IM2010: Operations Research Introduction to Model Building (Chapter 1)

Ling-Chieh Kung
Department of Information Management
National Taiwan University

February 21, 2013

Introduction

- Mathematical modeling is a way of abstracting a physical problem into a model with symbols and formulas.
- Let's see the following example.
- I have three used books to sell in a second-hand market.
- I need to bring them to the market.
- But I may carry at most 5 kg .

Book	Price (NT\$)	Weight (kg)
Calculus	400	4
Statistics	200	1.5
Operations Research	300	3

- Which book(s) should I bring?

Introduction

- To decide what to do, we will solve a mathematical model.
- A mathematical model is often called a mathematical program in the world of Operations Research.
- We will study all kinds of mathematical programs:
- Their properties.
- Ways of finding the solution (i.e., algorithms).
- Managerial insights.
- Beauty of mathematics.
- We will be familiar with the process of solving a problem with mathematical programming.

Road map

- Introduction to (mathematical) modeling.
- Foundations of mathematical programming.
- Four steps of solving a problem.

Decision making

- When we need to make a decision:
- What are we going to decide?
- What do we want?
- What kind of limitations we are facing?

Decision making

- Suppose I need to decide what to do tonight. I may watch a movie, sleep, work on slides, or writing papers.
- Decision: What to do.
- Objective: Make me feel happy.
- Limitations: Survive.

http://yourmoviesdownload.net/

Optimization problems

- We use a mathematical program (or mathematical model) to formulate our problem.
- In general, all the problems we face in our life can be formulated as optimization problems:
- Deciding what to do tonight to make myself as happy as possible.
- Choosing a restaurant to best meet my taste and budget.
- Determining the route of sending mails to spend the least time.
- Selecting a price to maximize my sales revenue.
- Making a production plan to minimize my total cost.
- What are the components in an optimization problem?

Optimization problems

- In an optimization problem, there are:
- Decision variables.
- The objective function.
- Constraints.
- Let's understand them by formulating the problem of which books to carry.
- Question: Choose some books to carry to earn as much money as possible. But I can carry at most 5 kg .

Book	Price (NT\$)	Weight (kg)
Calculus	400	4
Statistics	200	1.5
Operations Research	300	3

- Step 1: Use symbols and functions to describe the problem.
- Let $B=\{c, s, o\}$ be the set of books. Let $p(x)$ be the price of book x and $w(x)$ be the weight of book $x, x \in B$.
- E.g., $p(c)=400$ and $w(s)=1.5$.

Formulating a problem

- Step 2: Describe all possible actions by ignoring constraints.
- We may choose c only. We may choose c and s. We may choose c and o. We may choose...
- In general, we are choosing a subset of B.
- Step 3: Define the decision variables.
- Let X be the set of books that I am carrying to the market.
- Be specific, clear, precise, and complete!
- Bad definition 1: Let X be books.
- Bad definition 2: $X=$ books.
- Not very good definition: Let X be the books I select.

Formulating a problem

- Step 4: Write down a maximization or minimization objective function.
- I want to earn as much money as possible.
- So I want to maximize my sales revenue.
- $\max \sum_{x \in X} p(x)$.
- Step 5: Write down constraints as equalities or inequalities.
- I can carry at most $5 \mathrm{~kg}: \sum_{x \in X} w(x) \leq 5$.
- I cannot sell what I do not have: $X \subseteq S$.

Formulating a problem

- The complete formulation:

$$
\begin{array}{ll}
\max & \sum p(x) \\
\text { s.t. } & \sum w(x) \leq 5 \\
& X \subseteq S .
\end{array}
$$

- The decision variable is a set.
- There is one maximization objective function.
- There are two constraints.

An alternative formulation

- In designing and running algorithms, typically it is easier to not using a set as a decision variable.
- Let's label Calculus as book 1, Statistics as book 2, and OR as book 3 . Then we may define p_{i} and w_{i} as the price and weight of book $i, i=1, \ldots, 3$.
- Furthermore, let

$$
x_{i}=\left\{\begin{array}{ll}
1 & \text { if I carry book } i \\
0 & \text { otherwise }
\end{array}, i=1, \ldots, 3\right.
$$

be our decision variables.

An alternative formulation

- The first attampt of an alternative formulation:

$$
\begin{aligned}
\max & \sum_{i=1}^{3} p_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{3} w_{i} x_{i} \leq 5
\end{aligned}
$$

Is that all?

