IM2010: Operations Research Linear Programming Formulation (Chapter 3)

Ling-Chieh Kung
Department of Information Management
National Taiwan University

February 25, 2013

Introduction

- It is important to learn how to model a practical situation as a linear program.
- This process is typically called linear programming formulation or modeling.
- We will introduce three types of LP problems, demonstrate how to formulate them, and discuss some important issues.
- There are certainly many other types of LP problems.
- For large-scale problems, compact formulations are used.

Road map

- Resource allocation.
- Materials blending.
- Production and inventory.
- Compact formulations.

Resource allocation

- We produce products to sell.
- Each product requires some resources. Resources are limited.
- We want to maximize the total sales revenue while ensuring resources are enough.

Resource allocation: the problem

- We may produce desks and tables.
- Producing a desk requires four units of wood, one hour of labor, and 30 minutes of machine time.
- Producing a table requires five units of wood, two hours of labor, and 20 minutes of machine time.
- We may sell everything we produce.
- For each day, we have
- Two workers, each works for eight hours.
- One machine that can run for eight hours.
- A supply of 36 units of wood.
- Desks and tables are sold at $\$ 800$ and $\$ 600$ per unit, respectively.

Formulation: decision variables

- When we define decision variables, try to answer "what are the decisions to make?"
- In this example, the decision we want to make is the production quantities of desks and tables.
- Therefore, we define our decision variables as follows:
- Let

$$
\begin{aligned}
& x_{1}=\text { number of desks produced in a day and } \\
& x_{2}=\text { number of tables produced in a day. }
\end{aligned}
$$

Formulation: objective function

- In the objective function, we write down the quantity that we want to maximize or minimize.
- In this example, we want to maximize the total sales revenue.
- Given our decision variables, may we determine the sales revenue?
- The sales revenue is $800 x_{1}+600 x_{2}$.
- The objective function is thus

$$
\max 800 x_{1}+600 x_{2}
$$

Formulation: constraints

- For each restriction or limitation, we write a constraint.
- Summarizing data into a table typically helps:

Resource	Consumption per		Total supply
	Desk	Table	
Wood	4 units	5 units	36 units
Labor hour	1 hour	2 hours	16 hours
Machine time	30 minutes	20 minutes	8 hours

Formulation: constraints

- The supply of wood is limited:

$$
4 x_{1}+5 x_{2} \leq 36
$$

- The number of labor hours is limited:

$$
x_{1}+2 x_{2} \leq 16
$$

- The amount of machine time is limited:

$$
30 x_{1}+20 x_{2} \leq 240
$$

- Use the same unit of measurement!
- Production quantities are nonnegative: $x_{i} \geq 0 \quad \forall i=1,2$.

Formulation: the complete formulation

- The complete formulation is

$$
\begin{array}{rr}
\max & 800 x_{1}+600 x_{2} \\
\text { s.t. } & 4 x_{1}+5 x_{2} \leq 36 \text { (wood) } \\
& x_{1}+2 x_{2} \leq 16 \text { (labor) } \\
& 30 x_{1}+20 x_{2} \leq 240 \quad \text { (machine) } \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

- Clearly define decision variables in front of your formulation.
- Write comments after the objective function and constraints.
- Do not forget nonnegativity constraints.

Formulation: the complete formulation

- We may simplify the formulation:

- Once we find an optimal solution, please use the original objective function in calculating the associated objective value.

Fractional and integer variables

- The optimal solution of this linear program is to produce 6.86 desks or 1.71 tables. Can we?
- Indeed we cannot. Then why linear programming?
- It always supports our decisions. E.g., we may round down to get a feasible solution that is near optimal.
- In practice, people use mathematical programming typically when the quantities are large. Rounding 6.86 may deviate a lot but rounding 68600.86 may be much more acceptable.
- When it is necessary, we should impose integer constraints on variables and apply integer programming (to be covered later in the semester).
- If it is not specified in the problem, using LP is enough.

