IM2010: Operations Research More about the Simplex Method (Chapter 4)

Ling-Chieh Kung
Department of Information Management
National Taiwan University

March 28, 2013

Road map

- Interpretations of simplex tableau.
- Unboundedness and multiple optimal solutions.
- Degeneracy vs. efficiency.

Initialization

- Let's revisit this example:

Initialization

- Looking at the graphical solution for (P), we may see that its optimal solution is $x^{*}=(3,2)$. The dotted line is the isoprofit line. The short arrow indicates the direction we push the isoprofit line.

Initialization

- The standard form of problem (P) is

The first iteration

- For problem (S), we form the initial tableau

-1	0	0	0	0	0
2	-1	1	0	0	$x_{3}=4$
2	1	0	1	0	$x_{4}=8$
0	1	0	0	1	$x_{5}=3$

- The initial basic feasible solution (bfs) is $x^{0}=(0,0,4,8,3)$.
- The current objective value $z_{0}=0$.
- Basic variables are x_{3}, x_{4}, and x_{5}.
- Nonbasic variables are x_{1} and x_{2}.
- In the graph of (P), we may see that x^{0} is the origin.

The objective row: Reduced costs

- The 0th row $\left[\begin{array}{ccccc}-1 & 0 & 0 & 0 & 0\end{array}\right]$ have 0 s for basic variables.
- For nonbasic ones, the 0 th row contains their reduced costs.
- We will denote the reduced cost for variable x_{j} as \bar{c}_{j} for $x_{j} \in N$.
- In this example, we know $\bar{c}_{1}=-1<0$ and $\bar{c}_{2}=0$, which tells us that entering x_{1} improves the objective while entering x_{2} does not change the objective.

The objective row: Reduced costs

- By entering x_{1}, we will increase its value from 0 (while keeping $x_{2}=0$) to a positive number.
- This is direction A, an improving direction, which corresponds to the fact that $\bar{c}_{1}<0$.

The objective row: Reduced costs

- Suppose we enter x_{2}, we will increase its value from 0 (while keeping $x_{1}=0$) to a positive number.
- This is direction B, which is not an improving direction. Note that $\bar{c}_{2}=0$.

The objective row: Reduced costs

- What does $\bar{c}_{1}=-1$ tell us about the current bfs x^{0} ?
- If we increase x_{1} by 1 , we will improve our objective by 1 !
- We may recognize this by looking at the objective in (S).
- Similarly, $\bar{c}_{2}=0$ means if we increase x_{2} by 1 , we will improve our objective by 0 , which means no improvement.
- This may also be verified with the objective in (S).

The entering and RHS columns: Ratio test

- We should enter x_{1} to improve our objective.
- With the entering column $d=\left[\begin{array}{lll}2 & 2 & 0\end{array}\right]^{T}$ and the RHS $\bar{b}=\left[\begin{array}{lll}4 & 8 & 3\end{array}\right]^{T}$, we apply the ratio test

$$
\min \left\{\frac{\bar{b}_{i}}{d_{i}}: d_{i}>0\right\}=\min \left\{\frac{4}{2}, \frac{8}{2}\right\}=2
$$

and conclude that x_{3} should leave.

The entering and RHS columns: Ratio test

- The next tableau is found by pivoting at 2 :

-1	0	0	0	0	0							
2	-1	1	0	0	$x_{3}=4$							
2	1	0	1	0	$x_{4}=8$							
0	1	0	0	1	$x_{5}=3$	$\quad \rightarrow \quad$	0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2
:---:	:---:	:---:	:---:	:---:	:---:							
1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_{1}=2$							
0	2	-1	1	0	$x_{4}=4$							
0	1	0	0	1	$x_{5}=3$							

- The current bfs becomes $x^{1}=(2,0,0,4,3)$ and the current objective value becomes $z_{1}=2$.

