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Introduction

I In the following weeks, we will study Linear Programming (LP).
I It is used a lot in practice.
I It also provides important theoretical properties.
I It is good starting point for all OR subjects.

I We will study:
I What kind of practical problems can be solved by LP.
I How to formulate a problem as an LP.
I How to solve an LP.
I Any many more.
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Terminology

Road map

I Terminology.

I Basic properties.

I The graphical approach.
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Terminology

Introduction

I A linear program (LP) is a mathematical program whose
objective function and constraints are all linear and variables
are all fractional.
I If nonlinear: Convex or Nonlinear Programming.
I If not fractional (i.e., discrete): Integer Programming.
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Terminology

Basic elements of an LP

I In general, any LP can be expressed as

min f(x) =

n∑
j=1

cjxj (objective function)

s.t. gi(x) =

n∑
j=1

Aijxj ≤ bi ∀i = 1, ...,m (constraints)

xj ∈ R ∀j = 1, ..., n. (decision variable)

I Aijs: the constraint coefficients.
I bis: the right-hand-side values (RHSs).
I cjs: the objective coefficients.
I As a convention, we will ignore xj ∈ R in the sequel.
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Terminology

Transformation

I How about a maximization objective function?
I max f(x)⇔ min−f(x).

I How about equality or greater-than-or-equal-to constraint?
I gi(x) ≥ bi ⇔ −gi(x) ≤ −bi.
I gi(x) = bi ⇔ gi(x) ≤ bi and gi(x) ≥ bi (which is −gi(x) ≤ −bi.

I For example,

max x1 − x2 min −x1 + x2
s.t. −2x1 + x2 ≥ −3 ⇔ s.t. 2x1 − x2 ≤ 3

x1 + 4x2 = 5. x1 + 4x2 ≤ 5
−x1 − 4x2 ≤ −5.
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Terminology

Matrix representation of an LP

I An LP can also be expressed in the matrix representation:

min cx

s.t. Ax ≤ b.

I A ∈ Rm×n: the constraint matrix.
I b ∈ Rm: the RHS vector (a column vector).
I c ∈ Rn: the objective vector (a row vector).

I For example,

max x1 − x2

s.t. −2x1 + x2 ≥ 3
x1 + 4x2 = 5.

⇒ A =

 2 −1
1 −4
−1 4

 , b =

 −35
−5

 , c =
[
−1 1

]
.

I The matrix representation will be used a lot in this course.
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Terminology

Sign constraints

I For some reasons that will be clear in a couple weeks, we
distinguish between two kinds of constraints:
I Sign constraints: xi ≥ 0 or xi ≤ 0.
I Functional constraints: all others.

I For a variable xi:
I It is nonnegative if xi ≥ 0.
I It is nonpositive if xi ≤ 0.
I It is unrestricted in sign (urs.) or free if there is no sign

constraint for it.
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Terminology

Example

I Here is an example of LP:

min 2x1 + x2
s.t. x1 ≤ 10

x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.

I The geometric representation may help.
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Terminology

Example

I With the sign constraints:
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Terminology

Example

I Adding x1 ≤ 10:
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Terminology

Example

I Adding x1 + 2x2 ≤ 12:
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Terminology

Example

I Adding x1 − 2x2 ≥ −8:
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Terminology

Example

I What is the matrix representation (min cx s.t. Ax ≤ b) of

min 2x1 + x2
s.t. x1 ≤ 10

x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0?

I x = (x1, x2) =

[
x1
x2

]
.

I A =


1 0
1 2
−1 2
−1 0
0 −1

, b =


10
12
8
0
0

, and c =
[

2 1
]
.
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Terminology

Feasible solutions

I For a linear program:
I A feasible solution satisfies all the constraints.
I An infeasible solution violates at least one constraints.

min 2x1 + x2
s.t. x1 ≤ 10

x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0

I Feasible?
I x1 = (2, 3).
I x2 = (6, 0).
I x3 = (6, 6).
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Terminology

Feasible solutions

I Graphically:

I Feasible?
I x1 = (2, 3).
I x2 = (6, 0).
I x3 = (6, 6).
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Terminology

Feasible region and optimal solutions

I For a linear program:
I The feasible region (or feasible set) is the set of feasible

solutions.
I An optimal solution is a feasible solution that optimizes

(minimizes or maximizes) the optimal solution.

