IM2010: Operations Research More about the Simplex Method (Chapter 4)

Ling-Chieh Kung

Department of Information Management National Taiwan University

March 28, 2013

Road map

► Interpretations of simplex tableau.

- ▶ Unboundedness and multiple optimal solutions.
- ▶ Degeneracy vs. efficiency.

Initialization

► Let's revisit this example:

Initialization

• Looking at the graphical solution for (P), we may see that its optimal solution is $x^* = (3, 2)$. The dotted line is the isoprofit line. The short arrow indicates the direction we push the isoprofit line.

Initialization

• The standard form of problem (P) is

(S)
$$\max x_{1}$$

s.t. $2x_{1} - x_{2} + x_{3} = 4$
 $2x_{1} + x_{2} + x_{4} = 8$
 $x_{2} + x_{5} = 3$
 $x_{i} \ge 0 \quad \forall i = 1, ..., 5.$

The first iteration

• For problem (S), we form the initial tableau

-1	0	0	0	0	0
2	-1	1	0	0	$x_3 = 4$ $x_4 = 8$ $x_5 = 3$
2	1	0	1	0	$x_4 = 8$
0	1	0	0	1	$x_5 = 3$

- The initial basic feasible solution (bfs) is $x^0 = (0, 0, 4, 8, 3)$.
- The current objective value $z_0 = 0$.
- Basic variables are x_3 , x_4 , and x_5 .
- Nonbasic variables are x_1 and x_2 .
- In the graph of (P), we may see that x^0 is the origin.

- ▶ The 0th row $[-1 \ 0 \ 0 \ 0]$ have 0s for basic variables.
- ▶ For nonbasic ones, the 0th row contains their **reduced costs**.
- We will denote the reduced cost for variable x_j as \bar{c}_j for $x_j \in N$.
- ▶ In this example, we know $\bar{c}_1 = -1 < 0$ and $\bar{c}_2 = 0$, which tells us that entering x_1 improves the objective while entering x_2 does not change the objective.

Operations Research, Spring 2013 – More about the Simplex Method LInterpretations of simplex tableau

- ▶ By entering x_1 , we will increase its value from 0 (while keeping $x_2 = 0$) to a positive number.
- ▶ This is direction A, an **improving direction**, which corresponds to the fact that $\bar{c}_1 < 0$.

Operations Research, Spring 2013 – More about the Simplex Method LInterpretations of simplex tableau

- Suppose we enter x_2 , we will increase its value from 0 (while keeping $x_1 = 0$) to a positive number.
- ▶ This is direction B, which is not an improving direction. Note that $\bar{c}_2 = 0$.

- What does $\bar{c}_1 = -1$ tell us about the current bfs x^0 ?
- If we increase x_1 by 1, we will improve our objective by 1!
 - We may recognize this by looking at the objective in (S).
- Similarly, $\bar{c}_2 = 0$ means if we increase x_2 by 1, we will improve our objective by 0, which means no improvement.
 - This may also be verified with the objective in (S).

- We should enter x_1 to improve our objective.
- ▶ With the entering column $d = \begin{bmatrix} 2 & 2 & 0 \end{bmatrix}^T$ and the RHS $\bar{b} = \begin{bmatrix} 4 & 8 & 3 \end{bmatrix}^T$, we apply the ratio test

$$\min\left\{\frac{\bar{b}_i}{d_i}: d_i > 0\right\} = \min\left\{\frac{4}{2}, \frac{8}{2}\right\} = 2$$

and conclude that x_3 should leave.

▶ The next tableau is found by pivoting at 2:

-1	0	0	0	0	0		0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2
2	-1	1	0	0	$x_3 = 4$	\rightarrow	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_1 = 2$
					$x_4 = 8$							$x_4 = 4$
0	1	0	0	1	$x_5 = 3$		0	1	0	0	1	$x_5 = 3$

▶ The current bfs becomes $x^1 = (2, 0, 0, 4, 3)$ and the current objective value becomes $z_1 = 2$.

- ▶ Consider the ratio test which finds the leaving variable.
- ▶ By leaving the basis, the basic variable (in this case, x₃) becomes nonbasic with its value becoming 0.
- ► Since x₃ is a slack variable for constraint 1, it measures the difference between the RHS and the left-hand side (LHS) of constraint 1: x₃ = 4 (2x₁ x₂).
- ▶ When we are at x⁰, we have x₃ = 4. When we move along direction A, we stop at x¹ with x₃ = 0 because constraint 1 prevents us from moving farther.
- ▶ Since constraint 1 is nonbinding at x^0 and binding at x^1 , we may also say that we move along the improving direction until one constraint changes from nonbinding to binding.

