Operations Research, Spring 2013
 Suggested Solution for Homework 09

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. For this problem, the demand rate is $D=48000$ gallons per year, ordering cost is $K=50$ dollars per order, and holding cost is $h=0.3$ dollars per gallon per year.
(a) The optimal order size, which is the EOQ, which be $q *=\sqrt{\frac{2 K D}{h}}=4000$ gallons per order.
(b) In average, there should be $\frac{D}{q^{*}}=12$ orders in a year.
(c) The order cycle time is $\frac{1}{12} \approx 0.0833$ years, or $0.0883 \times 52 \approx 4.33$ weeks.
(d) If the lead time is $L=2$ weeks, as it is shorter than the order cycle time, the reorder point is $R=L D=1846.15$ gallons.
(e) If the lead time is $L^{\prime}=10$ weeks, as it is longer than the order cycle time, we need to adjust it by subtracting 2 cycle times so that $L^{\prime}-2 T^{*} \approx 1.33<T^{*}$. The reorder point is then calculated as $\left(L^{\prime}-2 T^{*}\right) D \approx 1230.77$ gallons.
2. The three cost curves are depicted in Figure 1. As the thick vertical line indicates, the ordering and holding cost curves intersect at the $\mathrm{EOQ} q^{*}=4000$ gallons.

Figure 1: Cost curves for Problem 2

Figure 2: $f(r)$ for Problem 4
3. (a) The total cost under $q^{*}+d$ is

$$
T C\left(q^{*}+d\right)=\frac{h\left(q^{*}+d\right)}{2}+\frac{K D}{q^{*}+d} .
$$

(b) The total cost under $q^{*}-d$ is

$$
T C\left(q^{*}-d\right)=\frac{h\left(q^{*}-d\right)}{2}+\frac{K D}{q^{*}-d} .
$$

(c) To see this, we calculate

$$
\begin{aligned}
T C\left(q^{*}-d\right)-T C\left(q^{*}+d\right) & =-h d+K D\left(\frac{1}{q^{*}-d}-\frac{1}{q^{*}+d}\right) \\
& =-h d+K D\left[\frac{2 d}{\left(q^{*}\right)^{2}-d^{2}}\right]=d\left[-h+K D\left(\frac{2}{\frac{2 K D}{h}-d^{2}}\right)\right] \\
& =d h\left(-1+\frac{2 K D}{2 K D-h d^{2}}\right)=d h\left(\frac{h d^{2}}{2 K D-h d^{2}}\right) .
\end{aligned}
$$

As $d>0$ and $h>0$, the sign of this term depends on the sign of $2 K D-h d^{2}$. Because

$$
d<q^{*} \Leftrightarrow d^{2}<\frac{2 K D}{h} \Leftrightarrow h d^{2}<2 K D
$$

we know this term is positive and thus $T C\left(q^{*}-d\right)>T C\left(q^{*}+d\right)$ for all $d \in\left(0, q^{*}\right)$.
4. (a) We have

$$
f(r)=\frac{T C\left(r q^{*}\right)}{T C\left(q^{*}\right)}=\frac{\frac{h r q^{*}}{2}+\frac{K D}{r q^{*}}}{\frac{h q^{*}}{2}+\frac{K D}{q^{*}}}=\frac{r \sqrt{\frac{h K D}{2}}+\left(\frac{1}{r}\right) \sqrt{\frac{h K D}{2}}}{\sqrt{\frac{h K D}{2}}+\sqrt{\frac{h K D}{2}}}=\frac{1}{2}\left(\frac{1}{r}+r\right)
$$

