IM2010: Operations Research The Simplex Method (Chapter 4)

Ling-Chieh Kung

Department of Information Management National Taiwan University

March 21, 2013

Road map

- ▶ The algebra of the simplex method.
- ▶ The tableau approach.
- ▶ The second example.

The implementation of the simplex method

- ▶ The idea is intuitive and simple, but how to **implement** it?
- ▶ Now we need mathematics, in particular, linear algebra.
- ▶ Consider a standard form linear program

 $\begin{array}{ll} \min & cx\\ \text{s.t.} & Ax = b\\ & x \ge 0. \end{array}$

- ▶ We may assume that all **rows** of *A* are **linearly independent**.
- ▶ Given a basis *B* and the set of nonbasic variables *N*, how may we determine the **entering** and **leaving** variables?
 - ▶ At this moment, treat *B* as given. We will discuss how to find an initial basis later.

Splitting into basic and nonbasic sets

- ▶ First, given the basis B, we may split x into (x_B, x_N) , where x_B includes basic variables and x_N includes nonbasic variables.
- We may also split c into (c_B, c_N) and A into (A_B, A_N) .
 - $c_B \in \mathbb{R}^{1 \times m}$, $c_N \in \mathbb{R}^{1 \times (n-m)}$, $A_B \in \mathbb{R}^{m \times m}$, and $c_N \in \mathbb{R}^{(n-m) \times m}$.
- ▶ As an example, consider

$$\begin{array}{rll} \min & -x_1 \\ \text{s.t.} & 2x_1 & -x_2 & +x_3 & = 4 \\ & 2x_1 & +x_2 & +x_4 & = 8 \\ & & x_2 & +x_5 & = 3 \\ & & x_i \ge 0 \quad \forall i = 1, ..., 5. \end{array}$$

Splitting into basic and nonbasic sets

▶ In the matrix representation, we have

$$c = \begin{bmatrix} -1 & 0 & 0 & 0 \end{bmatrix}, \quad A = \begin{bmatrix} 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}$$

• If $x_B = (x_1, x_4, x_5)$ and $x_N = (x_2, x_3)$ we have

$$c_B = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}, \quad c_N = \begin{bmatrix} 0 & 0 \end{bmatrix},$$
$$A_B = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_N = \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}$$

• Orders of variables in x_B and x_N affect these parameter matrices!

.

Reducing the formulation

▶ With the split, the linear program becomes

min $c_B x_B + c_N x_N$ s.t. $A_B x_B + A_N x_N = b$ $x_B, x_N \ge 0.$

► For constraints, we may obtain $x_B = A_B^{-1}(b - A_N x_N)$. We may then plug in this into the objective function and get

min
$$c_B \left[A_B^{-1}(b - A_N x_N) \right] + c_N x_N$$

s.t. $x_B = A_B^{-1}(b - A_N x_N)$
 $x_B, x_N \ge 0.$

• A_B is indeed a square matrix. But why A_B is invertible?

Reducing the formulation

▶ With some more algebra, the linear program becomes

min
$$c_B A_B^{-1} b - (c_B A_B^{-1} A_N - c_N) x_N$$

s.t. $x_B = A_B^{-1} b - A_B^{-1} A_N x_N$
 $x_B, x_N \ge 0.$

- ▶ Note that $x_N = 0$ (a zero vector), so for the current basis B:
 - The values of the basic variables are $x_B = A_B^{-1}b$.
 - The objective value is $z = c_B A_B^{-1} b$.
- ► We will use z to denote the objective value for a given basis and z* to denote the objective value for the optimal basis.

Utilizing the new representation

▶ As an example, consider

• For $x_B = (x_1, x_4, x_5)$ and $x_N = (x_2, x_3)$, we have

$$A_B = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_N = \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix},$$
$$c_B = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}, \quad c_N = \begin{bmatrix} 0 & 0 \end{bmatrix}.$$

Utilizing the new representation

▶ It then follows that

and

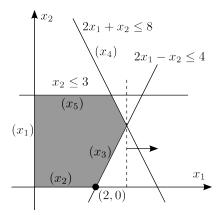
$$x_{B} = A_{B}^{-1}b = \begin{bmatrix} \frac{1}{2} & 0 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4\\ 8\\ 3 \end{bmatrix} = \begin{bmatrix} 2\\ 4\\ 3 \end{bmatrix} = \begin{bmatrix} x_{1}\\ x_{4}\\ x_{5} \end{bmatrix}$$
$$z = c_{B}A_{B}^{-1}b = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2\\ 4\\ 3 \end{bmatrix} = -2.$$

