IM2010: Operations Research The Two-Phase Implementation (Chapter 4)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

$$
\text { April 8, } 2013
$$

Feasibility of a linear program

- When a linear program

$$
\begin{aligned}
\min & c x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

satisfies $b \geq 0$, finding a basic feasible solution for its standard form is trivial.

- We may form a feasible basis with all the slack variables.
- However, if there are some equality or no-less-than constraints, finding a feasible basis can be hard.

Feasibility of a linear program

- For example, given a linear program

$$
\begin{array}{rrrrrrr}
\min & x_{1} \\
\text { s.t. } & x_{1} & +x_{2}-x_{3}+ & x_{4} & \geq 10 \\
& 3 x_{1} & +2 x_{2}+9 x_{3} & - & x_{4} & =10 \\
& x_{1}-8 x_{2}+2 x_{3} & - & 6 x_{4} & \leq & 10 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 4
\end{array}
$$

and its standard form

$$
\begin{array}{ccccccccc}
\min & x_{1} \\
\text { s.t. } & x_{1} & + & x_{2} & - & x_{3} & + & x_{4} & - \\
x_{5} & & =10 \\
& 3 x_{1} & +2 x_{2}+9 x_{3} & - & x_{4} & & & & =10 \\
& x_{1} & -8 x_{2}+2 x_{3} & - & 6 x_{4} & & +x_{6} & =10 \\
& x_{i} \geq 0 & \forall i=1, \ldots, 6,
\end{array}
$$

it is nontrivial to find a feasible basis (if there is one).

Feasibility of a linear program

- As the simplex method requires an initial basic feasible solution to start from, we must have an efficient way to find one if there is at least one.
- To find an initial basic feasible solution, there are at least two ways to implement the simplex method:
- The two-phase method.
- The big- M method.
- Here we introduce the two-phase implementation.
- The big- M method is conceptually identical.
- However, the two-phase method is typically more efficient.

Road map

- The idea.
- Feasible examples.
- Infeasible examples.

The two-phase implementation

- Consider a linear program and its standard form

$$
\begin{aligned}
\min & c x & \min & c x \\
\text { s.t. } & A_{1} x \leq b_{1} & \text { s.t. } & A_{1} x+y=b_{1} \\
& A_{2} x=b_{2} & & A_{2} x=b_{2} \\
& A_{3} x \geq b_{3} & & A_{3} x-z=b_{3} \\
& x \geq 0 & & x, y, z \geq 0,
\end{aligned}
$$

- y and z are slack variables.
- As we mentioned above, it is generally hard to find a basic feasible solution for the standard form.
- Let's construct a Phase-I linear program that has a trivial basic feasible solution.

Artificial variables

- For each equality or no-less-than constraint, we add a nonnegative artificial variable.

$$
\begin{aligned}
\min & c x & \min & c x \\
\text { s.t. } & A_{1} x \leq b_{1} & \text { s.t. } & A_{1} x+y=b_{1} \\
& A_{2} x=b_{2} & & A_{2} x+a_{2}=b_{2} \\
& A_{3} x \geq b_{3} & & A_{3} x-z+a_{3}=b_{3} \\
& x \geq 0 & & x, y, z, a_{2}, a_{3} \geq 0,
\end{aligned}
$$

- a_{2} and a_{3} are artificial variables.
- Unlike slack variables which have physical meanings (e.g., the gap between the two sides), artificial variables are added purely for checking feasibility.

Artificial variables

- For example, if the original linear program is

$$
\begin{array}{rlll}
\max & x_{1} & +x_{2} \\
\text { s.t. } & x_{1} & -x_{2} \leq 10 \\
& 2 x_{1} & +x_{2} \geq 6 \\
& x_{1} & +2 x_{2}=6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

then two artificial variables x_{5} and x_{6} should be added:

$$
\begin{aligned}
& \max x_{1}+x_{2} \\
& \text { s.t. } x_{1}-x_{2}+x_{3}=10 \\
& \begin{array}{rlrl}
2 x_{1} & +x_{2} & -x_{4}+x_{5} & \\
x_{1} & +2 x_{2} & & 6 \\
& +x_{6} & =6
\end{array} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 6 \text {. }
\end{aligned}
$$

A trivial basic feasible solution

- Why do we add artificial variables?
- Because we may find an identity matrix in the constraint matrix!
- For each constraint, we need a variable that has coefficient 1 and appears only at this constraint.
- For a no-greater-than constraint, the slack variable works.
- For an equality or no-less-than constraint, the artificial variable works.
- Forming a basis by including these variables definitely results in a basic feasible solution.
- In the previous example, $B=\left\{x_{3}, x_{5}, x_{6}\right\}$ is a feasible basis.

