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1. The branch-and-bound tree for solving this problem is depicted in Figure 1. The optimal solution,
as we expect, is still (5, 0). The optimal objective value is 40.

Figure 1: Branch-and-bound tree for Problem 1

2. A branch-and-bound tree is depicted below. For each node, we need to solve a linear program
(probably with some additional constraints). For these two-dimensional problems, it is suggested
to use the graphical approach to solve them. The complete process is summarized below:

• In node 1, we solve the LP relaxation of the original IP. Because x2 is fractional, we branch
on x2.

• In node 2, the optimal solution has x1 fractional. We keep this node on hold for a moment.

• In node 3, the optimal solution is an integer solution. Because z2 > z3, it is possible to find
an integer solution better than x3 by going further from node 2. Therefore, we branch on x1

from node 2.

• In node 4, the optimal solution is an integer solution. Because it is not better x3, it can be
ignored.

• In node 5, the optimal solution has x2 fractional. Because z5 > z3, it is possible to find an
integer solution better than x3 by going further from node 5. Therefore, we branch x2 from
node 5.

• In node 6, the optimal solution is an integer solution. Because it is not better x3, it can be
ignored.

• In node 7, the problem is infeasible.
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We thus conclude that an optimal solution is x3 = (4, 3) with the objective value z3 = 17. Note
that all we want is “one” optimal solution.
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x2 ≥ 3

z3 = 17

x3 = (4, 3)

Remark 1. If you use some other branching rule, it is possible to get x6 = (7, 1) as your optimal
solution. As long as your solution process is reasonable, it is fine.

Remark 2. If you observe that all the objective coefficients are integers and all variables must be
integers, you may apply the idea that “the best integer successor’s objective value is at most the
floor of that of its ancestor”. With this in mind, you may stop after examining node 3, because
z2 < 18 implies that branching from node 2 will not result in an integer solution better than x3.

3. Let item 1, 2, ..., and 5 be the bedroom set, the dining room set, the stereo, the sofa, and the TV
set. Then we define the decision variable

xi =

{
1 if we choose item i
0 otherwise

for all i = 1, 2, ..., 5

and formulate the problem as

max 60x1 + 48x2 + 14x3 + 31x4 + 10x5

s.t. 8x1 + 6x2 + 3x3 + 4x4 + 2x5 ≤ 11

xi ∈ {0, 1} ∀i = 1, ..., 5.

We then relax the binary constraint of this problem and get the relaxed problem (P 1)

max 60x1 + 48x2 + 14x3 + 31x4 + 10x5

s.t. 8x1 + 6x2 + 3x3 + 4x4 + 2x5 ≤ 11

0 ≤ xi ≤ 1 ∀i = 1, ..., 5.
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Now we are ready to use branch-and-bound to solve it. The complete solution process is listed
below.1

• (P 1): ( 1
8 , 1, 0, 1, 0); 86.5; continue.

• x1 ≤ 0: (P 2): (0, 1, 0, 1, 1
2 ); 84; continue.

• x5 ≤ 0: (P 4): (0, 1, 1
3 , 1, 0); 83.67; continue.

• x3 ≤ 0: (P 6): (0, 1, 0, 1, 0); 79; current candidate, so stop.

• x3 ≥ 1: (P 7): (0, 1, 1, 1
2 , 0); 77.5; not good enough, so stop.

• x5 ≥ 1: (P 5): (0, 1, 0, 3
4 , 1); 81.25, continue.

• x4 ≤ 0: (P 12): (0, 1, 1, 0, 1); 72; not good enough, so stop.

• x4 ≥ 1: (P 13): (0, 5
6 , 0, 1, 1); 81; continue.

• x2 ≤ 0: (P 12): (0, 0, 1, 1, 1); 55; not good enough, so stop.

• x2 ≥ 1: (P 13): infeasible, so stop.

• x1 ≥ 1: (P 3): (1, 1
2 , 0, 0, 0); 84; continue.

• x2 ≤ 0: (P 8): (1, 0, 0, 3
4 , 0); 83.25; continue.

• x4 ≤ 0: (P 10): (1, 0, 1
3 , 0, 1); 74.76; not good enough, so stop.

• x4 ≥ 1: (P 11): infeasible, so stop.

• x2 ≥ 1: (P 9): infeasible, so stop.

So the optimal solution is found in solving subproblem (P 6). It is to bring the dining room set and
the sofa (item 2 and 4). The total values we get is 79. An unrealistic assumption we made is that
these items can be transformed into any shape we like.

4. Let New York, Los Angeles, Chicago, and Atlanta be city 1, 2, 3, and 4. We then define

xij = units shipped from city i to region j, i = 1, ..., 4, j = 1, ..., 3 and

yi =

{
1 if city i is chosen
0 otherwise

, i = 1, ..., 4

as our decision variables. We also denote Fi as the fixed cost for city i, Dj as the demand vector
for region j, and Cij as the variable shipping cost between city i and region j. The capacity of
each city is K. Let Mis be some very large numbers for a while, the complete formulation is

min
∑4

i=1

(
Fiyi +

∑3
j=1 Cijxij

)
s.t.

∑4
i=1 xij ≥ Dj ∀ j = 1, ..., 3∑3
j=1 xij ≤ K ∀ i = 1, ..., 4∑3
j=1 xij ≤Miyi ∀ i = 1, ..., 4

y1 ≤ y2,
∑4

i=1 yi ≤ 2, y2 + y4 ≥ 1

xij ≥ 0 ∀ i = 1, ..., 4, j = 1, ..., 3

yi ∈ {0, 1} ∀ i = 1, ..., 4.

