines the price(s).
 - The consumer observes the number of categories entered and the price(s).
 - He forms the posterior belief Λ on the quality.
 - He decides whether to buy.
- ▶ We look for **pure-strategy** equilibria.
 - ► We will only discuss separating equilibria.⁴

⁴Keep in mind that pooling equilibria are still possible in most cases.

- ► Introduction.
- ► Model.
- ▶ Signaling by prices.
- Signaling by prices and specialization.

Benchmark: complete-information case

- ► Suppose the quality is **observable**.
- ▶ Because the firm is able to earn money in either category, under a mild condition (what?), the firm will serve both categories.
- \blacktriangleright In categories 1 and 2, the firm of quality j solves

$$\max_{P} \ \bigg(1 - \frac{P}{q_1^j}\bigg) (P - \alpha C_{1s}^j) \quad \text{and} \quad \max_{P} \ \bigg(\delta - \frac{P}{q_2^j}\bigg) (P - \alpha C_{2s}^j)$$

The first-best prices are

$$P_{1m}^{j^*} = \frac{q_1^j + \alpha C_{1s}^j}{2}$$
 and $P_{2m}^{j^*} = \frac{\delta q_2^j + \alpha C_{2s}^j}{2}$.

► The first-best profit is $\Pi_m^{j^*} = \frac{(q_1^j + \alpha C_{1s}^j)^2}{4q_1^j} + \frac{(\delta q_2^j + \alpha C_{2s}^j)^2}{4q_2^j}$.

Signaling through prices only

- ▶ When qualities are unobservable, the first-best prices are suboptimal.
 - ▶ Fewer consumer will be willing to pay those amounts.
 - ▶ If the firm does not try to signal its quality, it should decrease the prices.
- ▶ Suppose the firm still wants to serve both categories.
- Can **prices along** signal the qualities?

Profit functions

In a **separating** equilibrium, let

$$\Pi_{ma}^t(P_1^t, P_2^t) = \left(1 - \frac{P_1^t}{q_1^t}\right) (P_1^t - \alpha C_{1s}^t) + \left(\delta - \frac{P_2^t}{q_2^t}\right) (P_2^t - \alpha C_{2s}^t)$$

be the type-t firm's profit under prices P_1^t and P_2^t , $t \in \{l, h\}$.

- ▶ Denote $(P_{1ma}^{l^*}, P_{2ma}^{l^*})$ and $(P_{1ma}^{h^*}, P_{2ma}^{h^*})$ as the optimal prices for the low- and high-quality firms under separation, respectively.
 - Naturally, they cannot be identical.

Pricing problems

- ightharpoonup Let $\Pi_{ma}^{l^*} = \Pi_{ma}^l(P_{1ma}^{l^*}, P_{2ma}^{l^*})$ and $\Pi_{ma}^{h^*} = \Pi_{ma}^h(P_{1ma}^{h^*}, P_{2ma}^{h^*})$.
- In a separating equilibrium, we have for the high-quality firm

$$(P_{1ma}^{h^*}, P_{2ma}^{h^*}) = \underset{P_1, P_2}{\operatorname{argmax}} \quad \Pi_{ma}^h(P_1, P_2)$$
s.t.
$$\Pi_{ma}^l(P_1, P_2) \le \Pi_{ma}^l(P_{1ma}^{l^*}, P_{2ma}^{l^*})$$

$$\Pi_{ma}^h(P_{1ma}^{l^*}, P_{2ma}^{l^*}) \le \Pi_{ma}^h(P_1, P_2).$$

and for the low-quality firm

$$(P_{1ma}^{l^*}, P_{2ma}^{l^*}) = \underset{P_1, P_2}{\operatorname{argmax}} \quad \Pi_{ma}^{l}(P_1, P_2)$$
s.t.
$$\Pi_{ma}^{h}(P_1, P_2) \leq \Pi_{ma}^{h}(P_{1ma}^{h^*}, P_{2ma}^{h^*})$$

$$\Pi_{ma}^{l}(P_{1ma}^{h^*}, P_{2ma}^{h^*}) \leq \Pi_{ma}^{l}(P_1, P_2).$$

Separating equilibrium

▶ The following lemma characterize the separating equilibrium.