I The feasible region may be empty.

I The feasible region is unique.

I An optimal solution may not be unique.
I There may be multiple optimal solutions or no optimal solution.
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Terminology

Strict constraints?

I An inequality is strict if the relationship is strictly greater than
(>) or strictly less than (<).
I E.g., x1 + x2 > 5.

I An inequality is weak if the relationship is weakly greater than
(≥) or weakly less than (≤).
I E.g., x1 + x2 ≥ 5.

I An LP can only have equalities and weak inequalities.
I With strict inequalities, is an optimal solution always attainable?
I What is the optimal solution of

min x

s.t. x > 0?
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Terminology

Summary

I The decision variables, objective function, and constraints.

I Functional and sign constraints.

I Geometric representation.

I Feasible solutions and optimal solutions.
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Basic properties

Road map

I Terminology.

I Basic properties.

I The graphical approach.
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Basic properties

Global optima

I For a function f(x) over a feasible region F , a point x∗ is a
global minimum if

f(x∗) ≤ f(x) ∀x ∈ F.

I There may be multiple global minima.

I x∗ is a global maximum if f(x∗) ≥ f(x) ∀x ∈ F .

I A global optimum is either a minimum or a maximum.
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Basic properties

Local optima

I Let d(x, y) ≡
√

(x1 − y1)2 + · · ·+ (xn − yn)2 be the Euclidean
distance between two points x and y ∈ Rn.

I Consider a point x0 ∈ Rn.

I We define B(x0, ε) ≡ {x|d(x, x0) ≤ ε} as a ball centered at x0

with radius ε.
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Basic properties

Local optima

I For a function f(x) over a feasible region F , a point x′ is a
local minimum if for some ε > 0 we have

f(x′) ≤ f(x) ∀x ∈ B(x′, ε)∩F.

I Local maxima and local optima are defined accordingly.
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Basic properties

Local v.s. global optima

I Finding a local optimum is easier than finding a global one.
I All we need to check is whether there is a feasible direction that

improves the current solution.
I This is called an improving direction.
I If yes, move in that direction for some length.
I Otherwise, we are at a local optimum.

I But in general, finding a local optimum is not enough.

I When is a local optimum also a global optimum?

Proposition 1

For a convex function over a convex feasible region, a local
minimum is a global minimum.
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Basic properties

Convex sets

I Recall that we have defined convex sets and functions:

Definition 1 (Convex sets)

A set F is convex if

λx1 + (1− λ)x2 ∈ F

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Basic properties

Convex functions

Definition 2 (Convex functions)

A function f(·) is convex if

f
(
λx1 + (1− λ)x2

)
≤ λf(x1) + (1− λ)f(x2)

for all λ ∈ [0, 1] and x1, x2 ∈ F .
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Basic properties

Local v.s. global optima

Proof. Let f(·) be a convex function over a convex feasible
region F . Suppose a local min x′ is not a global min and there
exists x′′ such that f(x′′) < f(x′). Consider a small enough
λ > 0 such that x̄ = x′ + λ(x′′ − x′) satisfies f(x̄) > f(x′). Such
x̄ exists because x is a local min. Moreover, x̄ is feasible
because F is convex and x′ and x′′ are both feasible.
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Basic properties

Local v.s. global optima

Proof (cont’d). Now, note that

f(x̄) = f
(
λx′′ + (1− λ)x′

)
> f(x′) (x′ is a local min)
> λf(x′′) + (1− λ)f(x′), (f(x′′) < f(x′))

which violates the fact that f(·) is convex. Therefore, by
contradiction, the local min x must be a global min.
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Basic properties

Local v.s. global optima

I Now we know if we minimize a convex function over a convex
feasible region, a local minimum is a global minimum.