The entering and RHS columns: Ratio test

- Consider the ratio test which finds the leaving variable.
- By leaving the basis, the basic variable (in this case, x_{3}) becomes nonbasic with its value becoming 0 .
- Since x_{3} is a slack variable for constraint 1 , it measures the difference between the RHS and the left-hand side (LHS) of constraint 1: $x_{3}=4-\left(2 x_{1}-x_{2}\right)$.
- When we are at x^{0}, we have $x_{3}=4$. When we move along direction A, we stop at x^{1} with $x_{3}=0$ because constraint 1 prevents us from moving farther.
- Since constraint 1 is nonbinding at x^{0} and binding at x^{1}, we may also say that we move along the improving direction until one constraint changes from nonbinding to binding.

The entering and RHS columns: Ratio test

- Along direction A we may "hit" constraint 1 and constraint 2 after moving for some distances.
- We will never hit constraint 3 along direction A.
- Since we must satisfy all the constraints, we want to find the one that we will hit first.
- Consider $d_{1}=2$ and $\bar{b}_{1}=4$, the first element of the entering column and RHS, respectively.
- Intuitively and informally, we say that
- The "distance" between the current bfs x^{0} and constraint 1 is 4 .
- The "speed" we move along direction A is 2 .
- Therefore,
- The ratio $\frac{4}{2}=2$ is the "time" we need to hit constraint 1 .

The entering and RHS columns: Ratio test

- To understand this, we may look at the original constraint 1 in $(P), 2 x_{1}-x_{2} \leq 4$.
- At x^{0}, the two variables x_{1} and x_{2} are 0 and thus the LHS of constraint 1 a value of 0 .
- We can say the distance between the constraint and the current bfs is 4 .
- When we increase x_{1} by 1 , we increase the LHS by 2 , and thus we say that the speed of approaching the constraint is 2 .
- The ratio measures the time we need to hit constraint 1.

The entering and RHS columns: Ratio test

- $d_{2}=2$ and $\bar{b}_{2}=8$ means that the distance between x^{0} and constraint 2 is 8 and the speed of approaching constraint 2 is 2 .
- The ratio, 4 , is the time we need to touch constraint 2 .
- Starting at point $x^{0}=(0,0)$ and moving to the right, as ratio test finds $2<4$, we will hit constraint 1 before constraint 2 .
- "distance"?
- $x^{0}=(0,0)$ and along direction A we touch constraint 1 at $x^{1}=(2,0)$, so it seems that the distance should be 2 rather than 4 .
- 4 is actually the algebraic distance between x^{0} and constraint 1 (the difference between the RHS and the LHS of constraint 1).
- 2 is the geometric distance.
- We will still use "speed", "distance", and "time" for the entering column, the RHS column, and the ratio because they have an intuitive physical meaning.

The entering and RHS columns: Ratio test

- We summarize our result as below. This is a general result for any linear programs.

Proposition 1

When we decide to enter a nonbasic variable x_{j}, let d be the entering column and \bar{b} be the RHS column. If for row i we have $d_{i}>0$, then along the direction we are going to move:

- \bar{b}_{i} is the distance between the bfs and the constraint for row i,
- d_{i} is the speed approaching the constraint, and
- the ratio \bar{b}_{i} / d_{i} is the time we need to hit the constraint.

Sign of an element in the entering column

- How about constraint 3 ?
- Recall that we ignored constraint 3 when doing the ratio test because $d_{3}=0$.
- If we say $\bar{b}_{3}=3$ is the distance between constraint 1 and x^{0} and $d_{3}=0$ is the speed, then the time we need to touch constraint 3 is infinity!
- This is true, according to the graph. Since constraint 3 is parallel to direction A, no matter how long we move along direction A , we will never touch constraint 3 .

Sign of an element in the entering column

- Now we have investigated the meaning of a positive or zero element in the entering column. How about a negative one?
- Moving along direction B means entering x_{2}, and in this case we have $d=\left[\begin{array}{lll}-1 & 1 & 1\end{array}\right]^{T}$.
- We observe that $d_{1}<0$, which means constraint 1 is "behind" x^{0} if moving along direction B !
- We may ignore row 1 when doing the ratio test because along direction B we will never hit constraint 1.
- On the other hand, constraint 2 and 3 are both "in front of" x^{0} along direction B because d_{2} and d_{3} are both positive.

