Linear Algebra and its Applications, Spring 2013 Suggested Solution for Final Exam

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. (a) We have

$$
A=\left[\begin{array}{cccccc}
1 & 2 & 5 & 1 & 0 & 4 \\
1 & 2 & 4 & 0 & -3 & 4 \\
3 & 6 & 14 & 4 & -3 & 13 \\
2 & 4 & 10 & 0 & 0 & 11
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
3 & 1 & 1 & 0 \\
2 & 0 & -1 & 1
\end{array}\right]\left[\begin{array}{cccccc}
1 & 2 & 5 & 1 & 0 & 4 \\
0 & 0 & -1 & -1 & -3 & 0 \\
0 & 0 & 0 & 2 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 4
\end{array}\right]=L U
$$

(b) Because the column space is the entire \mathbb{R}^{4}, the projection of any vector in \mathbb{R}^{4} onto the column space is the same vector. Therefore, the projection of d is $(3,2,4,5)$.
2. (a) We have $\operatorname{det} A=\operatorname{det}\left(Q \Lambda Q^{T}\right)=\operatorname{det} Q \operatorname{det} \Lambda \operatorname{det} Q^{T}=\operatorname{det} \Lambda \operatorname{det}\left(Q^{T} Q\right)=\operatorname{det} \Lambda \operatorname{det} I=\operatorname{det} \Lambda$, which is exactly the product of A 's eigenvalues.
(b) - For B, first note that $\operatorname{det} B=24 \operatorname{det} B^{\prime}$, where B^{\prime} is a 4×4 matrix satisfying $B_{i j}^{\prime}=1$ if $i \neq j$ or 0 if $i=j$. For B^{\prime}, note that three of its eigenvalues are -1 , which then implies that the last eigenvalue is 3 (because the sum of eigenvalues are the trace, which is 0). Then we know that $\operatorname{det} B^{\prime}=-3$, the product of the eigenvalues. Collectively, $\operatorname{det} B=-72$.

- For C, which is a generalization of B, we follow the same way. First, $\operatorname{det} C=n!\operatorname{det} C^{\prime}$, where C^{\prime} is an $n \times n$ matrix satisfying $C_{i j}^{\prime}=1$ if $i \neq j$ or 0 if $i=j$. For the eigenvalues of $C^{\prime}, n-1$ are -1 and one is $n-1$. Therefore, $\operatorname{det} C^{\prime}=(-1)^{n-1}(n-1)$ and thus $\operatorname{det} C=(n!)(-1)^{n-1}(n-1)$.

3. (a) $u_{1}=A u_{0}=(0.2,0.3,0.5)$.
(b) $u_{2}=A u_{1}=(0.29,0.36,0.35)$.
(c) Because the sum of each column in A is 1 and all entries in A are no greater than $1, A$ is Markov. This implies that the process is neutrally stable.
(d) As eigenvectors corresponding to the eigenvalue 1 are $\{(5 k, 6 k, 5 k)\}_{k \in \mathbb{R}}, u_{\infty}=\left(\frac{5}{16}, \frac{3}{8}, \frac{5}{16}\right)$.
(e) The problem is not meaningful. Two points are given to you for free.
(f) The problem is not meaningful. Two points are given to you for free.
4. (a) False. A should be symmetric.
(b) False. When A 's eigenvalues are all real, A may be asymmetric.
(c) False. The A in the next problem provides an example.
(d) True. A is unitary implies that A is normal, which then implies that A can have n independent eigenvectors of A.
(e) True. If A 's eigenvalues are all positive, A is positive definite. Therefore, A can be decomposed into $A=R^{T} R$, where R has independent columns. As R has n columns, it must have n pivots.
5. We have

$$
A=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right]\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & \sqrt{7} & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{\sqrt{6}} & \frac{3}{\sqrt{14}} & \frac{-2}{\sqrt{21}} \\
\frac{-2}{\sqrt{6}} & \frac{2}{\sqrt{14}} & \frac{1}{\sqrt{21}} \\
\frac{1}{\sqrt{6}} & \frac{1}{\sqrt{14}} & \frac{4}{\sqrt{21}}
\end{array}\right]^{T} .
$$