Lemma 1

Suppose the firm must enter both categories. In the separating equilibrium, the high-quality firm distorts prices upwards in both categories. The low-quality firm, on the other hand, chooses its first-best prices.

- Prices alone can signal quality.
 - ▶ This conclusion is made due to the existence of a separating equilibrium.
- ▶ Price distortions are required.
 - ▶ Why is there a distortion?
 - ▶ Why is it an upward distortion?

Intuitions for signaling through prices

- ▶ If the high-quality firm charges the first-best prices, the low-quality firm will mimic it by charging the same prices.
- ► Therefore, the high-quality firm **upwards distorts** its prices.
 - ▶ This decreases the demands both for the high-quality firm and the low-quality firm mimicking the high-quality one.
- ▶ However, the low-quality firm is **hurt more** due to its **lower costs**.
 - ▶ When the prices are high enough, the low-quality firm will give up.
 - ▶ It will admit its low quality and charge its first-best prices. This is optimal for it (even if the low quality is revealed).

Impacts of signaling through prices

- ▶ If we look at this game from outside:
 - ► There is **just one** firm!
 - ▶ Under complete information, the firm charges some prices.
 - ▶ Under incomplete information, the **prices may become higher**.
 - "My quality (and cost) is high, otherwise I will not charge such a high price."
 - ► Information asymmetry causes **inefficiency**.
- ▶ It is still possible for the prices to eventually become lower (in pooling equilibria).

Road map

- ► Introduction.
- ► Model.
- Signaling by prices.
- ▶ Signaling by prices and specialization.

Signaling also through specialization

- ▶ Is it possible to also signal through **specialization**?
 - ▶ "Also": There is still the pricing decision.
- ▶ In a separating equilibrium, we will see:
 - ► The high-quality firm **specializes** in category 1.
 - ▶ The low-quality firm serves both categories.
- ▶ Let

$$\Pi_s^h(P) = \left(1 - \frac{P}{q_1^h}\right)(P - C_{1s}^h)$$

be the type-h firm's profit under price P in a separating equilibrium.

▶ In a separating equilibrium, we have for the high-quality firm

$$\begin{aligned} \max_{P} \quad & \Pi_s^h(P) \\ \text{s.t.} \quad & \Pi_s^l(P) \leq \Pi_m^l(P_{1m}^{l*}, P_{1m}^{l*}) \\ & \Pi_{ma}^{h^*} \leq \Pi_s^h(P). \end{aligned}$$

- ► The low-type firm finds it suboptimal to **mimic** the high-type one.
- ► The high-type firm finds it suboptimal to serve two categories and earn $\Pi_{ma}^{h^*}$ under signaling with prices alone.
- ▶ The problem of the low-quality firm is omitted.
- ▶ Note that due to the second constraint, the firm **earns more** by using specialization as another signaling device.
 - ▶ Be careful! The firm is better off in "this separating equilibrium" than in "that separating equilibrium".
 - ▶ If we also consider pooling equilibria, specialization may be suboptimal.

Separating equilibrium

▶ The following proposition characterize the separating equilibrium.

Lemma 2

There exists a separating equilibrium in which the high-quality firm specializes and upwards distorts the price. The upward distortion is less than that when signaling only though prices. The low-quality firm enters both categories and chooses its first-best prices.

- Prices and specialization can together signal quality.
- ▶ An upward price distortion is still required.
 - ▶ Why the distortion becomes **smaller**?

Intuitions for a smaller distortion

- ▶ Previously, upward price distortions are used to discourage the low-quality firm from mimicking the high-quality one.
 - ► This is possible because the low-quality firm hates high prices.
- ▶ Now, the high-quality firm specializes.
 - ► The low-quality firm also hates specialization: It must give up the profit in category 2.
 - ▶ The upward price distortion needs not to be that much.
- ▶ When will we see specialization?
 - When the market of the second category is small (i.e., δ is small).
 - ▶ When price sensitivity is high (so large price distortions are harmful).
 - When consumers are not confident about the quality (i.e., λ is small).