Sign of an element in the entering column

- Proposition 2

When we decide to enter a nonbasic variable x_{j}, let d be the entering column. Then along the direction we are going to move, one of the following holds for each constraint of row i :

- If $d_{i}>0$, then the constraint is in front of the current bfs. We will touch it after increasing x_{j} by \bar{b}_{i} / d_{i}.
- If $d_{i}=0$, then constraint i is parallel to the current bfs. We will never touch it.
- If $d_{i}<0$, then constraint i is behind the current bfs. We will never touch it.

The second iteration

- At x^{1}, we again look at the reduced cost of nonbasic variables x_{2} and x_{3} to decide an entering variable.
- Now $\bar{c}_{2}=-\frac{1}{2}<0$ and $\bar{c}_{3}=\frac{1}{2}>0$ tell us that entering x_{2} improves our objective but entering x_{3} does not.
- Therefore, we choose x_{2} to be the entering variable.
- If we only want to solve the problem, then we just need to do a ratio test and find the leaving variable.
- However, here we are interested in the direction we are going to move along.

The direction to move along

The direction to move along

- When we were at bfs x^{0}, we increase x_{1} by moving on the x_{1}-axis or increase x_{2} on the x_{2}-axis.
- At bfs x^{1}, as we want to increase the value of x_{2}, it seems that we should move parallel to the x_{2}-axis, which is along vector $(0,1)$.
- This is not true in the simplex method, because it moves only along edges of the feasible region!
- So we may expect to move along direction D. This is correct, but why?

The direction to move along

- Using the simplex method, we switch from one bfs to one of its adjacent bfs.
- Two bfs are adjacent if they share $n-1$ binding constraints.
- To move to a neighboring bfs, we must move along one of the binding constraints, so at x^{1}, we must move along either $2 x_{1}-x_{2}=4$ or $x_{2}=0$, that is, direction C or D .
- Entering x_{2} : The constraint $x_{2}=0$ is no longer binding. We move along the other binding constraint $2 x_{1}-x_{2}=4$ (direction D).
- Entering x_{3} : The constraint $2 x_{1}-x_{2} \leq 4$ is no longer binding. We move along the other binding constraint $x_{2}=0$ (direction C$)$.

The objective row: Reduced costs

- The second iteration is

0	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	2							
1	$\frac{-1}{2}$	$\frac{1}{2}$	0	0	$x_{1}=2$							
0	2	-1	1	0	$x_{4}=4$							
0	1	0	0	1	$x_{5}=3$	$\rightarrow \quad$	0	0	$\frac{1}{4}$	$\frac{1}{4}$	0	3
:---:	:---:	:---:	:---:	:---:	:---:							
1	0	$\frac{1}{4}$	$\frac{1}{4}$	0	$x_{1}=3$							
0	1	$\frac{-1}{2}$	$\frac{1}{2}$	0	$x_{2}=2$							
0	0	$\frac{1}{2}$	$\frac{-1}{2}$	1	$x_{5}=1$							

and we get the third bfs $x^{*}=(3,2,0,0,1)$, which is optimal, and the optimal objective value $z^{*}=3$.

- In the second tableau (the left one above), we have $\bar{c}_{2}=-\frac{1}{2}<0$ and $\bar{c}_{3}=\frac{1}{2}>0$. Do they really indicate the unit improvements we have by entering x_{2} and x_{3} ?

The objective row: Reduced costs

- To increase the value of x_{2}, we know that we must move along direction D , which is along the equation $2 x_{1}-x_{2}=4$.
- Increasing x_{2} by 1 requires us to increase x_{1} by $\frac{1}{2}$ at the same time so that the constraint is still binding.
- Therefore, increasing x_{2} by 1 improves the objective by $\frac{1}{2}$.
- This is an indirect effect: increasing x_{2} makes us increase x_{1}, and increasing x_{1} makes the objective increase.
- Now consider entering x_{3} and moving along direction C, the equation $x_{2}=0$. The effect is again indirect:
- If we want to increase x_{3} by 1 while keeping $x_{2}=0$, we must have x_{1} to decrease by $\frac{1}{2}$ so that the constraint $2 x_{1}-x_{2}+x_{3}=4$ is still satisfied.
- That's why the objective decreases by $\frac{1}{2}$.

