Linear Algebra and its Applications, Spring 2013
 Final Exam

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

Note. In total there are 110 points, but you may get at most 100. Do not return the problem sheet.

1. (10 points; 5 points each) Consider the matrix $A=\left[\begin{array}{cccccc}1 & 2 & 5 & 1 & 0 & 4 \\ 1 & 2 & 4 & 0 & -3 & 4 \\ 3 & 6 & 14 & 4 & -3 & 13 \\ 2 & 4 & 10 & 0 & 0 & 11\end{array}\right]$.
(a) Do the $L U$ decomposition for A. Perform row exchanges and write down the P matrix when necessary. Do the $L U$ decomposition, not the $L D U$ decomposition.
(b) Project $d=(3,2,4,5)$ onto the column space of A.
2. (15 points) Consider the following two problems regarding determinants.
(a) (5 points) Suppose an $n \times n$ matrix A can be decomposed into $A=Q \Lambda Q^{T}$, where Q is the orthonormal matrix of eigenvectors of A and the diagonal elements of Λ are A 's eigenvalues. By using the equation $A=Q \Lambda Q^{T}$, show that the determinant of A is the product of A 's eigenvalues.
(b) (10 points) Find the determinants of $B \in \mathbb{R}^{4 \times 4}$ and $C \in \mathbb{R}^{n \times n}$, where B and C satisfy

$$
B=\left[\begin{array}{llll}
0 & 2 & 3 & 4 \\
1 & 0 & 3 & 4 \\
1 & 2 & 0 & 4 \\
1 & 2 & 3 & 0
\end{array}\right] \quad \text { and } \quad C_{i j}=\left\{\begin{array}{cc}
0 & \text { if } i=j \\
j & \text { if } i \neq j
\end{array}\right.
$$

3. (15 points) Consider matrix $A=\left[\begin{array}{ccc}0.2 & 0.5 & 0.2 \\ 0.3 & 0.5 & 0.3 \\ 0.5 & 0 & 0.5\end{array}\right]$. Let $u_{0}=\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ and $u_{k}=A u_{k-1}, k=1,2, \ldots$.
(a) (2 points) Find u_{1}.
(b) (2 points) Find u_{2}.
(c) (2 points) Prove that the process $\left\{u_{k}\right\}_{k=1,2, \ldots}$ is neutrally stable WITHOUT finding all the eigenvalues of A.
(d) (5 points) Find u_{∞}, which satisfies $u_{\infty}=A u_{\infty}$.
(e) (2 points) Find the first principal component of A for a given data point $x \in \mathbb{R}^{3}$.
(f) (2 points) Find the first principal component of A^{2} for a given data point $x \in \mathbb{R}^{3}$.
4. (15 points; 3 points each) For each of the following questions regarding an $n \times n$ real matrix A, answer either "True" or "False". Do not provide any explanation.
(a) If all the eigenvalues of A are distinct, then A can be decomposed into $A=Q \Lambda Q^{T}$, where Λ is diagonal and Q is orthornormal.
(b) A is symmetric if and only if A^{\prime} 's eigenvalues are all real.
(c) If $A A^{T}$ is nonsingular, then $A^{T} A$ is nonsingular.
(d) If A is unitary, there can be n independent eigenvectors of A.
(e) If A 's eigenvalues are all positive, A can be decomposed into $A=R^{T} R$, where R has n pivots.
5. (10 points) Find the singular value decomposition for $A=\left[\begin{array}{lll}2 & 0 & 1 \\ 1 & 2 & 0\end{array}\right]$.
6. (20 points) Let A be an $n \times n$ positive semidefinite matrix. Suppose A has distinct eigenvalues λ_{1}, $\lambda_{2}, \ldots, \lambda_{n}$.
(a) (5 points) Prove or disprove that A 's eigenvectors are all orthogonal.
(b) (2 points) Find a lower bound of A 's eigenvalues. Briefly explain why. You CANNOT use $\min _{i=1, \ldots, n}\left\{\lambda_{i}\right\}$ as your answer.
(c) (4 points) Given a constant k, prove or disprove that the eigenvalues of the matrix $A-k I$ are $\lambda_{1}-k, \lambda_{2}-k, \ldots, \lambda_{n}-k$.
(d) (4 points) Consider a nonlinear program that looks for a vector $x \in \mathbb{R}^{n}$ to minimize

$$
f(x)=x^{T} A x-k x^{T} x,
$$

where k is a given constant in \mathbb{R}. Prove or disprove that x is a stationary point of $f(x)$ if and only if x is an eigenvector of A.
(e) (5 points) Suppose now we look for $(x, k) \in \mathbb{R}^{n} \times \mathbb{R}$ to minimize $f(x, k)=x^{T} A x-k x^{T} x$. In other words, now k is also a decision variable. Among all the stationary points, who are local minima? Prove your claim.
7. (10 points) Suppose there is a standard form linear program that minimizes $c^{T} x$ subject to $A x=b$ and $x \geq 0$. Suppose $x \in \mathbb{R}^{n}$ and A is an $m \times n$ matrix where $m \leq n$. Moreover, $b \geq 0$ is an $m \times 1$ column vector. Assume that the rows of A are linearly independent.
(a) (2 points) Suppose $m=2$ and $n=5$, find an upper bound of the number of basic solutions. Prove your claim.
(b) (2 points) Suppose $m=3$ and $n=6$, find an upper bound of the number of basic feasible solutions. Prove your claim.
(c) (3 points) Suppose $A=\left[\begin{array}{lllll}2 & 0 & 1 & 1 & 0 \\ 0 & 4 & 1 & 0 & 1\end{array}\right]$ and $b=\left[\begin{array}{l}4 \\ 8\end{array}\right]$. Find the number of distinct bases. You do not need to list all of them.
Note. A basis is a collection of m basic variables that corresponds to a basic solution. Two different bases may correspond to the same basic solution. In this case, however, they are still treated as distinct bases.
(d) (3 points) For general m and n, is the number of basic feasible solutions always smaller than the number of basic solution? Prove it or find a counterexample.
8. (15 points) Consider a firm selling n products whose demand quantities are determined by the prices. For product $i, i=1, \ldots, n$, the demand quantity is

$$
q_{i}=a_{i}-r p_{i}+\sum_{j \neq i} p_{j}
$$

where $a_{i}>0$ and $r>0$ are given constants. Please note that the demand of one product decreases when its price increases but increases when other products become more expensive. For simplicity, we assume that the production cost is 0 for all products, so the firm's negative profit function is

$$
\pi(p)=-\sum_{i=1}^{n} p_{i}\left(a_{i}-r p_{i}+\sum_{j \neq i} p_{j}\right) .
$$

The nonlinear program to be solved by the firm is to find $p \in \mathbb{R}^{n}$ to minimize $\pi(p)$ subject to $p \geq 0$.
(a) (2 points) Suppose $n=2$, find the Hessian matrix of $\pi(p)$.
(b) (2 points) Suppose $n=2$, find an interval of r such that $\pi(p)$ is strictly convex if and only if r is within that interval. Prove your claim.
(c) (3 points) Suppose $n=3$, find the Hessian matrix of $\pi(p)$.
(d) (3 points) Suppose $n=3$, find an interval of r such that $\pi(p)$ is strictly convex if and only if r is within that interval. Prove your claim.
(e) (5 points) For a general n, find an interval of r such that $\pi(p)$ is strictly convex if and only if r is within that interval. Prove your claim.

