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Suggested Solution for Homework 06

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. The branch-and-bound tree for solving this problem is depicted in Figure 1. The optimal solution,
as we expect, is still (5,0). The optimal objective value is 40.
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Figure 1: Branch-and-bound tree for Problem 1

2. A branch-and-bound tree is depicted below. For each node, we need to solve a linear program
(probably with some additional constraints). For these two-dimensional problems, it is suggested
to use the graphical approach to solve them. The complete process is summarized below:

In node 1, we solve the LP relaxation of the original IP. Because x5 is fractional, we branch
on To.

In node 2, the optimal solution has z; fractional. We keep this node on hold for a moment.

In node 3, the optimal solution is an integer solution. Because zo > z3, it is possible to find
an integer solution better than x® by going further from node 2. Therefore, we branch on
from node 2.

In node 4, the optimal solution is an integer solution. Because it is not better x3, it can be
ignored.

In node 5, the optimal solution has x5 fractional. Because z5 > z3, it is possible to find an
integer solution better than x> by going further from node 5. Therefore, we branch x5 from
node 5.

In node 6, the optimal solution is an integer solution. Because it is not better 3, it can be
ignored.

In node 7, the problem is infeasible.



We thus conclude that an optimal solution is 2% = (4, 3) with the objective value z3 = 17. Note
that all we want is “one” optimal solution.
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Remark 1. If you use some other branching rule, it is possible to get 25 = (7,1) as your optimal
solution. As long as your solution process is reasonable, it is fine.

Remark 2. If you observe that all the objective coefficients are integers and all variables must be
integers, you may apply the idea that “the best integer successor’s objective value is at most the
floor of that of its ancestor”. With this in mind, you may stop after examining node 3, because
29 < 18 implies that branching from node 2 will not result in an integer solution better than z3.

. Let item 1, 2, ..., and 5 be the bedroom set, the dining room set, the stereo, the sofa, and the TV
set. Then we define the decision variable

- { 1 if we choose item 3
;=

0 otherwise forall i =1,2,...,5

and formulate the problem as

max 60x; + 48z + 1423 + 31x4 + 10z5
s.t. 8z + 6z + 3x3 + 4z + 225 < 11
x; €{0,1} Vi=1,...,5.

We then relax the binary constraint of this problem and get the relaxed problem (P?)

max 60x; + 48z + 1423 + 31x4 + 10z5
s.t. 8xy +6x9 + 3x3 +4xy + 25 < 11
0<x; <1 Vi=1,..5.



Now we are ready to use branch-and-bound to solve it. The complete solution process is listed
below.!

e (PY): (£,1,0,1,0); 86.5; continue.
e x1 <0: (P?): (0,1,0,1, 1); 84; continue.
e x5 <0: (P*): (0,1,4,1,0); 83.67; continue.
e 23 <0: (P%: (0,1,0,1,0); 79; current candidate, so stop.

e 23 >1: (P7): (0,1,1, %,0); 77.5; not good enough, so stop.

e x5 >1: (P°): (0,1,0,3,1); 81.25, continue.
e x4 <0: (P¥): (0,1,1,0,1); 72; not good enough, so stop.
o x4 >1: (P): (0,2,0,1,1); 81; continue.
o x5 <0: (P¥): (0,0,1,1,1); 55; not good enough, so stop.
o x5 > 1: (P'): infeasible, so stop.

ez >1: (P%): (1,1,0,0,0); 84; continue.
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e x5 <0: (P%): (1,0,0,3,0); 83.25; continue.
e 2, <0: (P): (1,0, %,O, 1); 74.76; not good enough, so stop.

e x4 > 1: (P): infeasible, so stop.
o x5 > 1: (P?): infeasible, so stop.
So the optimal solution is found in solving subproblem (P°). It is to bring the dining room set and

the sofa (item 2 and 4). The total values we get is 79. An unrealistic assumption we made is that
these items can be transformed into any shape we like.

4. Let New York, Los Angeles, Chicago, and Atlanta be city 1, 2, 3, and 4. We then define

x;; = units shipped from city 7 to region j, i =1,...,4, j =1,...,3 and

~_J 1 ifcity i is chosen
YiZ 0 otherwise

3

as our decision variables. We also denote F; as the fixed cost for city i, D; as the demand vector
for region j, and C;; as the variable shipping cost between city ¢ and region j. The capacity of
each city is K. Let M;s be some very large numbers for a while, the complete formulation is

. 4
min >, (Flyl + Z?:l Cijxij)

st. S @iy > D, Vi=1,..,3
Z?:lwij <K Vi=1,..4
Z?:l Ty < Myy; Vi=1,..,4
1 <ya, i ¥i<2 pty>1
zij >0 Vi=1,..,4,j=1,..,3
yi €{0,1} Vi=1,..,4.