▶ The current basic feasible solution is

$$x = (x_1, x_2, x_3, x_4, x_5) = (2, 0, 0, 4, 3).$$

Utilizing the new representation

- At the point (2, 0):
 - ► It corresponds to the bfs x = (2, 0, 0, 4, 3).
 - ► Indeed those two binding constraints correspond to variables *x*₂ and *x*₃.
 - That is, $B = \{x_1, x_4, x_5\}.$
 - x₄ > 0 and x₅ > 0: There are positive "distances" between (2, 0) and the two corresponding constraints.



Operations Research, Spring 2013 – The Simplex Method

Reduced costs

• Look at the coefficient of x_N in the objective function again:

min
$$c_B A_B^{-1} b - (c_B A_B^{-1} A_N - c_N) x_N.$$

We define the **reduced cost**: $\bar{c}_N \equiv c_B A_B^{-1} A_N - c_N$. $\blacktriangleright \bar{c}_N \in \mathbb{R}^{1 \times (n-m)}$ is a **vector**:

$$\begin{bmatrix} c_B \end{bmatrix} \begin{bmatrix} A_B^{-1} \end{bmatrix} \begin{bmatrix} A_N \end{bmatrix} - \begin{bmatrix} c_N \end{bmatrix}.$$
$$1 \times m \qquad m \times m \qquad m \times (n-m) \qquad 1 \times (n-m)$$

▶ Each element of \bar{c}_N is a coefficient of one nonbasic variable. For **one** nonbasic variable $x_i \in N$, its coefficient is

$$\bar{c}_j = \begin{bmatrix} c_B \end{bmatrix} \begin{bmatrix} A_B^{-1} \end{bmatrix} \begin{bmatrix} A_j \end{bmatrix} - \begin{bmatrix} c_j \end{bmatrix}.$$

Reduced costs

• For the same example with $N = \{x_2, x_3\}$, note that

$$\bar{c}_N = c_B A_B^{-1} A_N - c_N$$

$$= \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \end{bmatrix}.$$

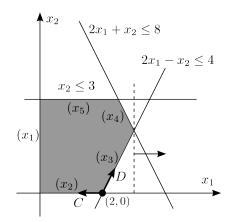
• So the reduced cost of x_2 is $\bar{c}_2 = \frac{1}{2}$ and that of x_3 is $\bar{c}_3 = -\frac{1}{2}$.

- This is the amount of **reduction in cost** by increasing x_j by 1.
- We will choose x_2 as the entering variable. Why?
- ▶ In general there may be **multiple** nonbasic variables having positive reduced costs. In that case, we need a **selection rule**.

Operations Research, Spring 2013 – The Simplex Method

Reduced costs

- At the point (2, 0):
 - Entering x_2 means moving along direction D, which is indeed improving $(\bar{c}_2 > 0)$.
 - Entering x_3 means moving along direction C, which makes things worse $(\bar{c}_3 < 0)$.
- Now we know how to find an entering variable algebraically.



The leaving variable

- Suppose $\bar{c}_j > 0$ and we have decided to let x_j enter.
- ► How to choose the **leaving variable**?
- Let's look at the constraints. Because $x_B \ge 0$, we have

$$x_B = A_B^{-1}b - A_B^{-1}A_N x_N \ge 0.$$

- ▶ Increasing x_j is certainly good (because $\bar{c}_j > 0$), but that may violate the constraints (i.e., make a basic variable negative).
- We want the largest improvement, so we should keep increasing x_j until a basic variable becomes zero.
 - ▶ That basic variable will **leave** the basis.
 - ▶ How to find that basic variable?

The leaving variable

- $A_B^{-1}b \in \mathbb{R}^{m \times 1}, A_B^{-1}A_N \in \mathbb{R}^{m \times (n-m)}, \text{ and } x_N \in \mathbb{R}^{(n-m) \times 1}.$
- When x_j increases and all other nonbasic variables remain 0:

$$\begin{bmatrix} A_B^{-1}b \end{bmatrix} - \begin{bmatrix} A_B^{-1}A_N \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ x_j \\ 0 \end{bmatrix} = \begin{bmatrix} A_B^{-1}b \end{bmatrix} - \begin{bmatrix} A_B^{-1}A_j \end{bmatrix} x_j.$$
$$m \times 1 \qquad m \times (n-m) \quad (n-m) \times 1 \quad m \times 1 \qquad m \times 1$$

- A_j is the *j*th column of matrix A.
- ▶ To determine which basic variable will become 0 first, we may do a ratio test.

