IM2010: Operations Research Overview

Ling-Chieh Kung

Department of Information Management National Taiwan University

February 21, 2013

Welcome!

- ► This is the **introductory** Operations Research course designed for students majoring in **Information Management**.
 - Introductory: No knowledge regarding Operations Research is assumed.
 - ▶ Information Management: Focus more on computer techniques, algorithms, and mathematical derivations than those for other business majors.

Before you enroll...

- ▶ Prerequisites:
 - ► Calculus.
 - ▶ Linear Algebra (or Management Mathematics).
 - Discrete Mathematics.
 - ▶ Probability (or Statistics I).
- ► Language: "All" English.
 - All materials are in English.
 - ▶ Students are welcome to speak Chinese in class.
 - ▶ TA speak Chinese in labs.
 - ▶ I speak Chinese in my office hour unless you prefer English.
 - ▶ I will speak Chinese in lectures when it helps.

The instructor

- ▶ Ling-Chieh Kung.
- ▶ B90 and R94.
- ▶ First-year assistant professor.
- ▶ Office: Room 413, Management Building II.
- ▶ Office hour: 10am-noon, Wednesday or by appointment.
- ► E-mail: lckung@ntu.edu.tw.

Related information

- ▶ Classroom: Room 201, Management Building II.
- ► Meeting time:
 - ▶ Lectures: 2:20-5:20pm, Thursday.
 - ▶ Labs: 12:20-1:10pm, Monday.
- Textbook: "Operations Research: Applications and Algorithms" by W.L. Winston, 4th edition.
- ► References:
 - "Introduction to Operations Research" by F.S. Hiller and G.J. Lieberman.
 - ▶ "Game Theory for Applied Economists" by R. Gibbons.
 - ▶ "Management Science: Operations Research and Computer Applications" by Wen-Hsien Chen and Ching-Chin Chern.

Online resources

- ► CEIBA.
 - Viewing your grades.
 - ▶ Receiving group messages.
- ▶ http://www.ntu.edu.tw/~lckung/courses/ORSp13/.
 - Downloading course materials.
- ▶ The bulletin board "NTUIM-lckung" on PTT.
 - Discussions.

Grading

- Homework: 15%.
- ▶ Projects: 30% (8%, 8%, and 14%).
- ▶ Class participation: 5%.
- ▶ 2 Exams: 50%:

-

- \blacktriangleright Plan 1: midterm 20% and final 30%.
- \blacktriangleright Plan 2: midterm 15% and final 35%.
- ▶ The final letter grades will be given according to the following conversion rule:

Letter	Range	Letter	Range	Letter	Range
A+ A A-	$\begin{array}{c} [90, 100] \\ [85, 90) \\ [80, 85) \end{array}$	B+ B B-	$[77, 80) \\ [73, 77) \\ [70, 73)$	C+ C C-	[67, 70) [63, 67) [60, 63)

Policies: Class participation and labs

Class participation:

- ▶ Attendance does not count.
- ▶ Speaking to me during lectures or office hour counts.
- ▶ Speaking to TAs during labs does not count.
- Posting on the course bulletin on PTT counts.
- ► Labs:
 - ▶ The large computer classroom at Management Building I.
 - Extra lectures.
 - Project presentation.
 - More examples and practices.
 - Computer techniques.
- Office hour: **Just come**!

Policies: Homework

- ► Homework:
 - Weekly homework (unless there is a holiday or exam).
 - ▶ Due 1:00am on Thursday.
 - Please put a hard copy into my (physical) mail box on the first floor of the Management Building II.
 - No late submission.
 - ▶ The lowest two homework grades are dropped.
 - ▶ The TAs grade homework and regrade them upon request.

Policies: Projects and exams

► Projects:

Project	Number of team members	Presentation	Report Report due
1	1 to 5	At most 5 teams	April 11
2	1 to 5	At most 5 teams	May 5
3	5 to 8	All teams	June 13

- ► Exams:
 - ▶ In-class and open-book.
 - Except a calculator, no electronic device is allowed.
 - Cheating will result in severe penalty.

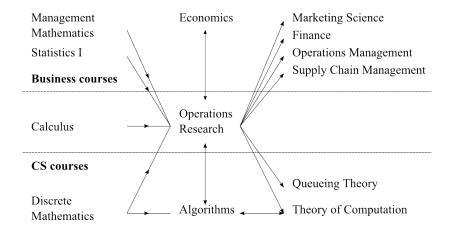
Policies: Materials

- ► All materials used in a lecture will be posted **on-line** before the lecture begins.
- ▶ They may be slightly modified after the lecture.
- ▶ The final version will then be posted.