- ▶ Along direction A we may "hit" constraint 1 and constraint 2 after moving for some distances.
- We will never hit constraint 3 along direction A.
- ► Since we must satisfy all the constraints, we want to find the one that we will **hit first**.
- Consider $d_1 = 2$ and $\bar{b}_1 = 4$, the first element of the entering column and RHS, respectively.
- ▶ Intuitively and informally, we say that
 - The "distance" between the current bfs x^0 and constraint 1 is 4.
 - ► The "**speed**" we move along direction A is 2.
- ► Therefore,
 - The ratio $\frac{4}{2} = 2$ is the "time" we need to hit constraint 1.

- ► To understand this, we may look at the original constraint 1 in (P), $2x_1 x_2 \le 4$.
- At x^0 , the two variables x_1 and x_2 are 0 and thus the LHS of constraint 1 a value of 0.
- ▶ We can say the distance between the constraint and the current bfs is 4.
- ▶ When we increase x₁ by 1, we increase the LHS by 2, and thus we say that the speed of approaching the constraint is 2.
- The ratio measures the time we need to hit constraint 1.

- ► $d_2 = 2$ and $\bar{b}_2 = 8$ means that the distance between x^0 and constraint 2 is 8 and the speed of approaching constraint 2 is 2.
- ▶ The ratio, 4, is the time we need to touch constraint 2.
- Starting at point $x^0 = (0,0)$ and moving to the right, as ratio test finds 2 < 4, we will hit constraint 1 before constraint 2.
 - "distance"?
 - $x^0 = (0,0)$ and along direction A we touch constraint 1 at $x^1 = (2,0)$, so it seems that the distance should be 2 rather than 4.
 - 4 is actually the algebraic distance between x^0 and constraint 1 (the difference between the RHS and the LHS of constraint 1).
 - ► 2 is the **geometric distance**.
 - ▶ We will still use "speed", "distance", and "time" for the entering column, the RHS column, and the ratio because they have an intuitive physical meaning.

► We summarize our result as below. This is a general result for any linear programs.

Proposition 1

When we decide to enter a nonbasic variable x_j , let d be the entering column and \overline{b} be the RHS column. If for row i we have $d_i > 0$, then along the direction we are going to move:

- \overline{b}_i is the distance between the bfs and the constraint for row i,
- d_i is the speed approaching the constraint, and
- the ratio \overline{b}_i/d_i is the time we need to hit the constraint.

- ▶ How about constraint 3?
- ▶ Recall that we ignored constraint 3 when doing the ratio test because $d_3 = 0$.
- If we say $\overline{b}_3 = 3$ is the distance between constraint 1 and x^0 and $d_3 = 0$ is the speed, then the time we need to touch constraint 3 is infinity!
- ▶ This is true, according to the graph. Since constraint 3 is parallel to direction A, no matter how long we move along direction A, we will never touch constraint 3.

- ▶ Now we have investigated the meaning of a positive or zero element in the entering column. How about a **negative** one?
- Moving along direction B means entering x_2 , and in this case we have $d = \begin{bmatrix} -1 & 1 & 1 \end{bmatrix}^T$.
- ► We observe that d₁ < 0, which means constraint 1 is "behind" x⁰ if moving along direction B!
- ► We may ignore row 1 when doing the ratio test because along direction B we will never hit constraint 1.
- ► On the other hand, constraint 2 and 3 are both "in front of" x⁰ along direction B because d₂ and d₃ are both positive.

Proposition 2

When we decide to enter a nonbasic variable x_j , let d be the entering column. Then along the direction we are going to move, one of the following holds for each constraint of row i:

- ▶ If $d_i > 0$, then the constraint is in front of the current bfs. We will touch it after increasing x_j by \bar{b}_i/d_i .
- If $d_i = 0$, then constraint *i* is parallel to the current bfs. We will never touch it.
- If $d_i < 0$, then constraint *i* is behind the current bfs. We will never touch it.

The second iteration

- ► At x¹, we again look at the reduced cost of nonbasic variables x₂ and x₃ to decide an entering variable.
- Now c
 ₂ = −¹/₂ < 0 and c
 ₃ = ¹/₂ > 0 tell us that entering x₂ improves our objective but entering x₃ does not.
- Therefore, we choose x_2 to be the entering variable.
- ▶ If we only want to solve the problem, then we just need to do a ratio test and find the leaving variable.
- However, here we are interested in the direction we are going to move along.

