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Introduction

I In this chapter, we will study how to solve a linear program.

I In fact, we will learn how to solve any linear program.

I The algorithm we will introduce is the simplex method.
I Developed by George Dantzig in 1947.
I Opened the whole field of Operations Research.
I Very efficient for almost all practical linear programs.
I With very simple ideas.

I It is not just a method to solve linear programs.
I It discovers many important properties of linear programming.
I It provides insights in solving other problems.
I It shows the beauty of mathematics.
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George Dantzig

I 1914 – 2005.

I A UC Berkeley Ph.D. (1946).

I A Stanford professor.

I Developed the simplex method
when solving Air Force
planning problems.
I Each plan is called a program

in US Air Force.
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George Dantzig’s doctoral dissertation

I Adopted from “Linear Programming: 1: Introduction” by
Dantzig and Thapa.
I “I owe a great debt to Jerzy Neyman, the leading mathematical

statistician of his day, who guided my graduate work at Berkeley.”
I “My thesis was on two famous unsolved problems in mathematical

statistics that I mistakenly thought were a homework assignment
and solved.”
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George Dantzig’s presentation

I Adopted from “Linear Programming: 1: Introduction” by
Dantzig and Thapa.
I In 1948, Dantzig summarized his works about Linear Programming

in a conference. He explained how to formulate and solve linear
programs.

I After his presentation, Hotelling said: “But we all know the world
is nonlinear.”

I Dantzig, a young unknown at that time, did not know how to
response.

I Von Neumann said: “The speaker titled his talk ‘linear
programming’ and carefully stated his axioms. If you have an
application that satisfies the axioms, well use it. If it does not, then
don’t.”
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Standard form LP

Road map

I Standard form linear programs.

I Basic solutions.

I Basic feasible solutions.

I The idea of the simplex method.
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Standard form LP

Standard form linear programs

I As we know, linear programs may be of all kinds.
I Maximization or minimization objective functions.
I Equality, no-greater-than, and no-less-than constraints.
I Nonnegative, nonpositive, and free variables.

I We will first show that all linear programs has an equivalent
standard form representation.

I Then we will show how to use the simplex method to solve
standard form linear programs.
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Standard form LP

Standard form linear programs

I First, let’s define the standard form.

Definition 1 (Standard form linear program)

A linear program is in the standard form if
I all the constraints RHS are nonnegative,
I all the variables are nonnegative, and
I all the constraints are equalities.

I RHS = right hand sides. For any constraint

g(x) ≤ b, g(x) ≥ b, or g(x) = b,

b is the RHS.
I There is no restriction on the objective function.
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Standard form LP

Standard form linear programs

I Why the following two LPs are not in the standard form?

min
s.t.

3x1 + 2x2
x1 − x2 ≥ 6

2x1 + x2 ≤ −4
x1 ≥ 0, x2 ≥ 0

max
s.t.

3x1 + 2x2
x1 − x2 = 6

2x1 + x2 = 4
x1 ≥ 0, x2 ≤ 0
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Standard form LP

Finding the standard form

I How to find the standard form for a linear program?

I Requirement 1: Nonnegative RHS.
I If it is negative, switch the LHS and the RHS.
I E.g.,

2x1 + 3x2 ≤ −4

is equivalent to
−2x1 − 3x2 ≥ 4.
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Standard form LP

Finding the standard form

I Requirement 2: Nonnegative variables.
I If xi is nonpositivie, replace it by −xi. E.g.,

2x1 + 3x2 ≤ 4, x1 ≤ 0 ⇔ −2x1 + 3x2 ≤ 4, x1 ≥ 0.

I If xi is free, replace it by x′i − x′′i , where x′i, x
′′
i ≥ 0. E.g.,

2x1 + 3x2 ≤ 4, x1 urs. ⇔ 2x′1 − 2x′′1 + 3x2 ≤ 4, x′1 ≥ 0, x′′1 ≥ 0.

xi = x′i − x′′i x′i ≥ 0 x′′i ≥ 0

5 5 0
0 0 0
−8 0 8
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Standard form LP

Finding the standard form

I Requirement 3: Equality constraints.
I For a less-than-or-equal-to constraint, add a slack variable. E.g.,

2x1 + 3x2 ≤ 4 ⇔ 2x1 + 3x2 + x3 = 4, x3 ≥ 0.

I For a greater-than-or-equal-to constraint, minus a
surplus/excess variable. E.g.,

2x1 + 3x2 ≥ 4 ⇔ 2x1 + 3x2 − x3 = 4, x3 ≥ 0.

