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1. (a) Let x1 and x2 be two points in S1 ∩ S2, then naturally x1 and x2 are both in S1. As S1

is convex, we have λx1 + (1 − λ)x2 ∈ S1 for all λ ∈ [0, 1]. Similarly, as S2 is convex, we
have λx1 + (1 − λ)x2 ∈ S2 for all λ ∈ [0, 1]. In then follows that, for any λ ∈ [0, 1], we have
λx1 + (1− λ)x2 ∈ S1 ∩ S2. This implies that S1 ∩ S2 is convex.

(b) Let S1 = [0, 1] and S2 = [2, 3]. We may pick x1 = 1 and x2 = 2 and then find that
1
2x1 + 1

2x2 /∈ S1 ∪ S2. Therefore, S1 ∪ S2 is not convex.

2. (a) The feasible region and two isocost lines are illustrate in Figure 1.

Figure 1: Graphical solution for Problem 2a. Figure 2: Graphical solution for Problem 3.

(b) It is clear that we are looking for the feasible point that is closest to the point (3, 1). Graph-
ically it can be found that the point (2, 2) is the closest feasible point, and thus (2, 2) is the
optimal solution.

(c) The only extreme point of the feasible region is (0, 0). As it is not an optimal solution, there is
no extreme point optimal solution. There needs not to have an extreme point optimal solution
because this is not a linear program: The objective function is nonlinear.

3. The function is depicted in Figure ??.

(a) There are three local minima: 0, 3
2π, and 3π. The global minimum is 3

2π.

(b) There are two local maxima: π
2 , 5

2π. Both of them are global maxima.

4. (a) Let

x1 = hours of running process 1 and

x2 = hours of running process 2

be the decision variables. Then the problem can be formulated as

min 4x1 + x2
s.t. 3x1 + x2 ≥ 10 (Requirement of chemical A)

x1 + x2 ≥ 5 (Requirement of chemical B)
x1 ≥ 3 (Requirement of chemical C)
x1 ≥ 0 (This is not required since we already have x1 ≥ 3)

x2 ≥ 0.
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Figure 3: Graphical solution for Problem 4a. Figure 4: Graphical solution for Problem 5a.

(b) The graphical solution of this problem is shown in Figure 3. The feasible region is the shaded
zone. The dotted line is the isocost line with (−4,−1) as the improving direction. The optimal
solution is point A, which is (3, 2). The minimized objective value is 4×3+2 = 14. Therefore,
Leary Chemical should run 3 hours of process 1 and 2 hours of process 2. The company will
have $14 as its cost.

5. (a) The graphical solution of this problem is shown in Figure 4. The feasible region is the shaded
zone. The dotted line is the isoprofit line with (4, 1) as the improving direction. As shown in
this figure, all points between A = ( 4

3 ,
8
3 ) and B = (2, 0) are optimal. Therefore, this problem

has multiple optimal solutions.

(b) The binding constraints at the point (x1, x2) = (2, 0) are 8x1 + 2x2 ≤ 16 and x2 ≥ 0.

(c) There is no binding constraints at the point (x1, x2) = (1, 3).

6. (a) True. An LP is unbounded implies that we can push its isoprofit line as far as we want and
still have feasible solution at the line. This implies the feasible region is unbounded.

(b) False. For example, consider the LP of maximizing x1 subject to x1 ≤ 10. For this LP, the
feasible region is unbounded (all real numbers that is no greater than 10 are feasible), but
there is an optimal solution: x∗1 = 10 optimizes the LP.

7. The graphical solution of this problem is shown in Figure 5. For each constraint, we associate an
arrow indicating the feasible side. From the figure we can see that there is no feasible solution for
this problem and thus this problem is infeasible.

Another way to see the infeasibility of this problem is to multiply the third constraint by −1. As
it becomes x1 − x2 ≤ −3, it is clear that we can not find a pair of x1 and x2 such that x1 − x2 is
no less than 0 and no greater than −3 at the same time. Therefore, this problem is infeasible.

8. To formulate this problem, we label the four shifts as in the following table.

Shift Number 1 2 3 4

Time 0 - 6 6 - 12 12 - 18 18 - 24
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Figure 5: Graphical solution for Problem 7.

The decision variables are

xij = number of officers working at shifts i and j, i = 1, ..., 4, j = i+ 1, ..., 4.

The problem can then be formulated as1

min 144(x12 + x23 + x34 + x14) + 216(x13 + x24)

s.t. x12 + x13 + x14 ≥ 15 (Demand in shift 1)

x12 + x23 + x24 ≥ 5 (Demand in shift 2)

x13 + x23 + x34 ≥ 12 (Demand in shift 3)

x14 + x24 + x34 ≥ 6 (Demand in shift 4)

xi ≥ 0 ∀ i = 1, ..., 4.

Here 144 = 12× 12 is the per worker wage for one who works in two consecutive shifts. Similarly,
216 = 18 × 12 is that for one who works in two nonconsecutive shifts. The objective function
minimize the total payments while the constraints guarantee that there are enough workers for
every shifts.2

9. First, we label the two refinery at Los Angeles and Chicago as refinery 1 and 2 and the two
distribution points at Houston and New York City as distribution points 1 and 2. Then let the
decision variables be

xi = million barrels of capacity created for refinery i, i = 1, 2, and

yij = million barrels of oil shipped from refinery i to distribution point j, i = 1, 2, j = 1, 2.

For parameters, let Pij be the profit (in thousands) per million barrels of oil shipped from refinery
i to distribution point j, Ci be the unit cost (in thousands) of expanding capacity for one million
barrel in refinery i, Ki be the current capacity (in million barrel) in refinery i, and Dj be the
demand size (in million barrels) at distribution point j for all i = 1, 2 and j = 1, 2:

P =

[
20 15
18 17

]
, C =

[
120
150

]
, K =

[
2
3

]
, D =

[
5 5

]
.

1It does not matter if you use 12 and 18 instead of 144 and 216 in the formulation. The optimal solution will not be
affected. However, using 144 and 216 is suggested because by doing so the objective function gives the amount of total
payments as we desire.

2We can still write down the compact formulation for this problem. We do not include it here because it is a little bit
too complicated. It would be great if you try to work it out by yourself. In case you have any question, I’m more than
happy to discuss with you.
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With the definitions of variables and parameters, we formulate the problem as

max 10

2∑
i=1

2∑
j=1

Pijyij −
2∑
i=1

Cixi

s.t.

2∑
i=1

yij ≤ Dj ∀ j = 1, 2

2∑
j=1

yij ≤ Ki + xi ∀ i = 1, 2

xi, yij ≥ 0 ∀ i = 1, 2, j = 1, 2.

The objective function consists of two parts, the 10-year total profit and the one-time expansion
cost. The first constraint ensures that the total sales at each distribution point is at most the
demand size. The second constraint ensures that the total production quantity at each refinery
does not excess the (post-expansion) capacity. The last constraint is the nonnegativity constraint.
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