I If we maximize a concave function over a convex feasible
region, a local maximum is a global maximum.
I A function f(·) is concave if −f(·) is convex.

I What may happen if we minimize a concave function?
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Basic properties

Extreme points

I We need to first define extreme points for a set:

Definition 3 (Extreme points)

For a set S, a point x is an extreme point if there does not exist
a three-tuple (x1, x2, λ) such that x1 ∈ S \ {x}, x2 ∈ S \ {x},
λ ∈ (0, 1), and

x = λx1 + (1− λ)x2.
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Basic properties

Extreme points and optimal solutions

I When we minimize a concave function over a convex feasible
region, we only need to focus on the “boundary”.
I Mathematically, we focus on extreme points.

I Let’s formalize the idea:

Proposition 2

For any concave function that has a global minimum, there
exists a global minimum that is an extreme point.

Proof. Beyond the scope of this course.
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Basic properties

Warning!

I The proposition says “there exists a global minimum that is an
extreme point.”

I It is not “a global minimum must be an extreme point.”

I For some problems, an extreme-point global minimum and a
nonextreme-point global minimum may exist together!

I x1 is an extreme-point global min.
I x2 is a nonextreme-point global min.
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Basic properties

Solving a linear program

I Now we know when we minimize f(·) over a convex feasible
region F :
I If f(·) is convex, search for a local min.
I If f(·) is concave, search among the extreme points of F .

I How are these related to Linear Programming?

I We will show that, for any linear program:
I The feasible region is convex.
I The objective function is both convex and concave.

I Then the results will mean a lot to Linear Programming!
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Basic properties

Solving a linear program

Proposition 3

The feasible region of a linear program is convex.

Proof. First, note that the feasible region of a linear program is
the intersection of several half spaces (each one is determined
by an inequality constraint) and hyperplanes (each one is
determined by an equality constraint). It is trivial to show that
half spaces and hyperplanes are always convex. It then remains
to show that the intersection of convex sets are convex, which is
left as a homework problem.
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Basic properties

Solving a linear program

Proposition 4

A linear function is both convex and concave.

Proof. To show that a function f(·) is convex and concave, we
need to show that f(λx1 + (1− λ)x2) = λf(x1) + (1− λ)f(x2),
which is exactly the separability of linear functions: Let
f(x) = c · x+ b be a linear function, c ∈ Rn, b ∈ R, then

f
(
λx1 + (1− λ)x2

)
= c ·

(
λx1 + (1− λ)x2

)
+ b

= λ(c · x1 + b) + (1− λ)(c · x2 + b)

= λf(x1) + (1− λ)f(x2).

Therefore, a linear function is both convex and concave.
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Basic properties

Solving a linear program

I In solving a linear program, we only need to search for a local
minimum.
I As long as we find a feasible improving direction, just move

along that direction.

I Also, we only need to search among the extreme points of the
feasible region.
I We may keep moving until we reach the end of the feasible region.

I These two properties form the foundation of the
graphical approach for solving two-dimensional linear
programs.

I They also allow us to use the simplex method for solving
n-dimensional linear programs.
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Basic properties

Solving a linear program

I Linear programs are special.
I Moving along any improving direction until we reach the end of the

feasible region.

I Does this apply to nonlinear programs?
I Is a local optimum always a global optimum?
I Is there always an extreme point global optimum?

I Examples:

min x21 + x22

s.t. x1 + x2 ≤ 2

2x1 − x2 ≤ 2.

min x3 − 3x2 + 1

s.t. x ≥ −2.
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The graphical approach

Road map

I Terminology.

I Basic properties.

I The graphical approach.
I The steps.
I The four types of LPs.
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The graphical approach

Graphical approach

I For linear programs with only two decision variables, we may
solve them with the graphical approach.