The objective is to minimize the total fixed and variable costs. The first constraint is for us to
satisfy all the demands. The second constraint is for capacity. The third one sets the value for y;’s
according to the values of z;;’s: y; should be 1 if Z?:l x;; > 0. In other words, we need to choose
city i as long as we ship anything from it, regardless of the destination. The fourth one makes sure
that if we choose New York (city 1) then we choose Los Angeles (city 2). The fifth one allows us to
choose at most 2 cities. The sixth one is saying that we must choose either Atlanta or Los Angeles.
Nonnegativity and binary constraints follow. If we want to replace M; with tighter upper bounds,
we need to find the upper bounds of Zj’:l x;; so that we can correctly determine the value of y;

1For each subproblem, we summarize its optimal solution, the corresponding objective value, and whether to branch it.
Note that the label of subproblems indicates the sequence of solving them. That is, we solve (P*) before (P7) if i < j. In
general, we adopt the breadth-first-search rather than the depth-first-search.



according to 2221 x;j. First, K = 100 is an upper bound of 2?21 x;; since a city can ship out no
more than 100 units. Moreover, we may find another upper bound of 2?21 Z;; by assuming that
only city ¢ is chosen. Since we will ship exactly the total demands Z?Zl D; from city i in this case,
we know ijzl D; is an upper bound of 23:1 ;5. Therefore, min { K, Z?Zl D;} is suggested to
replace M;.?2

5. (a) Let
x; = production quantity in plant ¢, ¢ =1,...,3, and

Zi:{ 1 if plant 7 is open i=1...3

0 otherwise

be the decision variables. Also let F' = (80000, 40000, 30000) be the vector of fixed costs,
C = (20,25,30) be the vector of variable costs, K = (6000,7000,6000) be the vector of
capacity levels. The complete formulation is

min Z?:l (FZZZ + szz)
st S0 @ = 12000

33120 Vi=1,...,3
z € {0,1} Vi=1,..3.

The objective function minimizes the total cost. The first constraint ensures demand fulfill-
ment. The second constraint relates z; and z; (2; = 1 if z; > 0) and ensures the production
quantity cannot exceed the capacity. The third constraint is the nonnegativity constraint.
The last constraint is the binary constraint.

(b) The MS Excel Solver program is contained in the MS Excel file “ORSp13_hw06_sol.xlsx”
under the sheet “Problem 5”. The optimal solution is to build the first two plants, produce
6000 units in plant 1, and produce 6000 units in plant 2. The associated optimal solution is

$390000.
6. (a) The matrix we want is
[1. 0 00 00 0 0]
01 000O0O0TO
00111000
A— 00110100
00101110}
00011101
00001011
L0 0 0 00 1 1 1|

which is the “within-two-minute” indicator matrix. More precisely, we construct the matrix
A according to the distance matrix so that

Ay = { 1 if cities ¢ and j are within two minutes of drive i=1,2,..8,j=1,2 .8

0 otherwise

(b) Let
1 if we locate one ambulance in district 7 .

T; = . ,i1=1,2,...,8, and
0 otherwise

Li=1,2,..,8

~_J 1 if district ¢ is within two minutes of an ambulance
Yi=1 0 otherwise

2Note that if we plug in numbers, we will see that K = 100 < Z?:l D; = 190. So choosing K is sufficient for this
problem. Nevertheless, in general we should use min { K, z?:l Dj}.



be our decision variables. We also define P = (40, 30, 35, 20, 15, 50,45, 60) as the population
vector. With matrix A defined in Part (a), the problem may now be formulated as

max >0, Py,
s.t. Zle T, =2
Zle Ajjzy >y Yi=1,..,8
z;,y; € {0,1} Vi=1,..,8.

The key idea here is the second constraint, 25:1 Aijz; > y; for all 5. Consider district i.
To have it within two minutes of an ambulance, we check all the eight districts (including
itself) to see if there is any district that (1) is within two minutes of traveling and (2) has an
ambulance. For district j, the first condition is A;; = 1 and the second one is 2; = 1. For
district 7 we need both of them, so we multiply them and use A;;z;. We need at least one
district to have this, so we summate this for all j. If for district ¢ the LHS is at least one,
then we can choose y; = 1 to maximize our objective value. The objective function gives us
the number of people living within two minutes of an ambulance. Finally, the first constraint
allows us to have only 2 ambulances.

The MS Excel Solver program is contained in the MS Excel file “ORSp13_hw06_sol.xlsx” under
the sheet “Problem 6”. The optimal solution is to locate two ambulances at locations 4 and
7 so that districts 3 to 8 can all be covered. The number of people covered is 225 thousands.