Road map

- Resource allocation.
- Materials blending.
- Production and inventory.
- Compact formulations.

Material blending

- In some situations, we need to determine not only products to produce but also materials to input.
- This is because we have some flexibility in making the products.
- For example, in making orange juice, we may use orange, sugar, water, etc. Different ways of blending these materials results in different qualities of juice.
- The goal is to save money (lower the proportion of expensive materials) while maintaining quality.
- This is introduced in Section 3.7 of the textbook.

Material blending: the problem

- We blend materials 1, 2, and 3 to make products 1 and 2 .
- The quality of a product, which depends on the proportions of these three materials, must meet the standard:
- Product 1: at least 40% of material 1; at least 20% of material 2 .
- Product 2: at least 50% of material 1 ; at most 30% of material 3 .
- At most 100 kg of product 1 and 150 kg of product 2 can be sold.
- Prices for products 1 and 2 are $\$ 10$ and $\$ 15$ per kg, respectively.
- Costs for materials 1 to 3 are $\$ 8, \$ 4$, and $\$ 3$ per kg, respectively.
- Amount of a product made equals the amount of materials input.
- We want to maximize the total profit.

Formulation: decision variables

- Probably our first attempt is to define the following: Let

$$
\begin{aligned}
& x_{1}=\mathrm{kg} \text { of product } 1 \text { produced } \\
& x_{2}=\mathrm{kg} \text { of product } 2 \text { produced, } \\
& y_{1}=\mathrm{kg} \text { of material } 1 \text { produced, } \\
& y_{2}=\mathrm{kg} \text { of material } 2 \text { produced, and } \\
& y_{3}=\mathrm{kg} \text { of material } 3 \text { produced. }
\end{aligned}
$$

- May we express the quality of each product? No!
- We need to specify the amount of material 1 used for product 1 , the amount of material 1 used for product 2, etc.
- So we need to redefine our decision variables.

Formulation: decision variables

- How about this: Let

$$
\begin{aligned}
& x_{1}=\mathrm{kg} \text { of material } 1 \text { used for product } 1, \\
& x_{2}=\mathrm{kg} \text { of material } 1 \text { used for product } 2, \\
& x_{3}=\mathrm{kg} \text { of material } 2 \text { used for product } 1, \\
& x_{4}=\mathrm{kg} \text { of material } 2 \text { used for product } 2, \\
& x_{5}=\mathrm{kg} \text { of material } 3 \text { used for product } 1, \text { and } \\
& x_{6}=\mathrm{kg} \text { of material } 3 \text { used for product } 2 .
\end{aligned}
$$

- The definition is correct and precise, but not easy to use.
- Similar to computer programming: give your variables reasonable names that allow people to know what they are.

Formulation: decision variables

- How about this: Let

$$
\begin{aligned}
& x_{11}=\mathrm{kg} \text { of material } 1 \text { used for product } 1, \\
& x_{12}=\mathrm{kg} \text { of material } 1 \text { used for product } 2, \\
& x_{21}=\mathrm{kg} \text { of material } 2 \text { used for product } 1, \\
& x_{22}=\mathrm{kg} \text { of material } 2 \text { used for product } 2, \\
& x_{31}=\mathrm{kg} \text { of material } 3 \text { used for product } 1, \text { and } \\
& x_{32}=\mathrm{kg} \text { of material } 3 \text { used for product } 2 .
\end{aligned}
$$

- Much better.

Formulation: decision variables

- How to find the production quantities of products and the purchasing quantities of materials?
- Let's summarize the variables into a table:

	Product 1	Product 2
Material 1	x_{11}	x_{12}
Material 2	x_{21}	x_{22}
Material 3	x_{31}	x_{32}

- What are the desired quantities?

