IM2010: Operations Research The Simplex Method (Chapter 4)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

March 21, 2013

Road map

- The algebra of the simplex method.
- The tableau approach.
- The second example.

The implementation of the simplex method

- The idea is intuitive and simple, but how to implement it?
- Now we need mathematics, in particular, linear algebra.
- Consider a standard form linear program

$$
\begin{aligned}
\min & c x \\
\text { s.t. } & A x=b \\
& x \geq 0
\end{aligned}
$$

- We may assume that all rows of A are linearly independent.
- Given a basis B and the set of nonbasic variables N, how may we determine the entering and leaving variables?
- At this moment, treat B as given. We will discuss how to find an initial basis later.

Splitting into basic and nonbasic sets

- First, given the basis B, we may split x into $\left(x_{B}, x_{N}\right)$, where x_{B} includes basic variables and x_{N} includes nonbasic variables.
- We may also split c into $\left(c_{B}, c_{N}\right)$ and A into $\left(A_{B}, A_{N}\right)$.
- $c_{B} \in \mathbb{R}^{1 \times m}, c_{N} \in \mathbb{R}^{1 \times(n-m)}, A_{B} \in \mathbb{R}^{m \times m}$, and $c_{N} \in \mathbb{R}^{(n-m) \times m}$.
- As an example, consider

$$
\begin{aligned}
& \min \quad-x_{1} \\
& \text { s.t. } \begin{array}{rlrl}
2 x_{1} & -x_{2}+x_{3} & & \\
2 x_{1}+x_{2} \\
& & & \\
& x_{2}
\end{array} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 .
\end{aligned}
$$

Splitting into basic and nonbasic sets

- In the matrix representation, we have

$$
c=\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0
\end{array}\right], \quad A=\left[\begin{array}{ccccc}
2 & -1 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right] .
$$

- If $x_{B}=\left(x_{1}, x_{4}, x_{5}\right)$ and $x_{N}=\left(x_{2}, x_{3}\right)$ we have

$$
\begin{array}{ll}
c_{B}=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right], & c_{N}=\left[\begin{array}{ll}
0 & 0
\end{array}\right], \\
A_{B}=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], & A_{N}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right] .
\end{array}
$$

- Orders of variables in x_{B} and x_{N} affect these parameter matrices!

Reducing the formulation

- With the split, the linear program becomes

$$
\begin{aligned}
\min & c_{B} x_{B}+c_{N} x_{N} \\
\text { s.t. } & A_{B} x_{B}+A_{N} x_{N}=b \\
& x_{B}, x_{N} \geq 0 .
\end{aligned}
$$

- For constraints, we may obtain $x_{B}=A_{B}^{-1}\left(b-A_{N} x_{N}\right)$. We may then plug in this into the objective function and get

$$
\begin{array}{cl}
\min & c_{B}\left[A_{B}^{-1}\left(b-A_{N} x_{N}\right)\right]+c_{N} x_{N} \\
\text { s.t. } & x_{B}=A_{B}^{-1}\left(b-A_{N} x_{N}\right) \\
& x_{B}, x_{N} \geq 0 .
\end{array}
$$

- A_{B} is indeed a square matrix. But why A_{B} is invertible?

Reducing the formulation

- With some more algebra, the linear program becomes

$$
\begin{aligned}
\min & c_{B} A_{B}^{-1} b-\left(c_{B} A_{B}^{-1} A_{N}-c_{N}\right) x_{N} \\
\text { s.t. } & x_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

- Note that $x_{N}=0$ (a zero vector), so for the current basis B :
- The values of the basic variables are $x_{B}=A_{B}^{-1} b$.
- The objective value is $z=c_{B} A_{B}^{-1} b$.
- We will use z to denote the objective value for a given basis and z^{*} to denote the objective value for the optimal basis.

Utilizing the new representation

- As an example, consider

$$
\begin{array}{ccllll}
\min & -x_{1} \\
\mathrm{s.t.} & 2 x_{1} & -x_{2}+x_{3} & & & \\
2 x_{1} & +x_{2} \\
& x_{2} \\
& & & \\
& & & \\
& & & \\
& x_{i} \geq 0 & \forall i=1, \ldots, 5 .
\end{array}
$$

- For $x_{B}=\left(x_{1}, x_{4}, x_{5}\right)$ and $x_{N}=\left(x_{2}, x_{3}\right)$, we have

$$
\begin{array}{ll}
A_{B}=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], \quad A_{N}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right], \\
c_{B}=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right], \quad c_{N}=\left[\begin{array}{ll}
0 & 0
\end{array}\right] .
\end{array}
$$