I For ease of exposition, they will both be called slack variables.
I A slack variable measures the gap between the LHS and the RHS

of a constraint.
I Why nonnegative?
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Standard form LP

An example

min
s.t.

3x1 + 2x2 + 4x3
x1 + 2x2 − x3 ≥ 6
x1 − x2 ≥ −8

2x1 + x2 + x3 = 9
x1 ≥ 0, x2 ≤ 0, x3 urs.

min
→ s.t.

3x1 + 2x2 + 4x3
x1 + 2x2 − x3 ≥ 6
−x1 + x2 ≤ 8
2x1 + x2 + x3 = 9
x1 ≥ 0, x2 ≤ 0, x3 urs.
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Standard form LP

An example

min
→ s.t.

3x1 − 2x2 + 4x3 − 4x4

x1 − 2x2 − x3 + x4 ≥ 6
−x1 − x2 ≤ 8
2x1 − x2 + x3 − x4 = 9
xi ≥ 0 ∀i = 1, ..., 4

min
→ s.t.

3x1 − 2x2 + 4x3 − 4x4

x1 − 2x2 − x3 + x4 − x5 = 6
−x1 − x2 + x6 = 8
2x1 − x2 + x3 − x4 = 9
xi ≥ 0 ∀i = 1, ..., 6.
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Standard form LP

Standard form linear programs

I Given any linear program, we may find its standard form.

I In general, a standard form linear program can be expressed as

min cx

s.t. Ax = b

x ≥ 0.

I Typically we denote the number of constraints as m and the
number of variables as n.
I So A ∈ Rm×n, b ∈ Rm×1, c ∈ R1×n.
I A is called the coefficient matrix.
I b is called the RHS vector.
I c is called the objective vector.

I The objective function can be either max or min.
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Standard form LP

Standard form linear programs

I The matrix representation is equivalent to

min c1x1 + c2x2 + · · ·+ cnxn

s.t. A11x1 + A12x2 + · · ·+ A1nxn = b1
...

Ai1x1 + Ai2x2 + · · ·+ Ainxn = bi
...

Am1x1 + Am2x2 + · · ·+ Amnxn = bm

xj ≥ 0 ∀j = 1, ..., n.
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Standard form LP

Standard form linear programs

I If we can solve the standard form LP, we can then construct the
solution for the original LP.

I Let’s focus on how to solve a standard form linear program.

I We need some preparations, including the definition of basic
solutions and basic feasible solutions.
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Basic solutions

Road map

I Standard form linear programs.

I Basic solutions.

I Basic feasible solutions.

I The idea of the simplex method.
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Basic solutions

Basic solutions

I Consider a standard form LP with m constraints and n variables

min cx

s.t. Ax = b

x ≥ 0.

I We define some special solutions to be basic solutions.

Definition 2

A basic solution to a standard form LP is a solution that (1)
has n−m variables being equal to 0 and (2) satisfies Ax = b.

I The n−m variables chosen to be zero are nonbasic variables.
I The remaining m variables, which may or may not be zero, are

basic variables.
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Basic solutions

Basic solutions: an example

I Consider an original linear program

min
s.t.

6x1 + 8x2

x1 + 2x2 ≤ 6
2x1 + x2 ≤ 6

xi ≥ 0 ∀i = 1, 2.

and its standard form

min
s.t.

6x1 + 8x2

x1 + 2x2 + x3 = 6
2x1 + x2 + x4 = 6

xi ≥ 0 ∀i = 1, ..., 4.
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Basic solutions

Basic solutions: an example

I In the standard form, m = 2 and n = 4.
I There are n−m = 2 nonbasic variables.
I There are m = 2 basic variables.

I Steps for obtaining a basic solution:
I Determine the set of m basic variables, B.
I The remaining variables form the set of nonbasic variables, N .
I Set nonbasic variables to zero.
I Solve the remaining m by m system for the values of basic variables.

I For this example, we will solve a two by two linear system.
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Basic solutions

Basic solutions: an example

I The two equalities are

x1 + 2x2 + x3 = 6
2x1 + x2 + x4 = 6.

I Let’s try B = {x1, x2} and N = {x3, x4}:

x1 + 2x2 = 6
2x1 + x2 = 6.

The solution is (x1, x2) = (2, 2). Therefore, the basic solution
associated with the choice B = {x1, x2} and N = {x3, x4} is
(x1, x2, x3, x4) = (2, 2, 0, 0).
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Basic solutions

Basic solutions: an example

I The two equalities are

x1 + 2x2 + x3 = 6
2x1 + x2 + x4 = 6.