Formulation: decision variables

- The desired quantities:

	Product 1	Product 2	Purchasing quantity
Material 1	x_{11}	x_{12}	$x_{11}+x_{12}$
Material 2	x_{21}	x_{22}	$x_{21}+x_{22}$
Material 3	x_{31}	x_{32}	$x_{31}+x_{32}$
Production quantity	$x_{11}+x_{21}+x_{31}$	$x_{12}+x_{22}+x_{32}$	

Formulation: objective function

- Let's write down the total profit.
- Sales revenues depend on the amount of products we sell.
- How much product 1 may we sell? $x_{11}+x_{21}+x_{31}$.
- Similarly, we have $x_{12}+x_{22}+x_{32} \mathrm{~kg}$ of product 2 .
- Material costs depend on the amount of materials we purchase.
- Similarly, we need to buy $x_{11}+x_{12} \mathrm{~kg}$ of material $1, x_{21}+x_{22} \mathrm{~kg}$ of material 2 and $x_{31}+x_{32} \mathrm{~kg}$ of material 3 .
- The objective function is

$$
\begin{aligned}
\max & 10\left(x_{11}+x_{21}+x_{31}\right)+15\left(x_{12}+x_{22}+x_{32}\right) \\
& -8\left(x_{11}+x_{12}\right)-4\left(x_{21}+x_{22}\right)-3\left(x_{31}+x_{32}\right) \\
=\max & 2 x_{11}+7 x_{12}+6 x_{21}+11 x_{22}+7 x_{31}+x_{32} .
\end{aligned}
$$

Formulation: quality constraints

- In product 1 , how to guarantee at least 40% are material 1 ?

$$
\frac{x_{11}}{x_{11}+x_{21}+x_{31}} \geq 0.4
$$

- It is conceptually correct. However, it is nonlinear!
- Let's fix the nonlinearity by taking the denominator to the RHS:

$$
x_{11} \geq 0.4\left(x_{11}+x_{21}+x_{31}\right)
$$

Though equivalent, they are just different.

- We may (but is not required to) choose other format, such as $0.6 x_{11}-0.4 x_{21}-0.4 x_{31} \geq 0$ or $3 x_{11}-2 x_{21}-2 x_{31} \geq 0$.

Formulation: constraints

- In total we have four quality constraints:
- $x_{11} \geq 0.4\left(x_{11}+x_{21}+x_{31}\right)$.
- $x_{21} \geq 0.2\left(x_{11}+x_{21}+x_{31}\right)$.
- $x_{12} \geq 0.5\left(x_{12}+x_{22}+x_{32}\right)$.
- $x_{13} \leq 0.3\left(x_{12}+x_{22}+x_{32}\right)$.

Formulation: constraints

- The demands are limited:

$$
x_{11}+x_{21}+x_{31} \leq 100
$$

and

$$
x_{12}+x_{22}+x_{32} \leq 150
$$

- The quantities are nonnegative:

$$
x_{i j} \geq 0 \quad \forall i=1, \ldots, 3, j=1,2 .
$$

Formulation: the complete formulation

- The complete formulation is

$$
\begin{array}{ll}
\max & 10\left(x_{11}+x_{21}+x_{31}\right)+15\left(x_{12}+x_{22}+x_{32}\right) \\
& -8\left(x_{11}+x_{12}\right)-4\left(x_{21}+x_{22}\right)-3\left(x_{31}+x_{32}\right) \\
\text { s.t. } & x_{11} \geq 0.4\left(x_{11}+x_{21}+x_{31}\right) \\
& x_{21} \geq 0.2\left(x_{11}+x_{21}+x_{31}\right) \\
& x_{12} \geq 0.5\left(x_{12}+x_{22}+x_{32}\right) \\
& x_{13} \leq 0.3\left(x_{12}+x_{22}+x_{32}\right) \\
& x_{11}+x_{21}+x_{31} \leq 100 \\
& x_{12}+x_{22}+x_{32} \leq 150 \\
& x_{i j} \geq 0 \quad \forall i=1, \ldots, 3, j=1,2
\end{array}
$$

Remarks

- We may need to redefine decision variables when we find they are not enough.
- We may from time to time use multi-dimensional variables.
- We need to remove nonlinear constraints or objective functions, even if we just replace them with equivalent linear ones.