Operations Research, Spring 2013 – More about the Simplex Method LInterpretations of simplex tableau

The direction to move along

The direction to move along

- When we were at bfs x^0 , we increase x_1 by moving on the x_1 -axis or increase x_2 on the x_2 -axis.
- At bfs x^1 , as we want to increase the value of x_2 , it seems that we should move parallel to the x_2 -axis, which is along vector (0, 1).
- This is not true in the simplex method, because it moves only along edges of the feasible region!
- So we may expect to move along direction D. This is correct, but why?

The direction to move along

- Using the simplex method, we switch from one bfs to one of its adjacent bfs.
 - Two bfs are adjacent if they share n-1 binding constraints.
- ► To move to a neighboring bfs, we must move along one of the binding constraints, so at x¹, we must move along either 2x₁ x₂ = 4 or x₂ = 0, that is, direction C or D.
 - Entering x_2 : The constraint $x_2 = 0$ is no longer binding. We move along the other binding constraint $2x_1 x_2 = 4$ (direction D).
 - Entering x_3 : The constraint $2x_1 x_2 \le 4$ is no longer binding. We move along the other binding constraint $x_2 = 0$ (direction C).

Operations Research, Spring 2013 – More about the Simplex Method LInterpretations of simplex tableau

The objective row: Reduced costs

▶ The second iteration is

0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2		0	0	$\frac{1}{4}$	$\frac{1}{4}$	0	3
1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_1 = 2$	\rightarrow	1	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$x_1 = 3$
					$x_4 = 4$		0	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	$x_2 = 2$
0	1	0	0	1	$x_5 = 3$		0	0	$\frac{1}{2}$	$\frac{-1}{2}$	1	$x_5 = 1$

and we get the third bfs $x^* = (3, 2, 0, 0, 1)$, which is optimal, and the optimal objective value $z^* = 3$.

▶ In the second tableau (the left one above), we have $\bar{c}_2 = -\frac{1}{2} < 0$ and $\bar{c}_3 = \frac{1}{2} > 0$. Do they really indicate the unit improvements we have by entering x_2 and x_3 ?

- ► To increase the value of x_2 , we know that we must move along direction D, which is along the equation $2x_1 x_2 = 4$.
 - ► Increasing x₂ by 1 requires us to increase x₁ by ¹/₂ at the same time so that the constraint is still binding.
 - Therefore, increasing x_2 by 1 improves the objective by $\frac{1}{2}$.
 - This is an indirect effect: increasing x_2 makes us increase x_1 , and increasing x_1 makes the objective increase.
- ▶ Now consider entering x_3 and moving along direction C, the equation $x_2 = 0$. The effect is again indirect:
 - If we want to increase x_3 by 1 while keeping $x_2 = 0$, we must have x_1 to decrease by $\frac{1}{2}$ so that the constraint $2x_1 x_2 + x_3 = 4$ is still satisfied.
 - That's why the objective decreases by $\frac{1}{2}$.

- At bfs x^1 we have $d = \begin{bmatrix} -1 \\ 2 \end{bmatrix}^T$ if we enter x_2 .
- ▶ We want to show that Proposition 2 is correct in this example.
- The first row is now representing the constraint $x_1 \ge 0$.
- ▶ Recall that two neighboring bfs have exactly one different binding constraint. For example, $x_2 \ge 0$ is binding at both x^0 and x^1 , but $x_1 \ge 0$ is binding only at x^0 and $2x_1 x_2 \le 4$ is only binding at x^1 .
- Since the rows of a simplex tableau are for the nonbinding constraints, two simplex tableau associating to two adjacent bfs will have one row representing different constraints.
- ▶ In iteration 1, x_3 leaves in row 1, so row 1 becomes the representation of the nonbinding constraint $x_1 \ge 0$ of x^1 .

- ▶ Now we can interpret the entering column by Proposition 2.
- ► Along direction D:
 - $d_1 < 0$ and constraint 4 $(x_1 \ge 0)$ is behind the current bfs,
 - $d_2 > 0$ and constraint 2 is in front of the current bfs, and
 - $d_3 > 0$ and constraint 3 is in front of the current bfs.
- ▶ We may do the same interpretation for direction C. If we enter x_3 , then $d = \begin{bmatrix} \frac{1}{2} & -1 & 0 \end{bmatrix}^T$. Along direction E:
 - $d_1 > 0$ and constraint 4 $(x_1 \ge 0)$ is in front of the current bfs,
 - ▶ $d_2 < 0$ and constraint 2 is behind the current bfs, and
 - $d_3 = 0$ and constraint 3 is parallel to the current bfs.

