IM2010: Operations Research The Two-Phase Implementation (Chapter 4)

Ling-Chieh Kung

Department of Information Management National Taiwan University

April 8, 2013

Feasibility of a linear program

▶ When a linear program

 $\begin{array}{ll} \min & cx\\ \text{s.t.} & Ax \leq b\\ & x \geq 0, \end{array}$

satisfies $b \ge 0$, finding a basic feasible solution for its standard form is trivial.

- We may form a feasible basis with all the slack variables.
- ► However, if there are some **equality** or **no-less-than** constraints, finding a feasible basis can be hard.

Feasibility of a linear program

▶ For example, given a linear program

and its standard form

it is nontrivial to find a feasible basis (if there is one).

Feasibility of a linear program

- ► As the simplex method requires an initial basic feasible solution to start from, we must have an efficient way to find one if there is at least one.
- ▶ To find an initial basic feasible solution, there are at least two ways to implement the simplex method:
 - ▶ The two-phase method.
 - ▶ The big-M method.
- ► Here we introduce the **two-phase implementation**.
 - The big-M method is conceptually identical.
 - ▶ However, the two-phase method is typically more efficient.

Road map

- ► The idea.
- ▶ Feasible examples.
- ▶ Infeasible examples.

The two-phase implementation

▶ Consider a linear program and its standard form

$$\begin{array}{lll} \min & cx & \min & cx \\ \text{s.t.} & A_1x \leq b_1 & & \text{s.t.} & A_1x + y = b_1 \\ & A_2x = b_2 & & A_2x = b_2 \\ & A_3x \geq b_3 & & & A_3x - z = b_3 \\ & x \geq 0 & & & x, y, z \geq 0, \end{array}$$

- y and z are slack variables.
- As we mentioned above, it is generally hard to find a basic feasible solution for the standard form.
- Let's construct a **Phase-I linear program** that has a **trivial** basic feasible solution.

Artificial variables

 For each equality or no-less-than constraint, we add a nonnegative <u>artificial variable</u>.

\min	cx	\min	cx
s.t.	$A_1 x \le b_1$	s.t.	$A_1x + y = b_1$
	$A_2 x = b_2$		$A_2x + a_2 = b_2$
	$A_3 x \ge b_3$		$A_3x - z + a_3 = b_3$
	$x \ge 0$		$x, y, z, a_2, a_3 \ge 0,$

- a_2 and a_3 are artificial variables.
- ▶ Unlike slack variables which have **physical meanings** (e.g., the gap between the two sides), artificial variables are added purely for checking feasibility.

Artificial variables

▶ For example, if the original linear program is

then two artificial variables x_5 and x_6 should be added:

A trivial basic feasible solution

- Why do we add artificial variables?
- Because we may find an identity matrix in the constraint matrix!
- ► For each constraint, we need a variable that has **coefficient 1** and appears **only** at this constraint.
 - ▶ For a no-greater-than constraint, the slack variable works.
 - ▶ For an equality or no-less-than constraint, the artificial variable works.
- Forming a basis by including these variables definitely results in a basic feasible solution.
- ▶ In the previous example, $B = \{x_3, x_5, x_6\}$ is a feasible basis.

Artificial variables are not real

- ▶ However, artificial variables are not real.
- ► The basic feasible solution with **positive** artificial variables does **not** correspond to a basic feasible solution to the original standard form linear program.
 - The basic feasible solution of $B = \{x_3, x_5, x_6\}$ is (0, 0, 10, 0, 6, 6).
 - ▶ If we remove the artificial variables, the corresponding solution is (0,0,10,0), which is infeasible to

Removing artificial variables

- ► So the question is: For the linear program with artificial variables, is there **any** basic feasible solution whose artificial variables are all zero?
 - ▶ If the answer is yes, the original program is **feasible**. Removing all artificial variables results in a basic feasible solution for the original standard form.
 - ▶ If no, the original program is **infeasible**.
- ▶ Interestingly, we may use the simplex method to answer this!
- ▶ All we need is to "design" a new objective function that drives the artificial variables to zero.

Phase-I linear programs

► In the Phase-I linear program, we will ignore the original objective function and minimize the sum of artificial variables instead.

- Once we use the simplex method to solve this Phase-I program:
 - If there is a basic feasible solution with $x_5 = x_6 = 0$, we will definitely find it.
 - ▶ If there is none, we will end up with an "optimal" solution which still have at least one positive artificial variable.
 - We may also maximize the negative sum of artificial variables.

The two-phase implementation

- ▶ Given a linear program, we first construct its Phase-I program:
 - ▶ Add artificial variables for equality and no-less-than constraints.
 - ▶ Minimize the sum of artificial variables.
- ▶ We then use the simplex method to solve the Phase-I program:
 - We start from the trivial basic feasible solution.
 - ▶ If we cannot remove all artificial variables, the original program is infeasible.
 - Otherwise, we obtain a feasible basis for the original program. We put the original objective function back and start <u>Phase II</u> to solve the original program.

Road map

- ▶ The idea.
- ► Feasible examples.
- ▶ Infeasible examples.