6. (a) Let x_{1} and x_{2} be eigenvector's of A associated with λ_{1} and λ_{2}, respectively. Then we have $\lambda_{1} x_{1}^{H} x_{2}=x_{1}^{H} A^{H} x_{2}=x_{1}^{H} A x_{2}=\lambda_{2} x_{1}^{H} x_{2}$, where the second equality comes from the fact that A is positive semidefinite (and thus symmetric). Because $\lambda_{1} \neq \lambda_{2}$, we have $x_{1}^{H} x_{2}=0$, i.e., x_{1} and x_{2} are orthogonal.
(b) An lower bound is 0 , because all eigenvalues must be nonnegative for A to be positive semidefinite.
(c) Suppose μ is an eigenvalue of $A-k I$, we have $(A-k I) x=\mu x$, i.e., $A x=(\mu+k) x$. This implies that $\mu+k$ is an eigenvalue of A. Conversely, if λ is an eigenvalue of A, we have $A x=\lambda x$, which implies that $(A-k I) x=(\lambda-k) x$. We thus know that μ is an eigenvalue of $A-k I$ if and only if $\mu+k$ is an eigenvalue of A. Therefore, if the eigenvalues of A are λ_{1}, λ_{2}, \ldots, λ_{n}, the eigenvalues of $A-k I$ must be $\lambda_{1}-k, \lambda_{2}-k, \ldots, \lambda_{n}-k$.
(d) The statement is false, because a stationary point x must satisfy $A x=k x$, which cannot be satisfied if k is not an eigenvalue of A.
(e) A point (x, k) is a stationary point if and only if $A x=k x$, which requires k to be an eigenvalue of A. For (x, k) to be a local minimum, we need $A-k I$, the Hessian matrix of $f(x, k)$, to be positive semidefinite. This requires that all eigenvalues of $A-k I$ to be nonnegative, and this happens if and only if k is the smallest eigenvalue of A. Therefore, there is a unique local minimum $\left(x_{\min }, \lambda_{\min }\right.$, where $\lambda_{\min }=\min _{i=1, \ldots, n}\left\{\lambda_{i}\right.$ and $x_{\min }$ is the associated eigenvector.
7. (a) An upper bound is $\binom{5}{2}=10$.
(b) An upper bound is $\binom{6}{3}=20$.
(c) There may be at most ten distinct bases. However, because columns 1 and 4 are dependent, x_{1} and x_{4} cannot form a basis. Similarly, x_{2} and x_{5} cannot form a basis. Therefore, there are eight distinct bases.
(d) The statement is false. For example, if $n=m=2$ and the two equality constraints are $2 x_{1}+x_{2}=6$ and $x_{1}+2 x_{2}=6$, there is only one basic solution $(2,2)$, which is also a basic feasible solution.
8. (a) The Hessian matrix is

$$
A_{2}=\left[\begin{array}{cc}
2 r & -2 \\
-2 & 2 r
\end{array}\right]
$$

(b) For $\pi(p)$ to be strictly convex, we need A to be positive definite. This requires that $2 r \geq 0$ and $\operatorname{det} A_{2}=4 r^{2}-4 \geq 0$, which together imply $r>1$. Therefore, $\pi(p)$ is strictly convex if and only if $r>1$.
(c) The Hessian matrix is

$$
A_{3}=\left[\begin{array}{ccc}
2 r & -2 & -2 \\
-2 & 2 r & -2 \\
-2 & -2 & 2 r
\end{array}\right]
$$

(d) For $\pi(p)$ to be strictly convex, we need A to be positive definite. To find a condition for positive definiteness, we calculate the eigenvalues of A_{3}. Clearly if we can make all columns identical, there will be two eigenvalues associated with those identical columns. Therefore, two eigenvalues will be $2 r+2$, which is always positive. The last eigenvalue can be found by $6 r-2(2 r+2)=2 r-4$ (the sum of eigenvalues is the trace) or recognizing that we may have an eigenvalue making the three columns sum to 0 . It then follows that all we need is $2 r-4>0$, i.e., $r>2$.
(e) Similar to the case of $n=3$, for a general n, there will be $n-1$ eigenvalues being $2 r+2$. The last eigenvalue will be $2 n r-(n-1)(2 r+2)=2 r-2(n-1)$. The necessary and sufficient condition we need is $r>n-1$.