I Let’s try B = {x2, x3} and N = {x1, x4}:

2x2 + x3 = 6
x2 = 6.

The solution is (x2, x3) = (6,−6). Therefore, the basic solution
associated with the choice B = {x2, x3} and N = {x1, x4} is
(x1, x2, x3, x4) = (0, 6,−6, 0).
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Basic solutions

Basic solutions: an example

I We will call a particular choice of basic variables a basis.
I {x1, x2} is a basis and {x2, x3} is another basis.

I Every basic solution is associated with a basis.

I In general, as we need to choose m out of n variables to be basic,
we have

(
n
m

)
different bases.

I In this example, we have
(
4
2

)
= 6 bases.
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Basic solutions

Bases

I All the six bases and associated basic variables are listed below:

Basis
Basic solution

x1 x2 x3 x4

{x1, x2} 2 2 0 0
{x1, x3} 3 0 3 0
{x1, x4} 6 0 0 −6
{x2, x3} 0 6 −6 0
{x2, x4} 0 3 0 3
{x3, x4} 0 0 6 6

I Basic variables have nothing to do with the objective function!
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Basic solutions

Basic solutions v.s. bases

I For a basis, what matters are
variables, not values.

I Consider another example

min
s.t.

6x1 + 8x2

x1 + 2x2 ≤ 6
2x1 + x2 ≤ 12

xi ≥ 0 ∀i = 1, 2

and its standard form

min
s.t.

6x1 + 8x2

x1 + 2x2 + x3 = 6
2x1 + x2 + x4 = 12

xi ≥ 0 ∀i = 1, ..., 4.
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Basic solutions

Basic solutions v.s. bases

I The six bases and the associated basic variables are listed below:

Basis
Basic solution

x1 x2 x3 x4

{x1, x2} 6 0 0 0
{x1, x3} 6 0 0 0
{x1, x4} 6 0 0 0
{x2, x3} 0 12 −18 0
{x2, x4} 0 3 0 9
{x3, x4} 0 0 6 12

I Three different bases result in the same basic solution!
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Basic solutions

Basic solutions v.s. bases

I In general, multiple bases may be mapped to a single basic
solution.
I This happens if and only if at least one basic variable is

(coincidentally) 0.

I For n variables and m equalities, there are always exactly
(
n
m

)
bases and at most

(
n
m

)
distinct basic solutions.

I When multiple bases correspond to one single basic solution, the
linear program is degenerate.

I When may this happen?
I To answer this question, we need to study the relationship between

variables and constraints first.



Operations Research, Spring 2013 – Preparation for the Simplex Method 29 / 54

Basic solutions

Original and slack variables

I Among all variables of a standard
form LP, some are original while
some are slack.
I Each original variable corresponds to a

nonnegative constraint.
I Each slack variable corresponds to a

functional constraint.

min
s.t.

6x1 + 8x2
x1 + 2x2 ≤ 6

2x1 + x2 ≤ 6

xi ≥ 0 ∀i = 1, 2
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Basic solutions

Nonbasic variables vs. binding constraints

I Each basis corresponds to a set of m
binding constraints.
I When an original variable is nonbasic,

it becomes 0 and the corresponding
nonnegative constraint is binding.

I When a slack variable is nonbasic, it
becomes 0 and the corresponding
functional constraint is binding.

I E.g., for the basis {x1, x3}, the
constraints x2 ≥ 0 and 2x1 + x2 ≤ 6
are binding.
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Basic solutions

When is an LP degenerate?

I An LP is degenerate when multiple bases correspond to one
single basic solution.
I A basis
⇔ a set of nonbasic variables
⇔ a set of binding constraints
⇔ an intersection of these constraints.

I More than n−m constraints intersect at one single point
⇔ Multiple ways of choosing n−m binding constraints at a point
⇔ Multiple bases correspond to this point
⇔ Multiple bases correspond to the same basic solution
⇔ Degenerate LP.
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Basic solutions

When is an LP degenerate?

I More than n−m constraints intersect at one single point.
I n = 4, m = 2; we are talking about the standard form!

I How to illustrate this situation in a three-dimensional space?
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Basic solutions

Degeneracy of linear programs

I Degeneracy may cause severe problems in solving linear
programs.
I It hurts computational efficiency.
I Especially when using the simplex method.