Operations Research, Spring 2013 – The Two-Phase Implementation — Feasible examples

Example 1: Phase-I program

Consider a linear program

▶ Its Phase-I linear program is

Example 1: preparing the initial tableau

▶ Let's try to solve the Phase-I program. First let's prepare the initial tableau:

0	0	0	1	0	0
2	1	-1	1	0	$\begin{aligned} x_4 &= 6\\ x_5 &= 6 \end{aligned}$
1	2	0	0	1	$x_5 = 6$

- ▶ Is this a valid tableau? No!
 - ▶ For all basic columns (in this case, columns 4 and 5), the 0th row should contain 0.
 - ► So we need to first **fix the 0th row** through elementary row operations.

Example 1: preparing the initial tableau

 Let's fix the 0th row by adding the negation of the 1st row into the 0th row.

0	0	0	1	0	0		-2	-1	1	0	0	-6
2	1	-1	1	0	$x_4 = 6$	\rightarrow	2	1	-1	1	0	$x_4 = 6$
1	2	0	0	1	$x_5 = 6$							$x_5 = 6$

- ▶ Now we have a valid initial tableau to start from!
- ▶ The current basic feasible solution is $x^0 = (0, 0, 0, 6, 6)$, which corresponds to an **infeasible** solution to the original program.
 - We know this because there are positive artificial variables.

Example 1: solving the Phase-I program

Solving the Phase-I program takes only one iteration:

-2	-1	1	0	0	-6		0	0	0	1	0
2	1	-1	1	0	$x_4 = 6$	\rightarrow	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 = 3$
1	2	0	0	1	$x_5 = 6$		0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_5 = 3$

- ▶ Whenever an artificial variable leaves the basis, we will not need to enter it again. Therefore, we can remove the corresponding column to save some time.
- ▶ Because we successfully remove all the artificial variable, the original program is feasible.
- The initial basis for the original program is $\{x_1, x_5\}$.

Example 1: solving the Phase-II program

- ▶ Now we may solve the Phase-II program (which is just the original program).
- ▶ First, let's put the original objective function back:

-1	-1	0	0	0
1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 = 3$
0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_{5} = 3$

- ▶ From the last tableau to this one, we only modify the 0th row. All other rows remain unchanged.
- ▶ Is this a valid tableau? No!
 - Column 1, which is basic, contains a nonzero number in the 0th row. It must be fixed to 0.
- ▶ Before we run iterations, let's fix the 0th row again.

Example 1: solving the Phase-II program

▶ Let's fix the 0th row and then run two iterations:

	-1	-1	0	0	0		0	-	$\frac{1}{2}$	$-\frac{1}{2}$	0	3	
					$x_1 = 3$ $x_5 = 3$	\rightarrow	1 0	$\frac{\frac{1}{2}}{\frac{3}{2}}$		$-\frac{1}{2}$ $\frac{1}{2}$	0 1	$x_1 = x_5 =$	$\frac{3}{3}$
	0	0 -	$\frac{1}{3}$	$\frac{1}{3}$	4		0	1	0	1	(6	
\rightarrow	1	0 -	$\frac{2}{3}$ -	$-\frac{1}{3}$	$x_1 = 2$	\rightarrow	1	2	0	1	x_1	= 6	
	0	$1 \frac{1}{3}$		$\frac{2}{3}$	$x_2 = 2$		0	3	1	2	$x_1 \\ x_3$	= 6	

• The optimal basic feasible solution is (6, 0, 6, 0).

Example 1: visualization

- x^0 is infeasible $(x_4 > 0)$.
- x¹ is the initial bfs (as a result of Phase I).
- x³ is the optimal bfs (as a result of Phase II).

Operations Research, Spring 2013 – The Two-Phase Implementation — Feasible examples

Example 2: Phase-I program

▶ Consider a linear program

and its Phase-I program

2 1 . . .

Example 2: solving the Phase-I program

▶ We first fix the 0th row and then run two iterations to remove all the artificial variables:

0 0	0	1	1	0		-3	-3	1	0	0	-12
				$\begin{aligned} x_4 &= 6\\ x_5 &= 6 \end{aligned}$	\rightarrow	2	1	-1	1	0	$x_4 = 6$ $x_5 = 6$
1 2	0	0	1	$x_5 = 0$							$x_5 = 6$ feasible

 \rightarrow

Example 2: solving the Phase-II program

• With the initial basis $\{x_1, x_2\}$, we then solve the Phase-II program in one iteration (do not forget to fix the 0th row):

-1

Example 2: visualization

- x^0 and x^1 are infeasible.
- x² is the initial bfs (as a result of Phase I).
- x³ is the optimal bfs (as a result of Phase II).

Road map

- ▶ The idea.
- ▶ Feasible examples.
- ► Infeasible examples.

Example: Phase-I program

▶ Consider the linear program

and its Phase-I program

Example: solving the Phase-I program

▶ After fixing the 0th row, we run two iterations...

 \rightarrow

Example: solving the Phase-I program

▶ The final tableau

-1	0	-1	0	2
2	1	1	0	$x_2 = 4$
-1				$x_4 = 2$

is optimal (for the Phase-I program).

- ▶ However, in the optimal solution (0, 4, 0, 2), the artificial variable x₄ is still in the basis (and positive).
- ▶ Therefore, we conclude that the original program is infeasible.

Example: visualization

▶ The feasible region of the original program is empty.