- Here we only check the case of entering x_2 with $d = \begin{bmatrix} -1 & 2 & 1 \end{bmatrix}^T$ and $\bar{b} = \begin{bmatrix} 2 & 4 & 3 \end{bmatrix}^T$.
- ▶ For constraint 2, the distance is 4 and the speed is 2.
- This may be verified by looking at constraint 2 in (P):

$$2x_1 + x_2 \le 8.$$

- At $x^1 = (2,0)$, the LHS is 4 and the RHS is 8, so the distance is 4.
- ▶ Along direction C (the equation $2x_1 x_2 = 4$), if we increase x_2 by 1, then we must increase x_1 by $\frac{1}{2}$, and they together increase the LHS of $2x_1 + x_2 \leq 8$ by $2(\frac{1}{2}) + 1 = 2$.
- ▶ Therefore, the speed approaching constraint 2 is 2.

- ▶ For constraint 3, the distance is 3 and the speed is 1.
- This may be verified by looking at constraint 3 in (P):

$$x_2 \leq 3.$$

- At $x^1 = (2,0)$, the LHS is 0 and the RHS is 3, so the distance is 3.
- Along direction C (the equation $2x_1 x_2 = 4$), if we increase x_2 by 1, then we must increase x_1 by $\frac{1}{2}$, and they together increase the LHS of $x_2 \leq 3$ by 1 (x_1 actually has no effect here).
- ▶ Therefore, the speed approaching constraint 2 is 1.
- ▶ The ratios $\frac{4}{2} = 2$ and $\frac{3}{1} = 3$ tells us that we will touch constraint 2 first.

Conclusion

- ▶ There is an interpretation of the reduced costs in the objective row, the entering column, and the RHS column.
- ▶ Their physical meanings are given, though not very rigorously.
- Understanding the concepts listed in this note is not very easy, but it should help you understand the elegant idea of the simplex method more.
- ▶ It will also help you solve problems like Problem 4.Review.17 and 4.Review.18 in the textbook.
- Even if you can not understand every detail in this note, it will still be good to understand the conclusion and intuition in the two propositions.

Road map

- ▶ Interpretations of simplex tableau.
- ▶ Unboundedness and multiple optimal solutions.
- ▶ Degeneracy vs. efficiency.

Unbounded linear programs

- ▶ So far all the linear programs we encountered have exactly one unique optimal solution.
- ▶ What if a linear program is **unbounded**? Can the simplex method detect the unboundedness? If so, how?
- Consider the following example:

Unbounded linear programs

▶ The standard form is:

► The first iteration:

Unbounded linear programs

▶ The second iteration:

0	-1	1	0	1		0	0	-1	1	3
1	-1	1	0	$x_1 = 1$	\rightarrow	1	0	$^{-1}$	1	$x_1 = 3$
0	1	-2	1	$x_4 = 2$		0	1	-2	1	$x_2 = 2$

- Wait... how may we do the third iteration? The ratio test fails!All the denominators are nonpositive! Which variable to leave?
- ▶ No variable should leave: Along the improving direction (by entering x₃), both the two nonbinding constraints are **behind** us.
- The improving direction is thus an unbounded improving direction.

Unbounded improving directions

• At (3, 2), when we enter x_3 , we move along the rightmost edge. Both nonbinding constraints $x_1 \ge 0$ and $x_2 \ge 0$ are behind us.

Detecting unbounded linear programs

▶ For a maximization problem, whenever we see any column in any tableau

such that $c_j < 0$ and $A_{ij} \leq 0$ for all i = 1, ..., m:

- $\bar{c}_j < 0$: This is an improving direction.
- $A_{ij} \leq 0$ for all i = 1, ..., m: This is an unbounded direction.
- In this case, we may stop and conclude that this linear program is unbounded.
- ▶ What is the unbounded condition for a **minimization** problem?

▶ Consider another example (in standard form directly):

▶ In two iterations, we find an optimal solution. What is it?

