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Finally, the gradient is

Of(x1, x2) =

[
2x1e

x2

x21e
x2

]
.

2. With the decision variables S and F defined in the problem, the complete formulation is

min 50S + 100F

s.t. 5
√
S + 17

√
F ≥ 40

20
√
S + 7

√
F ≥ 60

S ≥ 0, F ≥ 0.

The objective function minimizes the total cost. The first constraint ensures that the ads are seen
by at least 40 million men. The second constraint ensures that the ads are seen by at least 60
million women. Lastly, we have nonnegativity constraints.

3. Let xi be the production quantity at plant i, i = 1, 2. The complete formulation is

max 10(x1 + x2)− 20
√
x1 − 40 3

√
x2

s.t. x1 + x2 ≤ 120

x1 ≤ 70

x2 ≤ 70

x1, x2 ≥ 0.

The objective function maximizes the total profit. The first constraint limits the amount of total
production to be no more than the demand size. the second and third constraints are the capacity
constraints. Lastly, we have nonnegativity constraints.

4. To formulate this problem, we need to assign coordinates to the three cities. While there are
infinitely many ways of doing so, below we choose the setting depicted in Figure 1. Note that the
information that the distance between any two cities is a has been used in constructing this figure.
Let (x, y) be the coordinates of the airport. Under this setting, the complete formulation is

min
√
x2 + y2 +

√
(x− d)2 + y2 +

√(
x− d

2

)2
+
(
y −
√

3

2
d
)2

The objective function minimizes the total distance from the airport to the three cities. We do not
need any constraint.
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Figure 1: Coordinates of the three cities

5. First, note that the feasible region is convex (you may draw a graph to see this). Because the
objective function is to minimize a linear function, which is convex, this is a convex program
and thus a local optimum is a global optimum. Because we are also minimizing a concave function
(because a linear function is also concave), the existence of an optimal solution implies the existence
of an extreme point optimal solution.

6. First, note that the feasible region is convex (as all the constraints are linear). Now consider the
objective function. Both

√
· and 3

√
· are concave, and thus −

√
· and − 3

√
· are convex. This implies

that the objective function is to maximize a convex function. Therefore, the existence of an optimal
solution implies the existence of an extreme point optimal solution. However, a local optimum may
not be a global optimum.

7. (a) f ′(x) = 3x2 and f ′′(x) = 6x. As 6x ≥ 0 for all x ≥ 0, f is convex.

(b) f ′(x) = − 1
x2 and f ′′(x) = 2

x3 . As 2
x3 > 0 for all x > 0, f is convex.

(c) f ′(x) = 2 cos(2x) and f ′′(x) = −4 sin(2x). As −4 sin(2x) ≤ 0 for x ∈ [π, 32π] but −4 sin(2x) ≥
0 for x ∈ [ 32π, 2π], this function is neither convex nor concave.

(d) f ′(x) = axa−1 and f ′′(x) = a(a− 1)xa−2. As a(a− 1)xa−2 ≤ 0 for all x ≥ 0 for any a ∈ (0, 1),
f is concave.

(e) f ′(x) = (ln 2)(2x) and f ′′(x) = (ln 2)2(2x). As (ln 2)2(2x) > 0 for all x ∈ R, f is convex.

8. For the original problem without tax, the formulation is

max π1(q) = q(100− 4q)− 50− 5q

s.t. q ≥ 0

100− 4q ≥ 0.

The objective function is to maximize the sales revenue q(100−4q) minus the fixed cost 50 and the
variable cost 5q. The two constraints ensure that the production quantity and the market price
are both nonnegative. To solve this program, note that

π′1(q) = 100− 4q − 4q − 5 = −8q + 95 and π′′1 (q) = −8 < 0.

so the objective function is maximizing a concave function and thus a feasible point satisfying the
FOC is optimal. As q∗ = 95

8 is such a point, it is the optimal production quantity.

When there is the sales tax, the new formulation is

max π2(q) = q(100− 4q)− 50− 5q − 2q

s.t. q ≥ 0,

100− 4q ≥ 0.

The only difference is that in the objective function, there is an additional term representing the
sales tax. As

π′2(q) = −8q − 93 and π′′2 (q) = −8 < 0,
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the new program is still convex and we again look for the point satisfying the FOC, which is
q∗∗ = 93

8 . As it is feasible, it is optimal. Note that q∗∗ < q∗: As the net sales revenue decreases
due to the existence of the sales tax, the optimal production quantity decreases.

9. (a) Figure 2 depicts the feasible region and one isoprofit curve (the dotted curve). For solving
this problem, we look for the feasible point that is closest to the point (3, 1) (which is the
center of all isoprofit “circles”). Such a point (x1, x2) = (2, 2) is the optimal solution to this
problem.

Figure 2: Graphical solution for Problem 9

(b) The Lagrangian relaxation is

L(λ) = min
x1∈R,x2∈R

(x1 − 3)2 + (x2 − 1)2 + λ(−x1 + x2)

for some λ ≤ 0. To verify that λ should be nonpositive, recall that we want to give penalty
to a point that violates the constraint. When the constraint is violated, we have x1 − x2 > 0
and thus −x1 + x2 < 0. To make the solution worse for this minimization objective function,
we should make the objective larger by making the last term nonnegative. This requires λ to
be nonpositive.

(c) To solve the Lagrangian relaxation, note that the objective function can be decomposed into
two separated functions, one for x1 and one for x2. We may also verify that both functions
are convex and thus the FOC is sufficient for a global optimum. Let x∗1 and x∗2 be the points
satisfying the FOC, we have

2(x∗1 − 3)− λ = 0 and 2(x∗2 − 1) + λ = 0,

which imply x∗1 = 6+λ
2 and x∗2 = 2−λ

2 . We may then plug in x∗1 and x∗2 into the objective

function and obtain L(λ) = λ2

4 + λ2

4 + λ(−2− λ) = −λ
2

2 − 2λ.

(d) To see that L(λ) is concave in λ, note that L′(λ) = −λ− 2 and L′′(λ) = −1 < 0.

(e) The Lagrangian dual program is

max − λ2

2
− 2λ

s.t. λ ≤ 0.

By ignoring the constraint and apply the FOC, we find that the optimal dual solution is
λ∗ = −2. By plugging in λ∗ into x∗1 = 6+λ

2 and x∗2 = 2−λ
2 , we obtain x∗1 = 2 and x∗2 = 2,

which exactly form the primal optimal solution.
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