Operations Research, Spring 2013 – Overview ${\rm \bigsqcup_{Syllabus}}$

Before we start...

- ▶ If you are an IM student:
 - ▶ I will keep teaching this course before you graduate. XD
- ▶ If you are not:
 - ▶ Always welcome but think twice!
 - ▶ Ask for the codes for enrollment after this three-hour lecture.


What is Operations Research?

- ► Operations Research is a scientific approach to decision making that tries to best design and operate a system.
- ▶ Some related fields:
 - ► Economics.
 - Statistics.
 - ▶ Computer Science.
 - ▶ Many other engineering fields.

The role of OR in our IM department

- ► It requires Calculus, Management Mathematics, Discrete Mathematics, and Statistics I.
- ► The integer programming and combinatorial optimization part is highly related to **Algorithms** and **Theory of Computation**.
- ► The nonlinear programming part is the foundation for (Intermediate or Advanced) Economics.
- ► The stochastic part is the foundation for **Queueing Theory**.
- It is the main prerequisite of Operations Management and Supply Chain Management.
- ▶ It is also widely used in **Marketing Science** and **Finance**.

The role of OR in our IM department

The role of OR in our IM department

- ► Operations Research is one of the few courses that lie in the interface between Business and Computer Science.
- ▶ It is a promising direction if you:
 - ► Want to solve business problems with an engineering approach;
 - ▶ Like (or do not hate) mathematics, programming, and algorithms.
- ▶ It will also be very useful if you:
 - ▶ Want to become a **theoretical** computer scientists.
 - Want to work on mathematical problems in Computer Science or other engineering fields.
- ▶ For those of you who have not decided yet:
 - ▶ Study it so that you will not miss a chance in the future.

By the way...

Subject	The main prerequisite	The common prerequisite
Marketing	Economics	
Finance	Accounting	-
Human Resource Management	Management	Statistics
Operations Management	Operations Research	-
Management Information Systems	Introduction to Computer Science	-

What problems does OR solve?

- ► OR is tightly related to **Industrial Engineering**:
 - Using engineering methods (mainly mathematics and algorithms) to solve industrial (i.e., business) problems.
 - Production planning, machine scheduling, inventory preparation, vehicle routing, etc.

http://servagya.com

What problems does OR solve?

- ► OR is also tightly related to **Management Science**:
 - Using scientific ways (mainly mathematics and economic theories) to solve managerial (i.e., business) problems.
 - Supplier selection, product assortment, staff scheduling, pricing, portfolio optimization, etc.

http://customdvdkiosk.com/

▶ In general, we want to facilitate better **decision making**.

A short conversation

- ▶ A: I study in Industrial Engineering and Operations Research.
- ▶ B: Oh! Do you make cars in factories?
- A: Thats mechanical engineering.
- ▶ B: So do you make computers?
- ► A: Thats Electrical engineering and Computer Science.
- ▶ B: Do you make bridges or buildings?
- ► A: Thats Civil Engineering.
- ▶ B: So what exactly do you make?
- ▶ A: We dont make anything. We make things better.

Course outline

- ▶ Deterministic single-player decision making.
- ▶ Stochastic single-player decision making.
- Multi-player decision making (if time permits).

Deterministic 1-player decision making

- One decision maker.
- ▶ The environment has **no uncertainty**.
 - All parameters are **known**.
 - Optimizing the **average** performance.
- ► Subjects:
 - ▶ Linear programming.
 - Integer programming.
 - Nonlinear programming.
 - Deterministic dynamic programming.

Stochastic 1-player decision making

- ▶ One decision maker.
- ► The environment has **uncertainty**.
 - Some parameters are **unknown** and can only be estimated.
 - ▶ In many cases uncertainties come from the **future**.
- ► Subjects:
 - ► Stochastic dynamic programming.
 - Stochastic processes.
 - Simulation.

Multi-player decision making

- ▶ **Multiple** decision makers.
- Try to find equilibria to predict their behaviors.
- ► Subjects:
 - ▶ Game theory.
 - Supply chain coordination.
 - ► Contracting.

http://dalecarnegie apac.files.wordpress.com/