Utilizing the new representation

- It then follows that

$$
x_{B}=A_{B}^{-1} b=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right]
$$

and

$$
z=c_{B} A_{B}^{-1} b=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]=-2 .
$$

- The current basic feasible solution is

$$
x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2,0,0,4,3)
$$

Utilizing the new representation

- At the point $(2,0)$:
- It corresponds to the bfs $x=(2,0,0,4,3)$.
- Indeed those two binding constraints correspond to variables x_{2} and x_{3}.
- That is, $B=\left\{x_{1}, x_{4}, x_{5}\right\}$.
- $x_{4}>0$ and $x_{5}>0$: There are positive "distances" between (2, 0) and the two corresponding constraints.

Reduced costs

- Look at the coefficient of x_{N} in the objective function again:

$$
\min \quad c_{B} A_{B}^{-1} b-\left(c_{B} A_{B}^{-1} A_{N}-c_{N}\right) x_{N}
$$

We define the reduced cost: $\bar{c}_{N} \equiv c_{B} A_{B}^{-1} A_{N}-c_{N}$.

- $\bar{c}_{N} \in \mathbb{R}^{1 \times(n-m)}$ is a vector:

$$
\begin{gathered}
{\left[\begin{array}{ll}
c_{B}
\end{array}\right]\left[\begin{array}{l}
A_{B}^{-1} \\
1 \times m
\end{array} \begin{array}{l}
A_{N} \\
m \times m
\end{array}\right]-\left[\begin{array}{ll}
c_{N}
\end{array}\right] .} \\
m \times(n-m) \\
1 \times(n-m)
\end{gathered}
$$

- Each element of \bar{c}_{N} is a coefficient of one nonbasic variable. For one nonbasic variable $x_{j} \in N$, its coefficient is

$$
\bar{c}_{j}=\left[\begin{array}{lll}
& c_{B} &
\end{array}\right]\left[\begin{array}{ll}
A_{B}^{-1}
\end{array}\right]\left[A_{j}\right]-\left[c_{j}\right] .
$$

Reduced costs

- For the same example with $N=\left\{x_{2}, x_{3}\right\}$, note that

$$
\begin{aligned}
\bar{c}_{N} & =c_{B} A_{B}^{-1} A_{N}-c_{N} \\
& =\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

- So the reduced cost of x_{2} is $\bar{c}_{2}=\frac{1}{2}$ and that of x_{3} is $\bar{c}_{3}=-\frac{1}{2}$.
- This is the amount of reduction in cost by increasing x_{j} by 1 .
- We will choose x_{2} as the entering variable. Why?
- In general there may be multiple nonbasic variables having positive reduced costs. In that case, we need a selection rule.

Reduced costs

- At the point $(2,0)$:
- Entering x_{2} means moving along direction D, which is indeed improving ($\bar{c}_{2}>0$).
- Entering x_{3} means moving along direction C, which makes things worse ($\bar{c}_{3}<0$).
- Now we know how to find an entering variable algebraically.

The leaving variable

- Suppose $\bar{c}_{j}>0$ and we have decided to let x_{j} enter.
- How to choose the leaving variable?
- Let's look at the constraints. Because $x_{B} \geq 0$, we have

$$
x_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \geq 0 .
$$

- Increasing x_{j} is certainly good (because $\bar{c}_{j}>0$), but that may violate the constraints (i.e., make a basic variable negative).
- We want the largest improvement, so we should keep increasing x_{j} until a basic variable becomes zero.
- That basic variable will leave the basis.
- How to find that basic variable?

The leaving variable

- $A_{B}^{-1} b \in \mathbb{R}^{m \times 1}, A_{B}^{-1} A_{N} \in \mathbb{R}^{m \times(n-m)}$, and $x_{N} \in \mathbb{R}^{(n-m) \times 1}$.
- When x_{j} increases and all other nonbasic variables remain 0 :

$$
\begin{aligned}
& {\left[A_{B}^{-1} b\right]-\left[\begin{array}{c}
A_{B}^{-1} A_{N}
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
0 \\
x_{j} \\
0
\end{array}\right]=\left[A_{B}^{-1} b\right]-\left[A_{B}^{-1} A_{j}\right] x_{j} .} \\
& m \times 1
\end{aligned}
$$

- A_{j} is the j th column of matrix A.
- To determine which basic variable will become 0 first, we may do a ratio test.