The objective is to minimize the total fixed and variable costs. The first constraint is for us to
satisfy all the demands. The second constraint is for capacity. The third one sets the value for yi’s
according to the values of xij ’s: yi should be 1 if

∑3
j=1 xij > 0. In other words, we need to choose

city i as long as we ship anything from it, regardless of the destination. The fourth one makes sure
that if we choose New York (city 1) then we choose Los Angeles (city 2). The fifth one allows us to
choose at most 2 cities. The sixth one is saying that we must choose either Atlanta or Los Angeles.
Nonnegativity and binary constraints follow. If we want to replace Mi with tighter upper bounds,
we need to find the upper bounds of

∑3
j=1 xij so that we can correctly determine the value of yi

1For each subproblem, we summarize its optimal solution, the corresponding objective value, and whether to branch it.
Note that the label of subproblems indicates the sequence of solving them. That is, we solve (P i) before (P j) if i < j. In
general, we adopt the breadth-first-search rather than the depth-first-search.
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according to
∑3

j=1 xij . First, K = 100 is an upper bound of
∑3

j=1 xij since a city can ship out no

more than 100 units. Moreover, we may find another upper bound of
∑3

j=1 xij by assuming that

only city i is chosen. Since we will ship exactly the total demands
∑3

j=1 Dj from city i in this case,

we know
∑3

j=1 Dj is an upper bound of
∑3

j=1 xij . Therefore, min
{
K,
∑3

j=1 Dj

}
is suggested to

replace Mi.
2

5. (a) Let

xi = production quantity in plant i, i = 1, ..., 3, and

zi =

{
1 if plant i is open
0 otherwise

, i = 1, ..., 3

be the decision variables. Also let F = (80000, 40000, 30000) be the vector of fixed costs,
C = (20, 25, 30) be the vector of variable costs, K = (6000, 7000, 6000) be the vector of
capacity levels. The complete formulation is

min
∑3

i=1

(
Fizi + Cixi

)
s.t.

∑3
i=1 xi = 12000

xi ≤ Kizi ∀ i = 1, ..., 3

xi ≥ 0 ∀ i = 1, ..., 3

zi ∈ {0, 1} ∀ i = 1, ..., 3.

The objective function minimizes the total cost. The first constraint ensures demand fulfill-
ment. The second constraint relates xi and zi (zi = 1 if xi > 0) and ensures the production
quantity cannot exceed the capacity. The third constraint is the nonnegativity constraint.
The last constraint is the binary constraint.

(b) The MS Excel Solver program is contained in the MS Excel file “ORSp13 hw06 sol.xlsx”
under the sheet “Problem 5”. The optimal solution is to build the first two plants, produce
6000 units in plant 1, and produce 6000 units in plant 2. The associated optimal solution is
$390000.

6. (a) The matrix we want is

A =



1 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 1 1 1 0 0 0
0 0 1 1 0 1 0 0
0 0 1 0 1 1 1 0
0 0 0 1 1 1 0 1
0 0 0 0 1 0 1 1
0 0 0 0 0 1 1 1


,

which is the “within-two-minute” indicator matrix. More precisely, we construct the matrix
A according to the distance matrix so that

Aij =

{
1 if cities i and j are within two minutes of drive
0 otherwise

, i = 1, 2, ..., 8, j = 1, 2, ..., 8.

(b) Let

xi =

{
1 if we locate one ambulance in district i
0 otherwise

, i = 1, 2, ..., 8, and

yi =

{
1 if district i is within two minutes of an ambulance
0 otherwise

, i = 1, 2, ..., 8

2Note that if we plug in numbers, we will see that K = 100 <
∑3

j=1 Dj = 190. So choosing K is sufficient for this

problem. Nevertheless, in general we should use min
{
K,
∑3

j=1 Dj

}
.
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be our decision variables. We also define P = (40, 30, 35, 20, 15, 50, 45, 60) as the population
vector. With matrix A defined in Part (a), the problem may now be formulated as

max
∑8

i=1 Piyi

s.t.
∑8

i=1 xi = 2∑8
j=1 Aijxj ≥ yi ∀ i = 1, ..., 8

xi, yi ∈ {0, 1} ∀ i = 1, ..., 8.

The key idea here is the second constraint,
∑8

j=1 Aijxj ≥ yi for all i. Consider district i.
To have it within two minutes of an ambulance, we check all the eight districts (including
itself) to see if there is any district that (1) is within two minutes of traveling and (2) has an
ambulance. For district j, the first condition is Aij = 1 and the second one is xj = 1. For
district j we need both of them, so we multiply them and use Aijxj . We need at least one
district to have this, so we summate this for all j. If for district i the LHS is at least one,
then we can choose yi = 1 to maximize our objective value. The objective function gives us
the number of people living within two minutes of an ambulance. Finally, the first constraint
allows us to have only 2 ambulances.

(c) The MS Excel Solver program is contained in the MS Excel file “ORSp13 hw06 sol.xlsx” under
the sheet “Problem 6”. The optimal solution is to locate two ambulances at locations 4 and
7 so that districts 3 to 8 can all be covered. The number of people covered is 225 thousands.
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