IM2010: Operations Research Introduction to Model Building (Chapter 1)

Ling-Chieh Kung

Department of Information Management National Taiwan University

February 21, 2013

Introduction

- ▶ Mathematical modeling is a way of abstracting a physical problem into a model with symbols and formulas.
- ▶ Let's see the following example.
 - ▶ I have three used books to sell in a second-hand market.
 - ▶ I need to bring them to the market.
 - But I may carry at most 5 kg.

Book	Price (NT\$)	Weight (kg)
Calculus	400	4
Statistics	200	1.5
Operations Research	300	3

▶ Which book(s) should I bring?

Introduction

- ► To decide what to do, we will solve a **mathematical model**.
- ► A mathematical model is often called a mathematical program in the world of Operations Research.
- We will study all kinds of mathematical programs:
 - Their properties.
 - Ways of finding the solution (i.e., algorithms).
 - Managerial insights.
 - Beauty of mathematics.
- We will be familiar with the process of solving a problem with mathematical programming.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Introduction to modeling

4/37

Road map

- ▶ Introduction to (mathematical) modeling.
- ▶ Foundations of mathematical programming.
- ▶ Four steps of solving a problem.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Introduction to modeling

Decision making

• When we need to **make a decision**:

- ▶ What are we going to decide?
- ▶ What do we want?
- What kind of limitations we are facing?

Decision making

- Suppose I need to decide what to do tonight. I may watch a movie, sleep, work on slides, or writing papers.
 - Decision: What to do.
 - Objective: Make me feel happy.
 - ▶ Limitations: Survive.

 $\rm http://yourmovies download.net/$

http://www.123rf.com/

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) LIntroduction to modeling

Optimization problems

- ► We use a mathematical program (or mathematical model) to **formulate** our problem.
- ► In general, all the problems we face in our life can be formulated as **optimization problems**:
 - Deciding what to do tonight to make myself as happy as possible.
 - Choosing a restaurant to best meet my taste and budget.
 - Determining the route of sending mails to spend the least time.
 - Selecting a price to maximize my sales revenue.
 - Making a production plan to minimize my total cost.
- What are the components in an optimization problem?

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1)

Optimization problems

▶ In an optimization problem, there are:

- Decision variables.
- ► The objective function.
- ► Constraints.
- Let's understand them by formulating the problem of which books to carry.

 Question: Choose some books to carry to earn as much money as possible. But I can carry at most 5 kg.

Book	Price (NT\$)	Weight (kg)
Calculus	400	4
Statistics	200	1.5
Operations Research	300	3

▶ Step 1: Use symbols and functions to describe the problem.

- Let $B = \{c, s, o\}$ be the set of books. Let p(x) be the price of book x and w(x) be the weight of book $x, x \in B$.
- E.g., p(c) = 400 and w(s) = 1.5.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Introduction to modeling

Formulating a problem

- ▶ Step 2: Describe **all possible** actions by ignoring constraints.
 - ▶ We may choose *c* only. We may choose *c* and *s*. We may choose *c* and *o*. We may choose...
 - In general, we are choosing a subset of B.
- ► Step 3: Define the **decision variables**.
 - Let X be the set of books that I am carrying to the market.
 - ▶ Be specific, clear, precise, and complete!
 - Bad definition 1: Let X be books.
 - Bad definition 2: X =books.
 - Not very good definition: Let X be the books I select.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Introduction to modeling

Formulating a problem

- Step 4: Write down a maximization or minimization objective function.
 - ▶ I want to earn as much money as possible.
 - ▶ So I want to maximize my sales revenue.
 - max $\sum_{x \in X} p(x)$.
- ▶ Step 5: Write down **constraints** as **equalities** or **inequalities**.
 - ▶ I can carry at most 5 kg: $\sum_{x \in X} w(x) \le 5$.
 - I cannot sell what I do not have: $X \subseteq S$.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1)

Formulating a problem

▶ The complete formulation:

$$\max \sum_{\substack{x \in X \\ x \in X}} p(x)$$
 s.t.
$$\sum_{\substack{x \in X \\ X \subseteq S.}} w(x) \le 5$$

- ▶ The decision variable is a set.
- ▶ There is one maximization objective function.
- ▶ There are two constraints.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Introduction to modeling

An alternative formulation

- In designing and running algorithms, typically it is easier to not using a set as a decision variable.
- Let's label Calculus as book 1, Statistics as book 2, and OR as book 3. Then we may define p_i and w_i as the price and weight of book i, i = 1, ..., 3.
- ► Furthermore, let

$$x_i = \begin{cases} 1 & \text{if I carry book } i \\ 0 & \text{otherwise} \end{cases}, i = 1, ..., 3$$

be our decision variables.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1)

An alternative formulation

▶ The first attampt of an alternative formulation:

$$\max \quad \sum_{i=1}^{3} p_i x_i$$

s.t.
$$\sum_{i=1}^{3} w_i x_i \le 5$$

Is that all?