The ratio test

- While increasing x_{j}, we need to make sure that

$$
\left[A_{B}^{-1} b\right]-\left[A_{B}^{-1} A_{j}\right] x_{j} \geq 0
$$

- Note that $A_{B}^{-1} b \geq 0$ but $A_{B}^{-1} A_{j}$ is not.
- For element i, if $\left(A_{B}^{-1} A_{j}\right)_{i} \leq 0$, then $A_{B}^{-1} b-A_{B}^{-1} A_{j} x_{j}$ will never be negative when we increase x_{j}.
- For those k such that $\left(A_{B}^{-1} A_{j}\right)_{k}>0$, we define

$$
\theta_{k} \equiv \frac{\left(A_{B}^{-1} b\right)_{k}}{\left(A_{B}^{-1} A_{j}\right)_{k}} \quad \forall k:\left(A_{B}^{-1} A_{j}\right)_{k}>0 .
$$

- Then the i th row will become 0 first if and only if

$$
\theta_{i} \leq \theta_{k} \quad \forall k:\left(A_{B}^{-1} A_{j}\right)_{k}>0 .
$$

The ratio test

- For the same example with $N=\left\{x_{2}, x_{3}\right\}$, we have decided to let x_{2} enters. Then we have

$$
A_{B}^{-1} A_{2}=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{c}
-1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{2} \\
2 \\
1
\end{array}\right] \text { and } A_{B}^{-1} b=\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right] .
$$

Note that the three rows are for x_{1}, x_{4}, and x_{5}, respectively.

- So the relevant ratios are

$$
\theta_{2}=\frac{4}{2}=2 \quad \text { and } \quad \theta_{3}=\frac{3}{1}=3 .
$$

The ratio for x_{1} is irrelevant because $-\frac{1}{2} \leq 0$.

- As $\theta_{2}=2<3=\theta_{3}, x_{4}$ (the basic variable associated with the second row) will be the leaving variable.
- In general, if there is a tie, a selection rule must be specified.

The ratio test

- At the point $(2,0)$, along direction D :
- $A_{B}^{-1} A_{2}=\left[\begin{array}{c}-\frac{1}{2} \\ 2 \\ 1\end{array}\right]$ and

$$
A_{B}^{-1} b=\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]
$$

- We will hit $2 x_{1}+x_{2} \leq 8$ before $2 x_{1}-x_{2} \leq 4$.
- We know this as $\theta_{2}<\theta_{3}$.
- The last nonbinding constraint, $x_{1} \geq 0$, will never be hit.

- We know this as $-\frac{1}{2} \leq 0$.

Summary of the simplex method

- For a minimization LP with an optimal solution (i.e., neither infeasible nor unbounded) and an initial basis B :
- Start from B and the corresponding set of nonbasic variables N.
- Repeat:
- Calculate the reduced costs

$$
\bar{c}_{N}=c_{B} A_{B}^{-1} A_{N}-c_{N}
$$

Choose an entering variable x_{j} that has $\bar{c}_{j}>0$.

- If $\bar{c}_{N} \leq 0$, stop and report the current bfs as optimal.
- Do the ratio test by calculating

$$
\theta_{k} \equiv \frac{\left(A_{B}^{-1} b\right)_{k}}{\left(A_{B}^{-1} A_{j}\right)_{k}} \quad \forall k:\left(A_{B}^{-1} A_{j}\right)_{k}>0
$$

Choose a leaving variable x_{i} who has the minimum relevant ratio.

- Switch x_{i} and x_{j} in B and N.

Summary of the simplex method

- At each iteration:
- First check what are B and N.
- Read $A_{B}, A_{N}, c_{B}, c_{N}$, and b from the original formulation.
- Calculate $z=c_{B} A_{B}^{-1} A_{N}, \bar{c}_{N}=c_{B} A_{B}^{-1} A_{N}-c_{N}, x_{B}=A_{B}^{-1} b$, and $A_{B}^{-1} A_{N}$.
- These four things will change whenever the basis changes
- For maximization problems:
- Change it to a minimization problem.
- Choose a negative reduced cost for the entering variable.

Summary of the simplex method

- The idea of the simplex method is simple:
- Move along edges.
- Search for improving directions greedily.
- Stop when no way to improve.
- Implementing the simplex method requires linear algebra.
- But the arithmetic requires only inverse and matrix multiplication.