An alternative formulation

- There is one more constraint: We cannot split the book:

$$
x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 3 .
$$

- The complete formulation:

$$
\begin{array}{ll}
\max & \sum_{i=1}^{3} p_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{3} w_{i} x_{i} \leq 5 \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 3
\end{array}
$$

Some remarks

- The problem is an example of the knapsack problem, one of the most fundamental problem in Computer Science.
- In general, a decision variable can be a scalar, a vector, a matrix, a set, etc.
- In this course, almost all variables are scalars.
- In most problems, there is only one objective function.
- Either maximization or minimization.
- In the subject of multi-objective optimization, there can be multiple objective functions.
- There can be any number of constraints.

Some remarks

- For a single problem, there are always multiple ways of formulating it.
- In this course, you will need to formulate many problems.
- While there are some differences among different formulations (some are easier to solve), you do not need to worry about that.
- Just make your formulation correct, precise, and understandable.

Summary

- Mathematical programming (modeling) is the entire process of
- formulating a physical problem with mathematical terms,
- solving the mathematical program,
- interpreting the results, and
- facilitating decision making.
- We need to
- get experience in formulating problems,
- study how to solve a program, and
- practice to draw (managerial) insights from numbers.

Road map

- Introduction to modeling.
- Foundations of mathematical programming.
- Four steps of solving a problem.

Mathematical programming

- In general, a mathematical program (MP) can be expressed as

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
& x \in X \subseteq \mathbb{R}^{n}
\end{array}
$$

- $x \in \mathbb{R}^{n}$ is the decision vector (set of decision variables).
- $f(x)$ is the objective function.
- $g_{i}(x) \leq 0$, the $i^{\text {th }}$ constraint, imposes a functional restriction on x.
- X is a nonfunctional restriction on x.

Mathematical programming

- The formats of $f(\cdot), g_{i}(\cdot) \mathrm{s}$, and X in a mathematical program

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
& x \in X \subseteq \mathbb{R}^{n}
\end{array}
$$

categorize mathematical programs into several classes.

- Linear programs.
- Convex programs.
- Nonlinear programs.
- Linear integer programs.
- Convex integer programs.
- Nonlinear integer programs.

Linear programming

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
& x \in X \subseteq \mathbb{R}^{n} .
\end{array}
$$

- When $f(\cdot)$ and $g_{i}(\cdot)$ s are all linear functions, i.e.,

$$
f(x)=c_{0}+c_{1} x_{1}+\cdots+c_{n} x_{n}
$$

and

$$
g_{i}(x)=a_{i 0}+a_{i 1} x_{1}+\cdots+a_{i n} x_{n} \quad \forall i=1, \ldots, m
$$

and $X=\mathbb{R}^{n}$, the mathematical program is a linear program (LP).

Linear programming

- An example:

$$
\begin{aligned}
\min & 3 x_{1}+5 x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 8 \\
& 4 x_{1}-x_{2} \geq 6 .
\end{aligned}
$$

- Regarding linear programming:
- The most fundamental mathematical programming.
- Efficient algorithms exist and are widely implemented.
- Can always be solved efficiently.
- One of the most applicable in business.

Convex programming

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
& x \in X \subseteq \mathbb{R}^{n}
\end{array}
$$

- When $f(\cdot)$ and $g_{i}(\cdot)$ s are all convex functions and $X=\mathbb{R}^{n}$, the mathematical program is a convex program (CP).
- What is a convex function?

Convex sets

- We need to define convex sets and convex functions:

Definition 1 (Convex sets)

A set F is convex if

$$
\lambda x_{1}+(1-\lambda) x_{2} \in F
$$

for all $\lambda \in[0,1]$ and $x_{1}, x_{2} \in F$.

Convex functions

Definition 2 (Convex functions)

For a convex set F, a function $f(\cdot)$ is convex on F if

$$
f\left(\lambda x_{1}+(1-\lambda) x_{2}\right) \leq \lambda f\left(x_{1}\right)+(1-\lambda) f\left(x_{2}\right)
$$

for all $\lambda \in[0,1]$ and $x_{1}, x_{2} \in F$.