Road map

- Resource allocation.
- Materials blending.
- Production and inventory.
- Compact formulations.

Production and inventory

- When we are making decisions, we may need to consider what will happen in the future.
- This creates multi-period problems.
- In particular, in many cases products produced today may be stored and then sold in the future.
- Maybe production is cheaper today.
- Maybe the price is higher in the future.
- So the production decision must be jointly considered with the inventory decision.
- Introduced in Section 3.10 of the textbook.

Production and inventory: the problem

- Suppose we are going to produce and sell a product in four days.
- For each day, there are different amounts of demands to fulfill.
- Days $1,2,3$, and 4: 100, 150, 200, and 170 units, respectively.
- The unit production costs are different for different days:
- Days $1,2,3$, and 4 : $\$ 9, \$ 12, \$ 10$, and $\$ 12$ per unit, respectively.
- The prices are all fixed. So maximizing profits is the same as minimizing costs.

Production and inventory: the problem

- We may store a product and sell it later.
- The inventory cost is $\$ 1$ per unit per day.
- E.g., producing 620 units on day 1 to fulfill all demands costs $9 \times 620+1 \times 150+2 \times 200+3 \times 170=6640$ dollars.
- Timing:

- Beginning inventory + production - sales $=$ ending inventory.
- Inventory costs are assessed according to ending inventory.

Formulation: decision variables

- We need to determine the production quantities: Let

$$
x_{t}=\text { production quantity of day } t, t=1, \ldots, 4
$$

- Is that information enough?
- E.g., given a plan $(450,0,170,0)$, we do not know whether the demand on day 4 is fulfilled with the productions on day 1 or 3 .
- So we also need to determine the inventory quantities: Let

$$
y_{t}=\text { ending inventory of day } t, t=1, \ldots, 4
$$

- It is important to specify "ending"!

Formulation: objective function

- We have production costs:

$$
9 x_{1}+12 x_{2}+10 x_{3}+12 x_{4} .
$$

- We also have inventory costs:

$$
1\left(y_{1}+y_{2}+y_{3}+y_{4}\right) .
$$

- So the objective function is

$$
\min 9 x_{1}+12 x_{2}+10 x_{3}+12 x_{4}+y_{1}+y_{2}+y_{3}+y_{4} .
$$

Formulation: constraints

- We need to relate adjacent periods through ending inventories:
- Day 1: $x_{1}-100=y_{1}$.
- Day 2: $y_{1}+x_{2}-150=y_{2}$.
- Day 3: $y_{2}+x_{3}-200=y_{3}$.
- Day 4: $y_{3}+x_{4}-170=y_{4}$.

- This is typically called the inventory balancing constraint.

Formulation: constraints

- We must satisfy all the demands at the moment of sales:
- Day 1: $x_{1} \geq 100$.
- Day 2: $y_{1}+x_{2} \geq 150$.
- Day 3: $y_{2}+x_{3} \geq 200$.
- Day 4: $y_{3}+x_{4} \geq 170$.

- Finally, all quantities must be nonnegative.

Formulation: the complete formulation

- The complete formulation is

$$
\begin{array}{cl}
\min & 9 x_{1}+12 x_{2}+10 x_{3}+12 x_{4}+y_{1}+y_{2}+y_{3}+y_{4} \\
\mathrm{s.t.} & x_{1}-100=y_{1} \\
& y_{1}+x_{2}-150=y_{2} \\
& y_{3}+x_{3}-200=y_{3} \\
& y_{3}+x_{4}-170=y_{4} \\
& x_{1} \geq 100 \\
& y_{1}+x_{2} \geq 150 \\
& y_{2}+x_{3} \geq 200 \\
& y_{3}+x_{4} \geq 170 \\
& x_{t}, y_{t} \geq 0 \quad \forall t=1, \ldots, 4
\end{array}
$$

Simplifying the formulation

- Let's look at the demand fulfillment constraints again.
- The first one is $x_{1} \geq 100$.
- But we have the first inventory balancing constraint $x_{1}-100=y_{1}$ and the nonnegativity constraint $y_{1} \geq 0$. They together imply $x_{1} \geq 100$.
- Similarly, $y_{1}+x_{2}-150=y_{2}$ and $y_{2} \geq 0$ imply $y_{1}+x_{2} \geq 150$.
- So all demand fulfillment constraints can be removed.