The ratio test

• While increasing x_j , we need to make sure that

$$\left[A_B^{-1}b \right] - \left[A_B^{-1}A_j \right] x_j \ge 0.$$

- Note that $A_B^{-1}b \ge 0$ but $A_B^{-1}A_j$ is not.
- ► For element \overline{i} , if $(A_B^{-1}A_j)_i \leq 0$, then $A_B^{-1}b A_B^{-1}A_jx_j$ will never **be negative** when we increase x_j .
- For those k such that $(A_B^{-1}A_j)_k > 0$, we define

$$\theta_k \equiv \frac{(A_B^{-1}b)_k}{(A_B^{-1}A_j)_k} \quad \forall k : (A_B^{-1}A_j)_k > 0.$$

▶ Then the *i*th row will become 0 first if and only if

$$\theta_i \le \theta_k \quad \forall k : (A_B^{-1} A_j)_k > 0.$$

The ratio test

▶ For the same example with $N = \{x_2, x_3\}$, we have decided to let x_2 enters. Then we have

$$A_B^{-1}A_2 = \begin{bmatrix} \frac{1}{2} & 0 & 0\\ -1 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1\\ 1\\ 1\\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2}\\ 2\\ 1 \end{bmatrix} \text{ and } A_B^{-1}b = \begin{bmatrix} 2\\ 4\\ 3 \end{bmatrix}$$

Note that the three rows are for x_1 , x_4 , and x_5 , respectively.

► So the relevant ratios are

$$\theta_2 = \frac{4}{2} = 2$$
 and $\theta_3 = \frac{3}{1} = 3$.

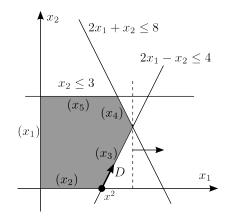
The ratio for x_1 is irrelevant because $-\frac{1}{2} \leq 0$.

- As $\theta_2 = 2 < 3 = \theta_3$, x_4 (the basic variable associated with the second row) will be the leaving variable.
- ▶ In general, if there is a tie, a selection rule must be specified.

.

The ratio test

- - The last nonbinding constraint, $x_1 \ge 0$, will never be hit.
 - We know this as $-\frac{1}{2} \leq 0$.



- ▶ For a minimization LP with an optimal solution (i.e., neither infeasible nor unbounded) and an initial basis B:
- \blacktriangleright Start from B and the corresponding set of nonbasic variables N.
- ▶ Repeat:
 - Calculate the reduced costs

$$\bar{c}_N = c_B A_B^{-1} A_N - c_N.$$

Choose an entering variable x_j that has $\bar{c}_j > 0$.

- If $\bar{c}_N \leq 0$, stop and report the current bfs as optimal.
- ▶ Do the ratio test by calculating

$$\theta_k \equiv \frac{(A_B^{-1}b)_k}{(A_B^{-1}A_j)_k} \quad \forall k : (A_B^{-1}A_j)_k > 0.$$

Choose a leaving variable x_i who has the minimum relevant ratio. Switch x_i and x_j in B and N.

- ▶ At each iteration:
 - First check what are B and N.
 - **Read** A_B , A_N , c_B , c_N , and b from the original formulation.
 - Calculate $z = c_B A_B^{-1} A_N$, $\bar{c}_N = c_B A_B^{-1} A_N c_N$, $x_B = A_B^{-1} b$, and $A_B^{-1} A_N$.
 - ▶ These four things will **change** whenever the basis changes
- ▶ For maximization problems:
 - Change it to a minimization problem.
 - Choose a **negative** reduced cost for the entering variable.

- The idea of the simplex method is simple:
 - ► Move along **edges**.
 - ► Search for improving directions **greedily**.
 - Stop when no way to improve.
- ▶ Implementing the simplex method requires linear algebra.
 - ► But the arithmetic requires only **inverse** and **matrix multiplication**.