Sign of an element in the entering column

- At bfs x^{1} we have $d=\left[\begin{array}{ll}\frac{-1}{2} & 2\end{array} 1\right]^{T}$ if we enter x_{2}.
- We want to show that Proposition 2 is correct in this example.
- The first row is now representing the constraint $x_{1} \geq 0$.
- Recall that two neighboring bfs have exactly one different binding constraint. For example, $x_{2} \geq 0$ is binding at both x^{0} and x^{1}, but $x_{1} \geq 0$ is binding only at x^{0} and $2 x_{1}-x_{2} \leq 4$ is only binding at x^{1}.
- Since the rows of a simplex tableau are for the nonbinding constraints, two simplex tableau associating to two adjacent bfs will have one row representing different constraints.
- In iteration $1, x_{3}$ leaves in row 1 , so row 1 becomes the representation of the nonbinding constraint $x_{1} \geq 0$ of x^{1}.

Sign of an element in the entering column

- Now we can interpret the entering column by Proposition 2.
- Along direction D:
- $d_{1}<0$ and constraint $4\left(x_{1} \geq 0\right)$ is behind the current bfs,
- $d_{2}>0$ and constraint 2 is in front of the current bfs, and
- $d_{3}>0$ and constraint 3 is in front of the current bfs.
- We may do the same interpretation for direction C. If we enter x_{3}, then $d=\left[\begin{array}{lll}\frac{1}{2} & -1 & 0\end{array}\right]^{T}$. Along direction E :
- $d_{1}>0$ and constraint $4\left(x_{1} \geq 0\right)$ is in front of the current bfs,
- $d_{2}<0$ and constraint 2 is behind the current bfs, and
- $d_{3}=0$ and constraint 3 is parallel to the current bfs.

The entering and RHS columns: Ratio test

- Here we only check the case of entering x_{2} with $d=\left[\begin{array}{ll}\frac{-1}{2} & 2\end{array} 1\right]^{T}$ and $\bar{b}=\left[\begin{array}{lll}2 & 4 & 3\end{array}\right]^{T}$.
- For constraint 2 , the distance is 4 and the speed is 2 .
- This may be verified by looking at constraint 2 in (P) :

$$
2 x_{1}+x_{2} \leq 8
$$

- At $x^{1}=(2,0)$, the LHS is 4 and the RHS is 8 , so the distance is 4 .
- Along direction C (the equation $2 x_{1}-x_{2}=4$), if we increase x_{2} by 1 , then we must increase x_{1} by $\frac{1}{2}$, and they together increase the LHS of $2 x_{1}+x_{2} \leq 8$ by $2\left(\frac{1}{2}\right)+1=2$.
- Therefore, the speed approaching constraint 2 is 2 .

The entering and RHS columns: Ratio test

- For constraint 3, the distance is 3 and the speed is 1 .
- This may be verified by looking at constraint 3 in (P) :

$$
x_{2} \leq 3 .
$$

- At $x^{1}=(2,0)$, the LHS is 0 and the RHS is 3 , so the distance is 3 .
- Along direction C (the equation $2 x_{1}-x_{2}=4$), if we increase x_{2} by 1 , then we must increase x_{1} by $\frac{1}{2}$, and they together increase the LHS of $x_{2} \leq 3$ by 1 (x_{1} actually has no effect here).
- Therefore, the speed approaching constraint 2 is 1 .
- The ratios $\frac{4}{2}=2$ and $\frac{3}{1}=3$ tells us that we will touch constraint 2 first.

Conclusion

- There is an interpretation of the reduced costs in the objective row, the entering column, and the RHS column.
- Their physical meanings are given, though not very rigorously.
- Understanding the concepts listed in this note is not very easy, but it should help you understand the elegant idea of the simplex method more.
- It will also help you solve problems like Problem 4.Review. 17 and 4.Review. 18 in the textbook.
- Even if you can not understand every detail in this note, it will still be good to understand the conclusion and intuition in the two propositions.

Road map

- Interpretations of simplex tableau.
- Unboundedness and multiple optimal solutions.
- Degeneracy vs. efficiency.