Formulation: the simplified formulation

- The simplified formulation is

$$
\begin{array}{cl}
\min & 9 x_{1}+12 x_{2}+10 x_{3}+12 x_{4}+y_{1}+y_{2}+y_{3}+y_{4} \\
\text { s.t. } & x_{1}-100=y_{1} \\
& y_{1}+x_{2}-150=y_{2} \\
& y_{3}+x_{3}-200=y_{3} \\
& y_{3}+x_{4}-170=y_{4} \\
& x_{t}, y_{t} \geq 0 \quad \forall t=1, \ldots, 4 .
\end{array}
$$

Remarks

- The main idea is to use inventory variables to connect multiple periods. Otherwise periods will be unconnected.
- From time to time, we may first write some constraints and then find they are redundant.
- There are other ways of formulating this problem. For example, for the production lot on day t, we may split it into those for day t, those for day $t+1$, etc.

Road map

- Resource allocation.
- Materials blending.
- Production and inventory.
- Compact formulations.

Compact formulations

- Most problems in practice are of large scales.
- The number of variables and constraints are huge.
- Many variables can be grouped together:
- E.g., $x_{t}=$ production quantity of day $t, t=1, \ldots, 4$.
- Many constraints can be grouped together:
- E.g., $x_{t} \geq 0$ for all $t=1, \ldots, 4$.
- In modeling large-scale problems, we must use compact formulations to enhance readability and efficiency.

Compact formulations

- In general, we may use the following three instruments:
- Indices (i, j, k, \ldots).
- Summation (\sum).
- For all (\forall).
- For the joint production-inventory problem, let's write a compact formulation.

Production and inventory

- The problem:
- We have four periods.
- In each period, we first produce and then sell.
- Unsold products become ending inventories.
- Want to minimize the total cost.
- Indices:
- Because things will repeat in each period, it is natural to use an index for periods. Let $t \in\{1, \ldots, 4\}$ be the index of periods.
- Now let's make the LP formulation compact.

Compacting the objective function

- The original objective function:
$-\min 9 x_{1}+12 x_{2}+10 x_{3}+12 x_{4}+y_{1}+y_{2}+y_{3}+y_{4}$.
- We may combine the last four terms:
$-\min 9 x_{1}+12 x_{2}+10 x_{3}+12 x_{4}+\sum_{t=1}^{4} y_{t}$.
- To combine the first four terms, we may need to create a parameter set.
- Denote $C=\left[\begin{array}{ll} & 121012]\end{array}\right.$ as the production cost vector where C_{t} is the unit price on day $t, t=1, \ldots, 4$.
- $\min \sum_{t=1}^{4} C_{t} x_{t}+\sum_{t=1}^{4} y_{t}$.
- $\min \sum_{t=1}^{4}\left(C_{t} x_{t}+y_{t}\right)$.

Compacting the constraints

- The original constraints:
- $x_{1}-100=y_{1}$,
- $y_{1}+x_{2}-150=y_{2}$,
- $y_{2}+x_{3}-200=y_{3}$, and
- $y_{3}+x_{4}-170=y_{4}$.
- Again, let's create a parameter set and group these constraints.
- Denote $D=[100150200170]$ as the demand vector where D_{t} is the demand on day $t, t=1, \ldots, 4$.
- For day $t, t=2, \ldots, 4: y_{t-1}+x_{t}-D_{t}=y_{t}$.
- We cannot apply this to day 1 as y_{0} is undefined!
- How may we group the four constraints together?