I Nevertheless, let’s skip this issue and consider nondegenerate
linear programs first.

I In other words, we will assume that different bases correspond to
different basic solutions.
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Basic feasible solutions

Road map

I Standard form linear programs.

I Basic solutions.

I Basic feasible solutions.

I The idea of the simplex method.
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Basic feasible solutions

Basic feasible solutions

I Among all basic solutions, some are feasible.
I By the definition of basic solutions, they satisfy Ax = b.
I If one also satisfies x ≥ 0, it satisfies all constraints.

I In this case, it is called basic feasible solutions (bfs).

Definition 3 (Basic feasible solution)

A basic feasible solution to a standard form LP is a basic
solution whose basic variables are all nonnegative.

I We do not need to restrict the values of nonbasic variables. Why?
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Basic feasible solutions

Basic feasible solutions and extreme points

I We may link extreme points and basic feasible solutions:

Proposition 1 (Extreme points and basic feasible solutions)

For a standard form LP, a solution is an extreme point of the
feasible region if and only if it is a basic feasible solution to the
LP.

Proof. Beyond the scope of this course.

I Intuition: An extreme point is feasible. Also, it locates at a
“corner”, which is the intersection of at least n−m constraints,
so it is a basic solution.
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Basic feasible solutions

Basic feasible solutions and extreme points

Basis Bfs? Point
Basic solution

x1 x2 x3 x4

{x1, x2} Yes A 2 2 0 0
{x1, x3} Yes B 3 0 3 0
{x1, x4} No C 6 0 0 −6
{x2, x3} No D 0 6 −6 0
{x2, x4} Yes E 0 3 0 3
{x3, x4} Yes F 0 0 6 6
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Basic feasible solutions

Basic feasible solutions

I What’s the implication of the previous proposition?

Proposition 2 (Optimality of basic feasible solutions)

For a standard form LP, if there is an optimal solution, there is
an optimal basic feasible solution.

Proof. We know there is a one-to-one mapping between extreme
points and basic feasible solutions. Moreover, we know if there is
an optimal solution, there is an optimal extreme point solution.
The proof then follows.
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Basic feasible solutions

Basic feasible solutions vs. extreme points

I To find an optimal solution:
I Instead of searching among all extreme points, we may search

among all basic feasible solutions.
I But the two sets are equally large! What is the difference?

I Given a solution:
I Checking whether it is a basic feasible solution is easy: just count

the number of zeros and verify nonnegativity.
I Checking whether it is an extreme point is hard (for computers).

I Given a linear program:
I Enumerating all basic feasible solutions is possible.
I How to enumerate all extreme points?
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Basic feasible solutions

Basic feasible solutions

I Listing all basic feasible solutions are possible but unrealistic.
I For a linear program with n variables and m constraints, we have(

n
m

)
bases and thus at most

(
n
m

)
basic feasible solutions. There are

too many to list in a reasonable time!

I The simplex method is a “smart” way of searching among all
basic feasible solutions.

I Its idea is to improve a current basic feasible solution by moving
to a better basic feasible solution.

I Let’s define adjacent basic feasible solutions first.
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Basic feasible solutions

Adjacent basic feasible solutions

I Two basic feasible solutions may or may not be adjacent:

Definition 4 (Adjacent basic feasible solutions)

Two bases are adjacent if exactly one of their variable is
different. Two basic feasible solutions are adjacent if their
associated bases are adjacent.

I {x1, x2} and {x1, x4} are adjacent.
I {x1, x2} and {x3, x4} are not adjacent.
I How about {x1, x2} and {x2, x4}?
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Basic feasible solutions

Adjacent basic feasible solutions

I A pair of adjacent basic feasible solutions correspond to a pair of
“adjacent” extreme points.
I Extreme points that are on the same edge.

I Moving from a bfs to its adjacent bfs is moving along an edge.

Basis Point
Basic solution

x1 x2 x3 x4

{x1, x2} A 2 2 0 0
{x1, x3} B 3 0 3 0
{x2, x4} E 0 3 0 3
{x3, x4} F 0 0 6 6
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Basic feasible solutions

Adjacent basic feasible solutions

I Adjacency is defined based on variables, not values!
I Points A and B are the same point, but bases {x1, x2} and {x1, x3}

are adjacent, even though no value is different.
I With degeneracy, adjacent bfs may be actually identical.