Unbounded linear programs

- So far all the linear programs we encountered have exactly one unique optimal solution.
- What if a linear program is unbounded? Can the simplex method detect the unboundedness? If so, how?
- Consider the following example:

$$
\begin{array}{cc}
\max & x_{1} \\
\text { s.t. } & x_{1}-x_{2} \leq 1 \\
& 2 x_{1}-x_{2} \leq 4 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

Unbounded linear programs

- The standard form is:

$$
\begin{aligned}
\max & x_{1} \\
\text { s.t. } & x_{1}-x_{2}+x_{3} \\
& 2 x_{1}-x_{2} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 4
\end{aligned}
$$

- The first iteration:

-1	0	0	0	0						
1	-1	1	0	$x_{3}=1$						
2	-1	0	1	$x_{4}=4$	$\quad \rightarrow \quad$	0	-1	1	0	1
:---:	:---:	:---:	:---:	:---:						
1 -1 1	0	$x_{1}=1$								
0	1	-2	1	$x_{4}=2$						

Unbounded linear programs

- The second iteration:

0	-1	1	0	1
1	-1	1	0	$x_{1}=1$
0	1	-2	1	$x_{4}=2$

$\rightarrow \quad$| 0 | 0 | -1 | 1 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | -1 | 1 | $x_{1}=3$ |
| 0 | 1 | -2 | 1 | $x_{2}=2$ |

- Wait... how may we do the third iteration? The ratio test fails!
- All the denominators are nonpositive! Which variable to leave?
- No variable should leave: Along the improving direction (by entering x_{3}), both the two nonbinding constraints are behind us.
- The improving direction is thus an unbounded improving direction.

Unbounded improving directions

- At $(3,2)$, when we enter x_{3}, we move along the rightmost edge. Both nonbinding constraints $x_{1} \geq 0$ and $x_{2} \geq 0$ are behind us.

Detecting unbounded linear programs

- For a maximization problem, whenever we see any column in any tableau

\bar{c}_{j}	
$A_{1 j}$	
\vdots	
$A_{m j}$	

such that $c_{j}<0$ and $A_{i j} \leq 0$ for all $i=1, \ldots, m$:

- $\bar{c}_{j}<0$: This is an improving direction.
- $A_{i j} \leq 0$ for all $i=1, \ldots, m$: This is an unbounded direction.
- In this case, we may stop and conclude that this linear program is unbounded.
- What is the unbounded condition for a minimization problem?

Multiple optimal solutions

- Consider another example (in standard form directly):

$$
\begin{aligned}
& \begin{array}{rrrrlll}
\max & x_{1} & +x_{2} \\
\text { s.t. } & x_{1} & +2 x_{2}+x_{3} & & & \\
& =12 \\
2 x_{1} & +x_{2} & & +x_{4} & & =12 \\
& x_{1} & +x_{2} & & & +x_{5} & =7
\end{array} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 \text {. }
\end{aligned}
$$

Multiple optimal solutions

- In two iterations, we find an optimal solution. What is it?

| -1 | -1 | 0 | 0 | 0 | 0 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |$l l$| 0 | $\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 0 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 2 | 1 | 0 | 0 | $x_{3}=12$ |
| 2 | 1 | 0 | 1 | 0 | $x_{4}=12$ |
| 1 | 1 | 0 | 0 | 1 | $x_{5}=7$ |$\quad \rightarrow$| 0 | $\frac{3}{2}$ | 1 | $-\frac{1}{2}$ | 0 | $x_{3}=6$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\frac{1}{2}$ | 0 | $\frac{1}{2}$ | 0 | $x_{1}=6$ |
| 0 | | | $\frac{1}{2}$ | 0 | $-\frac{1}{2}$ |
| 1 | 1 | $x_{5}=1$ | | | |

Multiple optimal solutions

- In practice, we will simply stop and report the optimal solution.
- Here to illustrate the power of the simplex method, let's focus on the optimal tableau:

0	0	0	0	1	7
0	0	1	1	-2	$x_{3}=3$
1	0	0	1	-2	$x_{1}=5$
0	1	0	-1	2	$x_{2}=2$

- What does a zero reduced cost $\left(\bar{c}_{4}=0\right)$ mean?
- If we increase this variable by 1 , the objective value will be decreased by zero.
- As the current solution is optimal, if there is a direction such that moving along it does not change the objective value, all points on that direction are optimal.