Compacting the constraints

- Let's define y_{0} : Let

$$
y_{t}=\text { ending inventory of day } t, t=0, \ldots, 4
$$

- The ending inventory of day 0 , by definition, should be the initial inventory of day 1.
- Then we may write

$$
y_{t-1}+x_{t}-D_{t}=y_{t} \quad \forall t=1, \ldots, 4
$$

as the set of inventory balancing constraints.

- Certainly we need to set up the initial inventory: $y_{0}=0$.

The complete compact formulation

- The compact formulation is

$$
\begin{array}{ll}
\min & \sum_{t=1}^{4}\left(C_{t} x_{t}+y_{t}\right) \\
\text { s.t. } & y_{t-1}+x_{t}-D_{t}=y_{t} \quad \forall t=1, \ldots, 4 \\
& y_{0}=0 \\
& x_{t}, y_{t} \geq 0 \quad \forall t=1, \ldots, 4
\end{array}
$$

- Do not forget " $\forall t=1, \ldots, 4$ "! Without that, the formulation is just wrong.
- Nonnegativity constraints for multiple sets of variables can be combined to save some " ≥ 0 ".

Parameters v.s. variables

- We need to define decision variables.
- Let (Define) $x_{t}=$ production quantity on day $t, t=1, \ldots, 4$.
- We need to create parameter sets.
- Denote $C=\left[\begin{array}{lll}9 & 12 & 10\end{array} 12\right]$ as the production cost vector where C_{t} is the unit production cost on day $t, t=1, \ldots, 4$.
- For parameters, we just define their names. We do not define parameters. They exist before we give them names!
- Variables do not exist before we define them.
- One convention is to:
- Use lowercase letters for variables (e.g., x_{t}).
- Use uppercase letters for parameters (e.g., C_{t}).

Parameters v.s. variables

- When creating parameter sets, it is fine to write only:

Denote $C=\left[\begin{array}{lll}9 & 12 & 10\end{array} 12\right]$ as the production cost vector.

- C_{t} is naturally its t^{th} element and has no ambiguity.
- The values should be indicated when defining the name.
- It is also fine to write

Denote C_{t} as the unit production cost on day $t, t=1, \ldots, 4$.

- Do not need to specify values.
- Need to specify range through indices.
- In either case, we should indicate the physical meaning.

Another production-inventory example

- Suppose we will produce and sell N products in T periods.
- We are given
- The unit production cost of each product in each period,
- The demand of each product in each period,
- The holding cost of each product per period,
- The machine time for producing one unit of each product, and
- The capacity (measured in total machine time) of each day.
- How to write an LP that can minimize the total cost?

Another production-inventory example

Capacity

Another production-inventory example

- Let $N=\{1,2, \ldots, 10\}, T=\{1,2, \ldots, 100\}$, and $T_{0}=T \cup\{0\}$.
- For variable, let
$x_{i t}=$ production quantity of product i in period $t, i \in N, t \in T$, and $y_{i t}=$ ending of product i in period $t, i \in N, t \in T_{0}$.
- For parameters, denote
$C_{i t}$ as the unit production cost of product i in period $t, i \in N, t \in T$, H_{i} as the unit inventory cost per period $i \in N$,
$D_{i t}$ as the demand of product i in period $t, i \in N, t \in T$,
P_{i} as the machine time required for product $i, i \in N$, and
K_{t} as the machine time capacity in period $t, t \in T$.

Another production-inventory example

- The problem can then be formulated as

$$
\begin{array}{ll}
\min & \sum_{i \in N} \sum_{t \in T} C_{i t} X_{i t}+\sum_{i \in N} H_{i} \sum_{t \in T} y_{i t} \\
\text { s.t. } & y_{i, t-1}+x_{i, t-1}-D_{i, t-1}=y_{i t} \quad \forall i \in N, t \in T \\
& y_{i 0}=0 \quad \forall i \in N \\
& \sum_{i \in N} P_{i t} x_{i t} \leq K_{t} \quad \forall t \in T \\
& x_{i t}, y_{i t} \geq 0 \quad \forall i \in N, t \in T .
\end{array}
$$