I We will demonstrate this approach by solving the example

max 2x1 + x2
s.t. x1 ≤ 10

x1 + 2x2 ≤ 12
x1 − 2x2 ≥ −8
x1 ≥ 0

x2 ≥ 0.
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The graphical approach

Graphical approach

I Step 1: Draw the feasible region.
I Draw each constraint one by one, and then find the intersection.
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The graphical approach

Graphical approach

I Step 2: Draw an isocost line.
I A line such that all points on it result in the same objective value.
I Also called the isoprofit line or isoquant line in some cases.
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The graphical approach

Graphical approach

I Step 3: Indicate the direction to push the isocost line.
I The direction that decreases/increases the objective value for a

minimization/maximization problem.
I Typically depicted as a vector perpendicular to the isocost line.
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The graphical approach

Graphical approach

I Step 4: Push the isocost line to the “end” of the feasible region.
I Stop when any further step makes all points on the isocost line

infeasible.



Operations Research, Spring 2013 – The Basics of Linear Programming (Ch. 3) 44 / 53

The graphical approach

Graphical approach

I Step 5: Identify the binding constraints at the optimal
solution.

Definition 4

Let g(·) ≤ b be an inequality constraint and x be a point. g(·) is
binding at x if g(x) = b.

I An inequality is nonbinding at a point if it is strict at that point.
I An equality constraint is always binding at any feasible solution.

I Some examples:
I x1 + x2 ≤ 10 is binding at (x1, x2) = (2, 8).
I 2x1 + x2 ≥ 6 is nonbinding at (x1, x2) = (2, 8).
I x1 + 3x2 = 9 is binding at (x1, x2) = (6, 1).
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The graphical approach

Graphical approach

I Step 5: Identify the binding constraints at the optimal solution.
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The graphical approach

Graphical approach

I Step 6: Set the binding constraints to equalities and then solve
the linear system for an optimal solution.
I In the example, the binding constraints are x1 ≤ 10 and
x1 + 2x2 ≤ 12. Therefore, we solve[

1 0 10
1 2 12

]
→
[

1 0 10
0 2 2

]
→
[

1 0 10
0 1 1

]
and obtain an optimal solution (x∗1, x

∗
2) = (10, 1).

I Step 7: Plug in the optimal solution obtained into the objective
function to get the associated objective value.
I In the example, 2x∗1 + x∗2 = 21.
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The graphical approach

Graphical approach: Summary

I Six steps:
I Step 1: Feasible region.
I Step 2: Isocost line.
I Step 3: Direction to push (or the improving direction).
I Step 4: Push!
I Step 5: Binding constraints.
I Step 6: Optimal solution.

I Make your graph clear and in the right scale to avoid mistakes.
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The graphical approach

Four types of linear programs

I For any linear program, it must be one of the following:
I Infeasible.
I Unbounded.
I Having a unique optimal solution.
I Having multiple optimal solutions.
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The graphical approach

Infeasibility

I A linear program is infeasible if its feasible region is empty.

min 3x1 + x2
s.t. x1 + x2 ≤ 4

3x1 + x2 ≥ 9
x1 − x2 ≤ 0
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The graphical approach

Unboundedness

I A linear program is unbounded if for any feasible solution,
there is another feasible solution that is better.

max x1 + x2
s.t. x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6
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The graphical approach

Unboundedness

I Note that an unbounded feasible region does not imply an
unbounded linear program!
I Is it necessary?

min x1 + x2
s.t. x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6
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The graphical approach

Multiple optimal solutions

I A linear program may have multiple optimal solutions.
I If the slope of the isocost line is identical to that of one constraint,

is it always the case that there are multiple optimal solutions?

min x1 + 2x2
s.t. x1 + 2x2 ≥ 6

2x1 + x2 ≥ 6
x2 ≥ 0
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The graphical approach

Four types of linear programs: Summary

I Nevertheless, in solving an LP (or any mathematical program),
we only want to find an optimal solution, not all.
I All we want is to make an optimal decision.
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