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1. First we represent this linear system in the augmented matrix form 0 2 2 4

1 2 1 4

0 1 −1 0

 .

Then we apply the Gauss-Jordan elimination as follows: 0 2 2 4

1 2 1 4

0 1 −1 0

 →

 1 2 1 4

0 2 2 4

0 1 −1 0

 →

 1 2 1 4

0 1 1 2

0 0 −2 −2



→

 1 2 0 3

0 1 0 1

0 0 1 1

 →

 1 0 0 1

0 1 0 1

0 0 1 1

 .

With this we know the unique solution is (x1, x2, x3) = (1, 1, 1).

2. We use the Gauss-Jordan elimination to compute the inverse: 1 0 1 1 0 0

4 1 −2 0 1 0

3 1 −1 0 0 1

 →
 1 0 1 1 0 0

0 1 −6 −4 1 0

0 1 −4 −3 0 1

 →
 1 0 1 1 0 0

0 1 −6 −4 1 0

0 0 2 1 −1 1



→

 1 0 1 1 0 0

0 1 −6 −4 1 0

0 0 1 1
2 − 1

2
1
2

 →
 1 0 0 1

2
1
2 − 1

2

0 1 0 −1 −2 3

0 0 1 1
2 − 1

2
1
2

 .

Therefore, the inverse is 
1
2

1
2 − 1

2

−1 −2 3
1
2 − 1

2
1
2

 .

3. (a) This is not a convex set. For example, the line segment connecting two feasible solutions -3
and 3 does not completely lie in this set.

(b) This is a convex set as it is a feasible region of a linear program.

(c) This is not a convex set. For example, the line segment connecting two feasible solutions
(1, 0), (e, 1) does not completely lie in this set.

(d) This is a convex set. The first constraint x2

9 + y2

4 ≤ 1 results in a feasible region that is the
area inside an ellipse. The other constraints are all linear and result in half planes. As all
these sets are convex, the intersection is also convex.

(e) This is a convex set as it is a feasible region of a linear program.

4. (a) This is a convex function: all line segments connecting two points on the curve are above the
curve.

(b) This is not a convex function. For example, the line segment connecting the two points
(−1,−1) and (0, 0) on the curve is below the curve.

1



(c) This is not a convex function. For example, the line segment connecting the two points (2, 1)
and (5, 10) on the curve is not completely weakly above the curve.

(d) This is not a convex function. For example, the line segment connecting the two points (−1, 1)
and (0, 0) on the curve is below the curve.

(e) This is a convex function as it is a linear function.

5. (a) We have

A =


6 8 −4
−5 3 2
1 0 2
−1 0 −2
−1 0 0

 , b =


10
−7
4
−4
0

 , and c =
[
−1 −2 3

]
.

(b) (x1, x2, x3) = (2, 0, 1) is not feasible as it violates 5x1 − 3x2 − 2x3 ≥ 7. The corresponding
objective value is 1× 2 + 2× 0− 3× 1 = −1.

(c) (x1, x2, x3) = (1, 1, 2) is not feasible as it violates x1 + 2x3 = 4. The corresponding objective
value is 1× 1 + 2× 1− 3× 2 = −3.

Note. It is fine if you calculate the objective values with the minimization objective function you
find in Part (a).

6. Let

x1 = number of acres of corn planted and

x2 = number of acres of wheat planted.

Then the problem can be formulated as

z∗ = max 30x1 + 100x2

s.t. 4x1 + 10x2 ≤ 40 (Total amount of labor hours)
x1 + x2 ≤ 7 (Total amount of land)

10x1 ≥ 30 (Minimum quantity of corn produced)
x1 ≥ 0 (Not required since we already have 10x1 ≥ 30)

x2 ≥ 0.

7. The decision variables are

xi = number of valves purchased from supplier i, i = 1, ..., 3.

� Solution 1 The problem can be formulated as

min 5x1 + 4x2 + 3x3

s.t. 0.4x1 + 0.3x2 + 0.2x3 ≥ 500 (Demand for large valves)
0.4x1 + 0.35x2 + 0.2x3 ≥ 300 (Demand for medium valves)
0.2x1 + 0.35x2 + 0.6x3 ≥ 300 (Demand for small valves)

x1 ≤ 700 (Supply from supplier 1)
x2 ≤ 700 (Supply from supplier 2)

x3 ≤ 700 (Supply from supplier 3)
x1 ≥ 0

x2 ≥ 0
x3 ≥ 0.

� Solution 2 As the problems become more and more complicated, we will use a more concise
way to write our formulation. For this problem, we label large, medium, and small valves by valve
1, 2, and 3. We then define the following parameters: Ci is the unit purchasing cost of supplier i,
Dj is the demand quantity of valve j, Si is the supply limit of supplier i, and Pij is the percentage
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of valve j of valves purchased from supplier i. Still with xi being the number of valves purchased
from supplier i (i = 1, ..., 3), we formulate the problem as

min

3∑
i=1

Cixi

s.t.