Multiple optimal solutions

- At an optimal solution $(5,2)$, by entering x_{4}, we move along $x_{1}+x_{2}=7$ and all points on this direction are optimal.

Detecting multiple optimal solutions

- At the optimal (not any!) tableau, if
- x_{j} 's reduced cost $\bar{c}_{j}=0$ and
- along the direction of entering x_{j}, we may move a positive distance,
then the linear program has multiple optimal solution.
- What does the second condition mean?
- Is "there is a constraint parallel to the isoprofit line" necessary, sufficient, both, or none?

Road map

- Interpretations of simplex tableau.
- Unboundedness and multiple optimal solutions.
- Degeneracy vs. efficiency.

Solving degenerate linear programs

- Recall that an LP is degenerate if multiple bases correspond to a single basic solution.
- For the simplex method, in each iteration we move to an adjacent basis.
- If the LP is degenerate, it is possible to move to another basis but still at the same basic feasible solution.
- Running an iteration may have no improvement!

\max	x_{1}
s.t.	$x_{1}+3 x_{2}$
	$2 x_{1} \leq 3$
	$+3 x_{2} \leq 6$
	$x_{i} \geq 0 \quad \forall i=1,2$.

Solving degenerate linear programs

- In three iterations, we may find an optimal solution:

\rightarrow| 0 | 0 | -3 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| 1 | 0 | $\boxed{3}$ | -1 | $x_{1}=3$ |
| 0 | 1 | -2 | 1 | $x_{2}=0$ |

$\rightarrow \quad$| 1 | 0 | 0 | 1 | 6 |
| :---: | :---: | :---: | :---: | :---: |
| $\frac{1}{3}$ | 0 | 1 | $-\frac{1}{3}$ | $x_{3}=1$ |
| $\frac{2}{3}$ | 1 | 0 | $\frac{1}{3}$ | $x_{2}=2$ |

- Note that in the second iteration, there is no improvement!
- The basis changes but the basic feasible solution does not change.

Computational efficiency of the simplex method

- In general, when we use the simplex method to solve a degenerate LP, there may be some iterations that have no improvements.
- We think we can have improvements (with a positive reduced cost for a minimization problem), but we hit a constraint before we move for any positive distance.
- For some (very strange) instances, the simplex method needs to travel through all the bases before it can make a conclusion.
- Therefore, the simplex method is, in the worst case, an exponential-time algorithm:

$$
O\left(\binom{n}{m} f(n, m)\right)
$$

where $f(n, m)$ is the time of completing one iteration.

Polynomial-time algorithms for LP

- There are polynomial-time algorithms for Linear Programming.
- Beyond the scope of this course.
- Interestingly, some of them are very complicated and run slower than the simplex method for most practical problems.
- With its simplicity and extendability, The simplex method is still the most widely adopted method for Linear Programming in practice.
- However, there is a big problem ...

Cycling

- At a basic feasible solution, the simplex method may enter an infinite loop! This is called cycling.
- Basis $1 \rightarrow$ basis $2 \rightarrow$ basis $3 \rightarrow \cdots \rightarrow$ basis 1 .
- This may happen when we use a "not so good" way of selecting entering and leaving variables.
- There are at least two ways to avoid cycling:
- Randomize the selection of variables.
- Apply the smallest index rule.
- By using the smallest index rule:
- When there are multiple variables having positive reduced cost for a minimization problem, select the one with the smallest index.
- When there are multiple variables whose ratio are all the smallest ratio, select the one with the smallest index.
- Smallest indexing: choose x_{i} rather than x_{j} if $i<j$.

The smallest index rule

- The smallest index rule may not generate the least iterations toward an optimal solution.
- Why don't we choose the variable with the reduced cost with the largest magnitude?
- No variable selection rule can guarantee to be the most efficient!
- The smallest index rule can guarantee no cycling!
- The "most significant reduced cost" rule, however, may result in cycling in some cases.