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) L Introduction to modeling

An alternative formulation

▶ There is one more constraint: We cannot split the book:

$$x_i \in \{0, 1\} \quad \forall i = 1, ..., 3.$$

▶ The complete formulation:

$$\max \sum_{i=1}^{3} p_{i} x_{i}$$
s.t.
$$\sum_{i=1}^{3} w_{i} x_{i} \leq 5$$

$$x_{i} \in \{0,1\} \quad \forall i = 1, ..., 3.$$

16/37

Some remarks

- ▶ The problem is an example of the **knapsack** problem, one of the most fundamental problem in Computer Science.
- ▶ In general, a decision variable can be a scalar, a vector, a matrix, a set, etc.
 - ▶ In this course, almost all variables are scalars.
- ▶ In most problems, there is only one objective function.
 - Either maximization or minimization.
- In the subject of multi-objective optimization, there can be multiple objective functions.
- There can be any number of constraints.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1)

17/37

Some remarks

- ► For a single problem, there are always **multiple** ways of formulating it.
 - ▶ In this course, you will need to formulate many problems.
 - ▶ While there are some differences among different formulations (some are easier to solve), you do not need to worry about that.
 - ▶ Just make your formulation **correct**, precise, and understandable.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) Introduction to modeling

Summary

- ▶ Mathematical programming (modeling) is the entire process of
 - ▶ **formulating** a physical problem with mathematical terms,
 - solving the mathematical program,
 - **interpreting** the results, and
 - ► facilitating **decision making**.
- ▶ We need to
 - get experience in formulating problems,
 - study how to solve a program, and
 - ▶ practice to draw (managerial) insights from numbers.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) - Foundations of MP

Road map

- ▶ Introduction to modeling.
- ► Foundations of mathematical programming.
- ▶ Four steps of solving a problem.

Mathematical programming

▶ In general, a mathematical program (MP) can be expressed as

min
$$f(x)$$

s.t. $g_i(x) \le 0 \quad \forall i = 1, ..., m$
 $x \in X \subseteq \mathbb{R}^n.$

- $x \in \mathbb{R}^n$ is the decision vector (set of decision variables).
- f(x) is the objective function.
- $g_i(x) \leq 0$, the *i*th constraint, imposes a functional restriction on x.
- X is a nonfunctional restriction on x.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) $\hfill Foundations of MP$

Mathematical programming

▶ The formats of $f(\cdot)$, $g_i(\cdot)$ s, and X in a mathematical program

min f(x)s.t. $g_i(x) \le 0 \quad \forall i = 1, ..., m$ $x \in X \subseteq \mathbb{R}^n.$

categorize mathematical programs into several classes.

- Linear programs.
- Convex programs.
- Nonlinear programs.
- Linear integer programs.
- Convex integer programs.
- Nonlinear integer programs.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) $\hfill Foundations of MP$

Linear programming

min
$$f(x)$$

s.t. $g_i(x) \le 0 \quad \forall i = 1, ..., m$
 $x \in X \subseteq \mathbb{R}^n.$

• When $f(\cdot)$ and $g_i(\cdot)$ s are all **linear** functions, i.e.,

$$f(x) = c_0 + c_1 x_1 + \dots + c_n x_n,$$

and

$$g_i(x) = a_{i0} + a_{i1}x_1 + \dots + a_{in}x_n \quad \forall i = 1, \dots, m,$$

and $X = \mathbb{R}^n$, the mathematical program is a linear program (LP).

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) – Foundations of MP

Linear programming

► An example:

min $3x_1 + 5x_2$ s.t. $x_1 + 2x_2 \le 8$ $4x_1 - x_2 \ge 6.$

- ▶ Regarding linear programming:
 - The most fundamental mathematical programming.
 - Efficient algorithms exist and are widely implemented.
 - ▶ Can always be solved efficiently.
 - One of the most applicable in business.

Convex programming

min
$$f(x)$$

s.t. $g_i(x) \le 0 \quad \forall i = 1, ..., m$
 $x \in X \subseteq \mathbb{R}^n$

- ▶ When $f(\cdot)$ and $g_i(\cdot)$ s are all **convex** functions and $X = \mathbb{R}^n$, the mathematical program is a **convex program** (CP).
 - What is a convex function?

Convex sets

▶ We need to define <u>convex sets</u> and <u>convex functions</u>:

Definition 1 (Convex sets)

A set F is convex if

$$\lambda x_1 + (1 - \lambda) x_2 \in F$$

for all $\lambda \in [0,1]$ and $x_1, x_2 \in F$.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Foundations of MP

Convex functions

Definition 2 (Convex functions)

For a convex set F, a function $f(\cdot)$ is convex on F if

$$f(\lambda x_1 + (1 - \lambda)x_2) \le \lambda f(x_1) + (1 - \lambda)f(x_2)$$

for all $\lambda \in [0, 1]$ and $x_1, x_2 \in F$.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) $\hfill Foundations of MP$

Convex functions

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Foundations of MP

Some examples

- ► Convex sets?
 - $X_1 = [10, 20].$
 - $X_2 = (10, 20).$
 - $X_3 = \mathbb{N}$.