- ▶ Some things are still missing:
 - How to obtain the initial basis?
 - Why A_B is invertible?
 - ▶ What if there are multiple choices for entering and leaving variables?
 - May we know whether the optimal solution is unique?
 - What if the linear program is infeasible or unbounded?
- We will answer some of these questions later. Before that, let's get more familiar with the simplex method by studying the tableau approach.

Road map

- ▶ The algebra of the simplex method.
- ► The tableau approach.
- ▶ The second example.

Reduced standard form

▶ Recall that a standard form LP $\min\{cx|Ax = b, x \ge 0\}$ can be expressed as

min
$$c_B A_B^{-1} b - (c_B A_B^{-1} A_N - c_N) x_N$$

s.t. $x_B = A_B^{-1} b - A_B^{-1} A_N x_N$
 $x_B, x_N \ge 0.$

• We may further reduce it to

min
$$- (c_B A_B^{-1} A_N - c_N) x_N + c_B A_B^{-1} b$$

s.t. $I x_B + A_B^{-1} A_N x_N = A_B^{-1} b$
 $x_B, x_N \ge 0.$

Tableau

▶ The last form can be organized into a **tableau**:

(1) 0
$$c_B A_B^{-1} A_N - c_N | c_B A_B^{-1} b$$

(m) I $A_B^{-1} A_N | A_B^{-1} b$
(m) (n-m) (1)

► Changing B and N requires to update c_BA_B⁻¹A_N − c_N, c_BA_B⁻¹b, A_B⁻¹A_N, and A_B⁻¹b. Now these can be done by doing elementary row operations on the tableau.

Tableau

• Consider the linear program

min
$$-2x_1 - 3x_2$$

s.t. $x_1 + 2x_2 \le 6$
 $2x_1 + x_2 \le 8$
 $x_i \ge 0 \quad \forall \ i = 1, 2.$

and its standard form

Initial bases

- ▶ We need an initial basis that gives us a basic feasible solution.
- ▶ $B = \{x_3, x_4\}$ must give us a basic feasible solution. Why?
- ▶ For any original LP with only no-greater-than constraints and nonnegative RHS, we may select all slack variables to form our initial basis.
- ▶ The initial tableau is

2	3	0	0	0
1	2	1	0	$x_3 = 6$
2	1	0		$x_4 = 8$

- The basic columns have zeros in the 0th row and an identity matrix in the other rows.
- The identity matrix associates each row with a basic variable.
- ▶ Numbers in the 0th row for nonbasic columns are reduced costs.

Iterations: the entering variable

- ▶ How to find an entering variable in a tableau?
- ▶ All we need to do is to find a **positive** value in the 0th row!
 - ▶ In the 0th row, nonbasic columns contain reduced costs.
 - ▶ To decrease the objective value, we need a positive reduced cost.
- In this example, we may enter either x_1 or x_2 .
- We have not introduced any selection rule. Let's just choose x_1 .

2	3	0	0	0
1	2	1	0	$x_3 = 6$
2	1	0	1	$x_4 = 8$

Iterations: the leaving variable

- ▶ How to find a leaving variable in a tableau?
- All we need to do is a <u>ratio test</u>:
 - Divide the RHS column by the entering column.
 - ► Among those rows with a **positive denominator** (the value in the entering column), we find one that has **the smallest ratio**.
- In this example, x_4 leaves because $\frac{8}{2} < \frac{6}{1}$.

2	3	0	0	0
1	2	1	0	$x_3 = 6$
2	1	0	1	$x_4 = 8$

Iterations: pivoting

- Once we determine the entering and leaving variables, we find the **pivot**.
 - ▶ The intersection of the entering column and the leaving row.
- ► To move to the next basic feasible solution, we need to make the entering column a basic column:
 - The pivot should become 1.
 - ▶ All other numbers in that row should become 0.
 - ▶ Do this through elementary row operations.
- ▶ In this example:

Iterations

- ▶ Let's do one more iteration.
 - Entering variable?
 - Leaving variable?
- ▶ In this example:

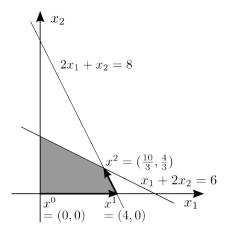
- Stop or keep iterating?
- We have found the **optimal tableau**, which implies that the optimal basic feasible solution is $x^* = (\frac{10}{3}, \frac{4}{3}, 0, 0)$.
- ▶ The objective value is $-2 \times \frac{10}{3} 3 \times \frac{4}{3} = -\frac{32}{3}$. Coincident?