Basis Point
Basic solution

x1 x2 x3 x4

{x1, x2} A 6 0 0 0
{x1, x3} B 6 0 0 0
{x1, x4} C 6 0 0 0
{x2, x3} D 0 3 0 9
{x2, x4} E 0 0 6 12
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Basic feasible solutions

Moving to the next basic feasible solutions

I Imagine that you are currently at one basic feasible solution.
I Let’s call it x1 = (x1

1, x
1
2, ..., x

1
n).

I You want to move to a better basic feasible solution.
I Let’s call the new basic feasible solution x2 = (x2

1, x
2
2, ..., x

2
n).

I We want cx2 < cx1 when we want to minimize cx.

I How many different x2 do we need to examine?
I Among m basic variables, we choose one to leave the basis.
I Among n−m nonbasic variables, we choose one to enter the basis.
I In total we have m(n−m) candidates.

I How to choose one? The simplex method!
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Idea of simplex method

Road map

I Standard form linear programs.

I Basic solutions.

I Basic feasible solutions.

I The idea of the simplex method.



Operations Research, Spring 2013 – Preparation for the Simplex Method 46 / 54

Idea of simplex method

The simplex method

I Below we will describe the main idea of the simplex method for
solving standard form linear programs.

I All we need is to search among basic feasible solutions.

I Suppose we are standing on a bfs x1. We want to move to an
adjacent bfs x2. We need to
I select one nonbasic variable to enter the basis, and
I select one basic variable to leave the basis.
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Idea of simplex method

The entering variable

I Selecting one nonbasic variable to enter means making it
nonzero.
I If it is an original variable, we leave the associated axis.
I If it is a slack variable, we leave the associated functional constraint.
I In short, one constraint becomes nonbinding.
I We will move along the edge that leaves the constraint.

I For a linear program, we may simply choose a direction that
improves the current solution.
I Why?
I Because “a local optimum is a global optimum.”
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Idea of simplex method

The entering variable

I Consider the linear program

min
s.t.

−x1

2x1 − x2 ≤ 4
2x1 + x2 ≤ 8

x2 ≤ 3

xi ≥ 0 ∀ i = 1, 2.

and its standard form

min
s.t.

−x1

2x1 − x2 + x3 = 4
2x1 + x2 + x4 = 8

x2 + x5 = 3

xi ≥ 0 ∀ i = 1, ..., 5.
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Idea of simplex method

The entering variable

I For the bfs x1:
I The basis is {x3, x4, x5}.
I x1 and x2 are nonbasic.
I Let x1 enters ⇒ makes

x1 > 0⇒ move along direction
A, constraint x2 ≥ 0.

I Let x2 enters ⇒ move along
direction B, constraint x1 ≥ 0.
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Idea of simplex method

The entering variable

I For the bfs x2:
I The basis is {x1, x4, x5}.
I x2 and x3 are nonbasic.
I Let x2 enters ⇒ makes

x2 > 0⇒ move along direction
D, constraint 2x1 − x2 ≤ 4.

I Let x3 enters ⇒ move along
direction C, constraint x2 ≥ 0.
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Idea of simplex method

The leaving variable

I Suppose we have chosen one entering variable.
I We have chosen one improving direction to go.

I How to choose a leaving variable?
I When should we stop?

I We should stop when we “hit a constraint”, i.e., when one
basic variable becomes 0.
I This basic variable will leave the basis.
I As it becomes 0, it becomes a nonbasic variable.
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Idea of simplex method

The leaving variable

I For the bfs x1, suppose we move
along direction A.
I The original basis is
{x3, x4, x5}.

I x1 enters the basis.
I We first hit 2x1 − x2 ≤ 4.
I x3 becomes 0.
I x3 becomes nonbasic.
I x3 leaves the basis.
I The new basis becomes
{x1, x4, x5}.
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Idea of simplex method

An iteration

I At a basic feasible solution, we move to another better basic
feasible solution.
I We first choose which direction to go (the entering variable).

That will be an improving direction along an edge.
I We then determine when to stop (the leaving variable). That

depends on the first constraint we hit.
I We may then treat the new bfs as the current bfs and then repeat.

I We stop when there is no direction to go (no improving
direction).

I The process of moving to the next bfs is call an iteration.
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Idea of simplex method

The simplex method

I The simplex method is simple:
I It suffices to move along edges (because we only need to search

among extreme points).
I At each point, the number of directions to search for is small

(because we consider only edges).
I For each improving direction, the stopping condition is simple:

Keep moving forwards until we cannot.

I The simplex method is smart:
I When at a point there is no improving direction along an edge,

we may claim that the point is optimal.
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