Convex functions

Some examples

- Convex sets?
- $X_{1}=[10,20]$.
- $X_{2}=(10,20)$.
- $X_{3}=\mathbb{N}$.
- $X_{4}=\mathbb{R}$.
- $X_{5}=\left\{(x, y) \mid x^{2}+y^{2} \leq 4\right\}$.
- $X_{6}=\left\{(x, y) \mid x^{2}+y^{2} \geq 4\right\}$.
- Convex functions?
- $f_{1}(x)=x+2, x \in \mathbb{R}$.
- $f_{2}(x)=x^{2}+2, x \in \mathbb{R}$.
- $f_{3}(x)=\sin (x), x \in[0,2 \pi]$.
- $f_{4}(x)=\sin (x), x \in[\pi, 2 \pi]$.
- $f_{5}(x)=\log (x), x \in(0, \infty)$.
- $f_{6}(x, y)=x^{2}+y^{2},(x, y) \in \mathbb{R}^{2}$.

Convex programming

- An example:

$$
\begin{aligned}
\min & x_{1}^{2}+x_{2}^{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 9 \\
& e^{-x_{1}} \leq 2
\end{aligned}
$$

- Regarding convex programming:
- A super class of linear programming.
- Efficient algorithms exist and are widely implemented.
- Can usually be solved efficiently.
- One of the most applicable in science, engineering, and Economics. Also used a lot in business.

Nonlinear programming

$$
\begin{array}{cl}
\min & f(x) \\
\text { s.t. } & g_{i}(x) \leq 0 \quad \forall i=1, \ldots, m \\
& x \in X \subseteq \mathbb{R}^{n} .
\end{array}
$$

- When $X=\mathbb{R}^{n}$ and at least one of $f(\cdot)$ and $g_{i}(\cdot)$ s is not linear, the mathematical program is a nonlinear program (NLP).
- LP \subset CP, CP \nsubseteq NLP, and LP \cap NLP $=\emptyset$.
- Typically cannot be solved efficiently.

Linear integer programming

- When $f(\cdot)$ and $g_{i}(\cdot)$ s are all linear functions and at least one variable $x_{i} \in X_{i} \subseteq \mathbb{Z}$ (and thus $X \neq \mathbb{R}^{n}$), the mathematical program is a linear integer program (LIP).

- Typically referred to as integer programming (IP).
- Widely used in practice (mainly in business).
- In general not easy to solve.
- Satisfactory methods exist for problems in reasonable scales.

Convex/nonlinear integer programming

- When $f(\cdot)$ and $g_{i}(\cdot)$ s are all convex functions and at least one variable $x_{i} \in X_{i} \subseteq \mathbb{Z}$ (and thus $X \neq \mathbb{R}^{n}$), the mathematical program is a convex integer program (CIP).
- When any of $f(\cdot)$ and $g_{i}(\cdot)$ s is nonlinear and at least one variable $x_{i} \in X_{i} \subseteq \mathbb{Z}$ (and thus $X \neq \mathbb{R}^{n}$), the mathematical program is a nonlinear integer program (NLIP).
- Hard and call for future research.

Summary

	Linear	Convex	Nonlinear
Continuous	LP	CP	NLP
Discrete	LIP	CIP	NLIP

- In this semester:
- Linear programming: about five weeks.
- Convex and nonlinear programming: about two weeks.
- Linear integer programming: about one week.
- Convex and nonlinear integer programming: No time for them!

Road map

- Introduction to modeling.
- Foundations of mathematical programming.
- Four steps of solving a problem.

Four steps of solving a problem

- Step 1: Understand the problem and collect relevant data.
- Step 2: Formulate the problem.
- Step 2.1: Define the decision variables.
- Step 2.2: Write down the objective functions.
- Step 2.3: Write down the constraints.
- Step 3: Solve the problem.
- Find an optimal solution.
- Get the values of the decision variables.
- Step 4: Interpret the optimal solution.
- Determining what to do.

Four steps of solving a problem

- Question: Choose some books to carry to earn as much money as possible. But I am not able to carry all the books.
- Step 1:
- Read the problem: "choose some books", "earn money", "cannot carry all".
- Collect data: Can carry at most 5 kg ; having three books:

Book	Price (NT\$)	Weight (kg)
Calculus	400	4
Statistics	200	1.5
Operations Research	300	3

Four steps of solving a problem

- Step 2: Formulate the problem.

$$
\begin{array}{ll}
\max & \sum_{i=1}^{3} p_{i} x_{i} \\
\text { s.t. } & \sum_{i=1}^{3} w_{i} x_{i} \leq 5 \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 3 .
\end{array}
$$

- Step 3: Solve the problem:
- The optimal solution is $\left(x_{1}^{*}, x_{2}^{*}, x_{3}^{*}\right)=(0,1,1)$.
- How to solve the problem with 100 books?
- Step 4: Interpret the optimal solution:
- We should bring the Statistics and Operations Research textbooks.