-1 -1 0 0 0	0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$x_4 = 12$	$\begin{array}{ccccccccccccc} 0 & \frac{3}{2} & 1 & -\frac{1}{2} & 0 & x_3 = 6 \\ 1 & \frac{1}{2} & 0 & \frac{1}{2} & 0 & x_1 = 6 \\ 0 & \boxed{\frac{1}{2}} & 0 & -\frac{1}{2} & 1 & x_5 = 1 \end{array}$
		0 0 0 0 1 7
	\rightarrow	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

- ▶ In practice, we will simply stop and report the optimal solution.
- ▶ Here to illustrate the power of the simplex method, let's focus on the optimal tableau:

0	0	0	0	1	7
0	0	1	1	-2	$x_3 = 3$ $x_1 = 5$ $x_2 = 2$
1	0	0	1	-2	$x_1 = 5$
0	1	0	-1	2	$x_2 = 2$

- What does a zero reduced cost $(\bar{c}_4 = 0)$ mean?
 - ▶ If we increase this variable by 1, the objective value will be decreased by zero.
- As the current solution is optimal, if there is a direction such that moving along it does not change the objective value, all points on that direction are optimal.

• At an optimal solution (5, 2), by entering x_4 , we move along $x_1 + x_2 = 7$ and all points on this direction are optimal.

Detecting multiple optimal solutions

- ► At the **optimal** (not any!) tableau, if
 - x_j 's reduced cost $\bar{c}_j = 0$ and
 - ► along the direction of entering x_j, we may move a **positive** distance,

then the linear program has multiple optimal solution.

- ▶ What does the second condition mean?
- ▶ Is "there is a constraint parallel to the isoprofit line" necessary, sufficient, both, or none?

Road map

- ▶ Interpretations of simplex tableau.
- ▶ Unboundedness and multiple optimal solutions.
- ► Degeneracy vs. efficiency.

Solving degenerate linear programs

- Recall that an LP is degenerate if multiple bases correspond to a single basic solution.
- For the simplex method, in each iteration we move to an adjacent basis.
- ► If the LP is degenerate, it is possible to move to another basis but still at the same basic feasible solution.
- Running an iteration may have no improvement!

Solving degenerate linear programs

▶ In three iterations, we may find an optimal solution:

-1 -3 0 0	0	$0 \ -2 \ 1 \ 0$	3
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} x_3 = 3 \\ x_4 = 6 \end{array} \longrightarrow$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{vmatrix} x_1 = 3 \\ x_4 = 0 \end{vmatrix}$
0 0 -3 2	3	$1 \ 0 \ 0 \ 1$	6
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{ccc} x_1 = 3 \\ x_2 = 0 \end{array} \phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$x_3 = 1$ $x_2 = 2$

▶ Note that in the second iteration, there is no improvement!

▶ The basis changes but the basic feasible solution does not change.

Computational efficiency of the simplex method

- ▶ In general, when we use the simplex method to solve a degenerate LP, there may be some iterations that have no improvements.
 - ▶ We think we can have improvements (with a positive reduced cost for a minimization problem), but we hit a constraint before we move for any positive distance.
- ▶ For some (very strange) instances, the simplex method needs to travel through all the bases before it can make a conclusion.
- ► Therefore, the simplex method is, in the worst case, an **exponential-time** algorithm:

$$O\left(\binom{n}{m}f(n,m)\right),$$

where f(n,m) is the time of completing one iteration.

Polynomial-time algorithms for LP

- ▶ There are polynomial-time algorithms for Linear Programming.
 - Beyond the scope of this course.
- ► Interestingly, some of them are very complicated and run slower than the simplex method for most practical problems.
- With its simplicity and extendability, The simplex method is still the most widely adopted method for Linear Programming in practice.
- ▶ However, there is a big problem ...

Cycling

- ► At a basic feasible solution, the simplex method may enter an infinite loop! This is called **cycling**.
 - ▶ Basis $1 \rightarrow \text{basis } 2 \rightarrow \text{basis } 3 \rightarrow \cdots \rightarrow \text{basis } 1.$
- ▶ This may happen when we use a "not so good" way of selecting entering and leaving variables.
- ▶ There are at least two ways to avoid cycling:
 - ▶ Randomize the selection of variables.
 - Apply the <u>smallest index rule</u>.
- By using the smallest index rule:
 - ▶ When there are multiple variables having positive reduced cost for a minimization problem, select the one with the smallest index.
 - ▶ When there are multiple variables whose ratio are all the smallest ratio, select the one with the smallest index.
 - Smallest indexing: choose x_i rather than x_j if i < j.

The smallest index rule

- ▶ The smallest index rule may not generate the **least iterations** toward an optimal solution.
 - ▶ Why don't we choose the variable with the reduced cost with the largest magnitude?
 - ▶ No variable selection rule can guarantee to be the most efficient!
- ► The smallest index rule can guarantee **no cycling**!
 - ▶ The "most significant reduced cost" rule, however, may result in cycling in some cases.