Summary

- ▶ To use the tableau approach for a minimization problem (with a given basis) which has an optimal solution:
 - 1. Find the standard form.
 - 2. Copy numbers into the tableau but negate the objective coefficients.
 - 3. Repeat:
 - 3.1 Find a positive number in the 0th row for an entering variable. If there is none, stop and report the optimal solution.
 - 3.2 Do a ratio test for a leaving variable.
 - 3.3 Pivoting: Make the entering column a basic column.
- ▶ How about maximization problems?
 - ▶ Just replace "positive" by "negative" in Step 3.1.

Visualizing the iterations

- Let's visualize this example and relate basic feasible solutions with extreme points:
- ► The initial tableau corresponds to the origin $x^0 = (0, 0)$.
- After one iteration, we move to $x^1 = (4, 0).$
- After two iterations, we move to $x^2 = (\frac{10}{3}, \frac{4}{3})$, which is optimal.



Road map

- ▶ The algebra of the simplex method.
- ▶ The tableau approach.
- ► The second example.

Operations Research, Spring 2013 – The Simplex Method $\[blue]$ The second example

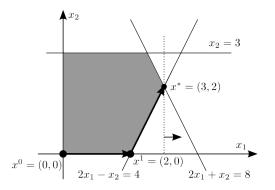
The second example

▶ Consider another example:

$$(P) \qquad \begin{array}{cccc} \max & x_1 \\ \text{s.t.} & 2x_1 & - & x_2 & \leq & 4 & (\text{Constraint 1}) \\ 2x_1 & + & x_2 & \leq & 8 & (\text{Constraint 2}) \\ & & & x_2 & \leq & 3 & (\text{Constraint 3}) \\ & & & x_i & \geq & 0 & \forall i = 1, 2. \end{array}$$

Initialization

• Looking at the graphical solution for (P), we may see that its optimal solution is $x^* = (3, 2)$. The dotted line is the isoprofit line. The short arrow indicates the direction we push the isoprofit line.



Initialization

• The standard form of problem (P) is

The first iteration

• For problem (S), we form the initial tableau

-1	0	0	0	0	0
2	-1	1	0	0	$x_3 = 4$ $x_4 = 8$ $x_5 = 3$
2	1	0	1	0	$x_4 = 8$
0	1	0	0	1	$x_5 = 3$

- The initial basic feasible solution (bfs) is $x^0 = (0, 0, 4, 8, 3)$.
- The current objective value $z_0 = 0$.
- Basic variables are x_3 , x_4 , and x_5 .
- Nonbasic variables are x_1 and x_2 .
- In the graph of (P), we may see that x^0 is the origin.

The first iteration

- The entering variable is x_1 because it is the only nonbasic variable that has a negative reduced cost. Note that this is a maximization problem!
- ▶ The leaving variable is x₃ according to the ratio test. Note that row 3 does not participate in the ratio test. Why?
- The next tableau is found by pivoting at 2:

► The current bfs becomes $x^1 = (2, 0, 0, 4, 3)$ and the current objective value becomes $z_1 = 2$.

The second iteration

- The entering variable is x_2 because its reduced cost is negative.
- ▶ The leaving variable is x₄ according to the ratio test. Note that row 1 does not participate in the ratio test. Why?
- ▶ The second iteration is

0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2		0	0	$\frac{1}{4}$	$\frac{1}{4}$	0	3
1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_1 = 2$	\rightarrow	1	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$x_1 = 3$
					$x_4 = 4$		0	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	$x_2 = 2$
0	1	0	0	1	$x_5 = 3$		0	0	$\frac{1}{2}$	$\frac{-1}{2}$	1	$x_5 = 1$

and we get the third bfs $x^* = (3, 2, 0, 0, 1)$, which is optimal, and the optimal objective value $z^* = 3$.

• As no nonbasic variable has a negative reduced cost, we conclude that the current basis is optimal.

Operations Research, Spring 2013 – The Simplex Method $\hfill The second example$

Verifying our solution

▶ The three basic feasible solutions we obtain are

•
$$x^0 = (0, 0, 4, 8, 3)$$

▶
$$x^1 = (2, 0, 0, 4, 3).$$

▶
$$x^* = (3, 2, 0, 0, 1).$$

Do they fit our graphical approach?