(b) The function $f(r)$ over $r \in\left[\frac{1}{2}, 2\right]$ is depicted in Figure 2. In particular, $f\left(\frac{1}{2}\right)=f(2)=1.25$.
5. For this problem, the demand rate is $D=2000 \times 12=24000$ units per year, production rate is $r=100 \times 360=36000$ units per year, ordering cost is $K=1000$ dollars per order, and holding cost is $h=300$ dollars per unit per year. The effective holding cost is $h^{\prime}=h\left(1-\frac{D}{r}\right)=100$ dollars per unit per year.
(a) The optimal order size, which is the EOQ, which be $q^{*}=\sqrt{\frac{2 K D}{h^{\prime}}} \approx 692.82$ units per order.
(b) In average, there should be $\frac{D}{q^{*}} \approx 34.64$ orders in a year.
(c) The order cycle time is $\frac{1}{34.64} \approx 0.0289$ years, or $0.0289 \times 12 \approx 0.347$ months.
(d) In a cycle, the slope of the inventory level curve is $r-D$ during production time and $-D$ when there is no production. Simple derivation shows that the proportion of a cycle that is under production is $\frac{D}{r}$. For this problem, we have $\frac{D}{r}=\frac{2}{3}$.
(e) In a cycle, the proportion of a cycle with no production is $1-\frac{D}{r}=\frac{1}{3}$.
6. For this problem, the overage cost is $c_{o}=10$ dollars and the underage cost is $c_{u}=25-10=15$ dollars. Let $D \sim \operatorname{ND}(100,30)$ be the demand for Christmas tree. The optimal order quantity q^{*} satisfies

$$
\operatorname{Pr}\left(D<q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}}=0.6 \quad \Rightarrow \quad \operatorname{Pr}\left(Z<\frac{q^{*}-100}{30}\right)=0.6
$$

where $Z \sim \mathrm{ND}(0,1)$ is the standard normal random variable. By using a standard normal probability table or any statistical software (such as MS Excel), we get $\frac{q^{*}-100}{30} \approx 0.2533$ and thus $q^{*} \approx 30 \times 0.2533+100 \approx 107.6$ units.
7. For this problem, the overage cost is $c_{o}=1.2-1=0.2$ dollars and the underage cost is $c_{u}=$ $3-1.2=1.8$ dollars. Let $D \sim \operatorname{ND}(40,10)$ be the daily demand for hot dogs and $Z \sim \operatorname{ND}(0,1)$ is the standard normal random variable.
(a) We have

$$
\operatorname{Pr}(D<52)=\operatorname{Pr}\left(Z<\frac{52-40}{10}\right)=\operatorname{Pr}(Z<1.2) \approx 0.8849
$$

where the last equality can be established with a standard normal probability table or any statistical software (such as MS Excel). Our result shows that the probability that the one-day demands can all be satisfied is around 88.49%.
(b) The optimal order quantity q^{*} satisfies

$$
\operatorname{Pr}\left(D<q^{*}\right)=\frac{c_{u}}{c_{u}+c_{o}}=0.9 \quad \Rightarrow \quad \operatorname{Pr}\left(Z<\frac{q^{*}-40}{10}\right)=0.9
$$

By using a standard normal probability table or any statistical software (such as MS Excel), we get $\frac{q^{*}-40}{10} \approx 1.2816$ and thus $q^{*} \approx 10 \times 1.2816+40 \approx 52.82$ units.
8. (a) Omitted.
(b) We have

$$
\begin{aligned}
\mathbb{E}[\min \{D, q\}] & =\int_{0}^{1} \min \{x, q\} f(x) d x=\int_{0}^{1} \min \{x, q\} d x \\
& =\int_{0}^{q} x d x+\int_{q}^{1} q d x=\frac{1}{2} q^{2}+q(1-q)
\end{aligned}
$$

(c) Let $f(q)=r \mathbb{E}[\min \{D, q\}]-c q$, we have

$$
f(q)=r\left(\frac{1}{2} q^{2}+q-q^{2}\right)-c q=-\frac{r}{2} q^{2}+(r-c) q .
$$

This then allows us to calculate the derivatives of $f(q)$:

$$
f^{\prime}(q)=-r q+r-c \quad \text { and } \quad f^{\prime \prime}(q)=-r<0
$$

Therefore, the objective function is to maximize a concave function. As the feasible region is convex, this is a convex program.
(d) The FOC condition solves the program derived in Part (c). Let q^{*} be the optimal order quantity, we have

$$
-r q^{*}+r-c=0 \Rightarrow q^{*}=\frac{r-c}{r}
$$

For this problem, $c_{u}=r-c, c_{o}=c$, and $\frac{c_{u}}{c_{o}+c_{u}}=\frac{r-c}{r}$. The desired equality is then established by recognizing that $F(x)=x$ if F is the cdf of a uniform random variable between 0 and 1 .