•
$$X_4 = \mathbb{R}$$
.

- $X_5 = \{(x, y) | x^2 + y^2 \le 4\}.$
- $X_6 = \{(x, y) | x^2 + y^2 \ge 4\}.$

- Convex functions?
 - $f_1(x) = x + 2, x \in \mathbb{R}.$
 - $f_2(x) = x^2 + 2, x \in \mathbb{R}.$
 - $f_3(x) = \sin(x), x \in [0, 2\pi].$
 - $f_4(x) = \sin(x), x \in [\pi, 2\pi].$
 - $f_5(x) = \log(x), x \in (0, \infty).$
 - $f_6(x,y) = x^2 + y^2, (x,y) \in \mathbb{R}^2.$

Convex programming

► An example:

min $x_1^2 + x_2^2$ s.t. $x_1 + 2x_2 \le 9$ $e^{-x_1} \le 2.$

- Regarding convex programming:
 - A super class of linear programming.
 - Efficient algorithms exist and are widely implemented.
 - Can usually be solved efficiently.
 - One of the most applicable in science, engineering, and Economics. Also used a lot in business.

Nonlinear programming

min
$$f(x)$$

s.t. $g_i(x) \le 0 \quad \forall i = 1, ..., m$
 $x \in X \subseteq \mathbb{R}^n.$

- ▶ When $X = \mathbb{R}^n$ and **at least** one of $f(\cdot)$ and $g_i(\cdot)$ s is **not linear**, the mathematical program is a **nonlinear program** (NLP).
 - LP \subset CP, CP \nsubseteq NLP, and LP \cap NLP = \emptyset .
 - ▶ Typically cannot be solved efficiently.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) – Foundations of MP

Linear integer programming

▶ When $f(\cdot)$ and $g_i(\cdot)$ s are all linear functions and **at least** one variable $x_i \in X_i \subseteq \mathbb{Z}$ (and thus $X \neq \mathbb{R}^n$), the mathematical program is a linear **integer** program (LIP).

- Typically referred to as **integer programming (IP)**.
- Widely used in practice (mainly in business).
- In general not easy to solve.
- ▶ Satisfactory methods exist for problems in reasonable scales.

Convex/nonlinear integer programming

- ▶ When $f(\cdot)$ and $g_i(\cdot)$ s are all convex functions and at least one variable $x_i \in X_i \subseteq \mathbb{Z}$ (and thus $X \neq \mathbb{R}^n$), the mathematical program is a convex integer program (CIP).
- ▶ When any of $f(\cdot)$ and $g_i(\cdot)$ s is nonlinear and at least one variable $x_i \in X_i \subseteq \mathbb{Z}$ (and thus $X \neq \mathbb{R}^n$), the mathematical program is a nonlinear integer program (NLIP).
- ▶ Hard and call for future research.

Summary

	Linear	Convex	Nonlinear
Continuous	LP	CP	NLP
Discrete	LIP	CIP	NLIP

▶ In this semester:

- ▶ Linear programming: about five weeks.
- ▶ Convex and nonlinear programming: about two weeks.
- ▶ Linear integer programming: about one week.
- Convex and nonlinear integer programming: No time for them!

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) 34/37 — Four steps of solving a problem

Road map

- ▶ Introduction to modeling.
- ▶ Foundations of mathematical programming.
- Four steps of solving a problem.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Four steps of solving a problem

Four steps of solving a problem

- ► Step 1: **Understand** the problem and **collect** relevant data.
- ► Step 2: **Formulate** the problem.
 - ▶ Step 2.1: Define the decision variables.
 - ▶ Step 2.2: Write down the objective functions.
 - ▶ Step 2.3: Write down the constraints.
- ► Step 3: Solve the problem.
 - ▶ Find an optimal solution.
 - Get the values of the decision variables.
- ► Step 4: Interpret the optimal solution.
 - Determining what to do.

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Four steps of solving a problem

Four steps of solving a problem

- Question: Choose some books to carry to earn as much money as possible. But I am not able to carry all the books.
- ▶ Step 1:
 - ▶ Read the problem: "choose some books", "earn money", "cannot carry all".
 - ▶ Collect data: Can carry at most 5 kg; having three books:

Book	Price (NT\$)	Weight (kg)
Calculus	400	4
Statistics	200	1.5
Operations Research	300	3

Operations Research, Spring 2013 – Introduction to Model Building (Ch. 1) — Four steps of solving a problem

Four steps of solving a problem

▶ Step 2: Formulate the problem.

$$\max \sum_{i=1}^{3} p_i x_i$$

s.t.
$$\sum_{i=1}^{3} w_i x_i \le 5$$
$$x_i \in \{0,1\} \quad \forall i = 1, ..., 3$$

- ► Step 3: Solve the problem:
 - The optimal solution is $(x_1^*, x_2^*, x_3^*) = (0, 1, 1)$.
 - ▶ How to solve the problem with 100 books?
- Step 4: Interpret the optimal solution:
 - ▶ We should bring the Statistics and Operations Research textbooks.