3∑
i=1

Pijxi ≥ Dj ∀ j = 1, 2, 3

xi ≤ Si ∀ i = 1, 2, 3

xi ≥ 0 ∀ i = 1, 2, 3.

Remark. Please compare the two formulations and understand the compact one. Typically we
use capital letters for parameters and small letters for variables. This is good for you to distinguish
parameters and constraints and avoid nonlinear formulations.

8. To formulate this problem, we label the six shifts as in the following table.

Shift Number 1 2 3 4 5 6

Time 0 - 4 4 - 8 8 - 12 12 - 16 16 - 20 20 - 24

The decision variables are

xi = number of officers starting to work at shift i, i = 1, ..., 6.

We also define Di as the number of officers required for shift i for i = 1, ..., 6. Specifically, we have

D =
[

8 7 6 6 5 4
]
.

The problem can then be formulated as

min

6∑
i=1

xi

s.t. x1 + x6 ≥ D1

xi + xi+1 ≥ Di+1 ∀ i = 1, ..., 5

xi ≥ 0 ∀ i = 1, ..., 6.

9. Let the decision variables be

xij = oz of chemical i used for producing drug j, i = 1, 2, j = 1, 2.

Also we define the following parameters: Pj is the sales price of one oz of drug j, Ci is the purchasing
cost of one oz of chemical i, Si is the total amount of supply of chemical i (in oz), and Dj is the
demand size of drug j (in oz) for i = 1, 2 and j = 1, 2. Specifically, we have

P =
[

6 5
]
, C =

[
6
4

]
, S =

[
45
40

]
, D =

[
40 30

]
.

With the definitions of variables and parameters, we formulate the problem as

max

2∑
j=1

Pj

2∑
i=1

xij −
2∑

i=1

Ci

2∑
j=1

xij

s.t.

2∑
i=1

xij ≤ Dj ∀ j = 1, 2

2∑
j=1

xij ≤ Si ∀ i = 1, 2

0.3x11 − 0.7x21 ≥ 0, −0.6x12 + 0.4x22 ≥ 0

xij ≥ 0 ∀ i = 1, 2, j = 1, 2.
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The objective function consists of two parts, the sales revenue and the purchasing cost. The first
constraint ensures that the total sales of each drug point is at most the demand size. The second
constraint ensures that the total usage of each chemical does not excess the supply quantity. The
third constraint ensures the quality. It is very important that you do not use a nonlinear constraint
to ensure quality. The last constraint is the nonnegativity constraint.

10. First we label the following four months as months 1, 2, 3, and 4. Then let the decision variables
be

xt = ending inventory of month t, t = 0, ..., 4, and

yt = production quantity in month t, t = 1, ..., 4.

Also we define the following parameters: Dt is the demand size of month t and Ct is the unit
production cost in month t for all t = 1, ..., 4. Specifically, we have

D =
[

50 65 100 70
]
, C =

[
5 8 4 7

]
.

With the definitions of variables and parameters, we formulate the problem as

min

4∑
t=1

Ctyt + 2

4∑
t=1

xt − 6x4

s.t. xt−1 + yt −Dt = xt ∀ t = 1, ..., 4

x0 = 0

xt, yt ≥ 0 ∀ 0 = 1, ..., 4.

The objective function minimizes the net cost. The first constraint is the inventory balancing
constraint. The second constraint sets the initial inventory to 0. The last constraint is the non-
negativity constraint.

11. First we label cheesecakes as product 1 and black forest cakes as product 2. Let the decision
variables be

xit = ending inventory of product i in month t, i = 1, 2, t = 0, ..., 3, and

yit = production quantity of product i in month t, i = 1, 2, t = 1, ..., 3.

Also we define the following parameters: K is the monthly capacity for producing both products,
Dit is the demand size of product i in month t, Cit is the unit production cost of product i in month
t, and Hi is the per month unit holding cost of product i for i = 1, 2 and t = 1, ..., 3. Specifically,
we have

K = 65, D =

[
40 30 20
20 30 10

]
, C =

[
3.00 3.40 3.80
2.50 2.80 3.40

]
, H =

[
0.50
0.40

]
.

With the definitions of variables and parameters, we formulate the problem as

min

2∑
i=1

(
3∑

t=1

Cityit + Hi

3∑
t=1

xit

)

s.t.

2∑
i=1

yit ≤ K ∀ t = 1, ..., 3

xi,t−1 + yit −Dit = xit ∀ i = 1, 2, t = 1, ..., 3

xi,0 = 0 ∀ i = 1, 2

xit, yit ≥ 0 ∀ i = 1, 2, t = 1, ..., 3.

The objective function minimizes the total cost. The first constraint is the capacity constraint.
The second constraint is the inventory balancing constraint. The third constraint sets the initial
inventory to 0. The last constraint is the nonnegativity constraint.
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