Summary of the simplex method

- Some things are still missing:
- How to obtain the initial basis?
- Why A_{B} is invertible?
- What if there are multiple choices for entering and leaving variables?
- May we know whether the optimal solution is unique?
- What if the linear program is infeasible or unbounded?
- We will answer some of these questions later. Before that, let's get more familiar with the simplex method by studying the tableau approach.

Road map

- The algebra of the simplex method.
- The tableau approach.
- The second example.

Reduced standard form

- Recall that a standard form LP $\min \{c x \mid A x=b, x \geq 0\}$ can be expressed as

$$
\begin{aligned}
\min & c_{B} A_{B}^{-1} b-\left(c_{B} A_{B}^{-1} A_{N}-c_{N}\right) x_{N} \\
\text { s.t. } & x_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \\
& x_{B}, x_{N} \geq 0
\end{aligned}
$$

- We may further reduce it to

$$
\begin{aligned}
& \min \quad-\left(c_{B} A_{B}^{-1} A_{N}-c_{N}\right) x_{N}+c_{B} A_{B}^{-1} b \\
& \text { s.t. } \quad I x_{B}+ \\
& A_{B}^{-1} A_{N} x_{N}=A_{B}^{-1} b \\
& x_{B}, x_{N} \geq 0 .
\end{aligned}
$$

Tableau

- The last form can be organized into a tableau:

(1)	$c_{B} A_{B}^{-1} A_{N}-c_{N}$	$c_{B} A_{B}^{-1} b$
(m)	$A_{B}^{-1} A_{N}$	$A_{B}^{-1} b$
(m)	$(n-m)$	(1)

- Changing B and N requires to update $c_{B} A_{B}^{-1} A_{N}-c_{N}, c_{B} A_{B}^{-1} b$, $A_{B}^{-1} A_{N}$, and $A_{B}^{-1} b$. Now these can be done by doing elementary row operations on the tableau.

Tableau

- Consider the linear program

$$
\begin{array}{cl}
\min & -2 x_{1}-3 x_{2} \\
\text { s.t. } & x_{1}+2 x_{2} \leq 6 \\
& 2 x_{1}+x_{2} \leq 8 \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{array}
$$

and its standard form

$$
\begin{aligned}
\min & -2 x_{1} \\
\text { s.t. } & x_{1}
\end{aligned}+2 x_{2}+x_{3} \quad=6
$$

Initial bases

- We need an initial basis that gives us a basic feasible solution.
- $B=\left\{x_{3}, x_{4}\right\}$ must give us a basic feasible solution. Why?
- For any original LP with only no-greater-than constraints and nonnegative RHS, we may select all slack variables to form our initial basis.
- The initial tableau is

2	3	0	0	0
1	2	1	0	$x_{3}=6$
2	1	0	1	$x_{4}=8$

- The basic columns have zeros in the 0th row and an identity matrix in the other rows.
- The identity matrix associates each row with a basic variable.
- Numbers in the 0th row for nonbasic columns are reduced costs.

Iterations: the entering variable

- How to find an entering variable in a tableau?
- All we need to do is to find a positive value in the 0th row!
- In the 0th row, nonbasic columns contain reduced costs.
- To decrease the objective value, we need a positive reduced cost.
- In this example, we may enter either x_{1} or x_{2}.
- We have not introduced any selection rule. Let's just choose x_{1}.

2	3	0	0	0
1	2	1	0	$x_{3}=6$
2	1	0	1	$x_{4}=8$

Iterations: the leaving variable

- How to find a leaving variable in a tableau?
- All we need to do is a ratio test:
- Divide the RHS column by the entering column.
- Among those rows with a positive denominator (the value in the entering column), we find one that has the smallest ratio.
- In this example, x_{4} leaves because $\frac{8}{2}<\frac{6}{1}$.

2	3	0	0	0
1	2	1	0	$x_{3}=6$
2	1	0	1	$x_{4}=8$

Iterations: pivoting

- Once we determine the entering and leaving variables, we find the pivot.
- The intersection of the entering column and the leaving row.
- To move to the next basic feasible solution, we need to make the entering column a basic column:
- The pivot should become 1 .
- All other numbers in that row should become 0.
- Do this through elementary row operations.
- In this example:

Iterations

- Let's do one more iteration.
- Entering variable?
- Leaving variable?
- In this example:

0	2	0	-1	-8						
0	$\frac{3}{2}$	1	$-\frac{1}{2}$	$x_{3}=2$						
1	$\frac{1}{2}$	0	$\frac{1}{2}$	$x_{1}=4$	\rightarrow	0	0	$-\frac{4}{3}$	$-\frac{1}{3}$	$-\frac{32}{3}$
:---:	:---:	:---:	:---:	:---:						
0	1	$\frac{2}{3}$	$-\frac{1}{3}$	$x_{2}=\frac{4}{3}$						
1	0	$-\frac{1}{3}$	$\frac{2}{3}$	$x_{1}=\frac{10}{3}$						

- Stop or keep iterating?
- We have found the optimal tableau, which implies that the optimal basic feasible solution is $x^{*}=\left(\frac{10}{3}, \frac{4}{3}, 0,0\right)$.
- The objective value is $-2 \times \frac{10}{3}-3 \times \frac{4}{3}=-\frac{32}{3}$. Coincident?

Summary

- To use the tableau approach for a minimization problem (with a given basis) which has an optimal solution:

1. Find the standard form.
2. Copy numbers into the tableau but negate the objective coefficients.
3. Repeat:
3.1 Find a positive number in the 0th row for an entering variable. If there is none, stop and report the optimal solution.
3.2 Do a ratio test for a leaving variable.
3.3 Pivoting: Make the entering column a basic column.

- How about maximization problems?
- Just replace "positive" by "negative" in Step 3.1.

Visualizing the iterations

- Let's visualize this example and relate basic feasible solutions with extreme points:
- The initial tableau corresponds to the origin $x^{0}=(0,0)$.
- After one iteration, we move to $x^{1}=(4,0)$.
- After two iterations, we move to $x^{2}=\left(\frac{10}{3}, \frac{4}{3}\right)$, which is optimal.

Road map

- The algebra of the simplex method.
- The tableau approach.
- The second example.

The second example

- Consider another example:

Initialization

- Looking at the graphical solution for (P), we may see that its optimal solution is $x^{*}=(3,2)$. The dotted line is the isoprofit line. The short arrow indicates the direction we push the isoprofit line.

Initialization

- The standard form of problem (P) is

The first iteration

- For problem (S), we form the initial tableau

-1	0	0	0	0	0
2	-1	1	0	0	$x_{3}=4$
2	1	0	1	0	$x_{4}=8$
0	1	0	0	1	$x_{5}=3$

- The initial basic feasible solution (bfs) is $x^{0}=(0,0,4,8,3)$.
- The current objective value $z_{0}=0$.
- Basic variables are x_{3}, x_{4}, and x_{5}.
- Nonbasic variables are x_{1} and x_{2}.
- In the graph of (P), we may see that x^{0} is the origin.

The first iteration

- The entering variable is x_{1} because it is the only nonbasic variable that has a negative reduced cost. Note that this is a maximization problem!
- The leaving variable is x_{3} according to the ratio test. Note that row 3 does not participate in the ratio test. Why?
- The next tableau is found by pivoting at 2 :

-1	0	0	0	0	0							
2	-1	1	0	0	$x_{3}=4$							
2	1	0	1	0	$x_{4}=8$							
0	1	0	0	1	$x_{5}=3$	$\quad \rightarrow \quad$	0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2
:---:	:---:	:---:	:---:	:---:	:---:							
1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_{1}=2$							
0	2	-1	1	0	$x_{4}=4$							
0	1	0	0	1	$x_{5}=3$							

- The current bfs becomes $x^{1}=(2,0,0,4,3)$ and the current objective value becomes $z_{1}=2$.

The second iteration

- The entering variable is x_{2} because its reduced cost is negative.
- The leaving variable is x_{4} according to the ratio test. Note that row 1 does not participate in the ratio test. Why?
- The second iteration is

0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2							
1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_{1}=2$							
0	2	-1	1	0	$x_{4}=4$							
0	1	0	0	1	$x_{5}=3$	$\quad \rightarrow \quad$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0	3
:---:	:---:	:---:	:---:	:---:	:---:							
1	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$x_{1}=3$							
0	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	$x_{2}=2$							
0	0	$\frac{1}{2}$	$\frac{-1}{2}$	1	$x_{5}=1$							

and we get the third bfs $x^{*}=(3,2,0,0,1)$, which is optimal, and the optimal objective value $z^{*}=3$.

- As no nonbasic variable has a negative reduced cost, we conclude that the current basis is optimal.

Verifying our solution

- The three basic feasible solutions we obtain are
- $x^{0}=(0,0,4,8,3)$.
- $x^{1}=(2,0,0,4,3)$.
- $x^{*}=(3,2,0,0,1)$.

Do they fit our graphical approach?