Artificial variables are not real

- However, artificial variables are not real.
- The basic feasible solution with positive artificial variables does not correspond to a basic feasible solution to the original standard form linear program.
- The basic feasible solution of $B=\left\{x_{3}, x_{5}, x_{6}\right\}$ is $(0,0,10,0,6,6)$.
- If we remove the artificial variables, the corresponding solution is $(0,0,10,0)$, which is infeasible to

$$
\begin{array}{rllllll}
\max & x_{1} & + & x_{2} & & & \\
\mathrm{s.t.} & x_{1} & -x_{2}+x_{3} & & =10 \\
& 2 x_{1} & +x_{2} & - & x_{4} & =6 \\
& x_{1} & +2 x_{2} & & & =6 \\
& x_{i} \geq 0 & \forall i=1, \ldots, 6 . & &
\end{array}
$$

Removing artificial variables

- So the question is: For the linear program with artificial variables, is there any basic feasible solution whose artificial variables are all zero?
- If the answer is yes, the original program is feasible. Removing all artificial variables results in a basic feasible solution for the original standard form.
- If no, the original program is infeasible.
- Interestingly, we may use the simplex method to answer this!
- All we need is to "design" a new objective function that drives the artificial variables to zero.

Phase-I linear programs

- In the Phase-I linear program, we will ignore the original objective function and minimize the sum of artificial variables instead.

- Once we use the simplex method to solve this Phase-I program:
- If there is a basic feasible solution with $x_{5}=x_{6}=0$, we will definitely find it.
- If there is none, we will end up with an "optimal" solution which still have at least one positive artificial variable.
- We may also maximize the negative sum of artificial variables.

The two-phase implementation

- Given a linear program, we first construct its Phase-I program:
- Add artificial variables for equality and no-less-than constraints.
- Minimize the sum of artificial variables.
- We then use the simplex method to solve the Phase-I program:
- We start from the trivial basic feasible solution.
- If we cannot remove all artificial variables, the original program is infeasible.
- Otherwise, we obtain a feasible basis for the original program. We put the original objective function back and start Phase II to solve the original program.

Road map

- The idea.
- Feasible examples.
- Infeasible examples.

Example 1: Phase-I program

- Consider a linear program

$$
\begin{array}{rr}
\max & x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \geq 6 \\
& x_{1}+2 x_{2} \leq 6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

- Its Phase-I linear program is

$$
\begin{array}{cccc}
\max & & & -x_{4} \\
\text { s.t. } & 2 x_{1}+x_{2}-x_{3}+x_{4} & & =6 \\
& x_{1}+2 x_{2} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 . & & \\
& & & \\
& &
\end{array}
$$

Example 1: preparing the initial tableau

- Let's try to solve the Phase-I program. First let's prepare the initial tableau:

0	0	0	1	0	0
2	1	-1	1	0	$x_{4}=6$
1	2	0	0	1	$x_{5}=6$

- Is this a valid tableau? No!
- For all basic columns (in this case, columns 4 and 5), the 0th row should contain 0 .
- So we need to first fix the 0th row through elementary row operations.

Example 1: preparing the initial tableau

- Let's fix the 0th row by adding the negation of the 1st row into the 0th row.

0	0	0	1	0	0
2	1	-1	1	0	$x_{4}=6$
1	2	0	0	1	$x_{5}=6$

$\rightarrow \quad$| -2 | -1 | 1 | 0 | 0 | -6 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | -1 | 1 | 0 | $x_{4}=6$ |
| 1 | 2 | 0 | 0 | 1 | $x_{5}=6$ |

- Now we have a valid initial tableau to start from!
- The current basic feasible solution is $x^{0}=(0,0,0,6,6)$, which corresponds to an infeasible solution to the original program.
- We know this because there are positive artificial variables.

Example 1: solving the Phase-I program

- Solving the Phase-I program takes only one iteration:

-2	-1	1	0	0	-6						
2	1	-1	1	0	$x_{4}=6$						
1	2	0	0	1	$x_{5}=6$	$\rightarrow \quad$	0	0	0	1	0
:---:	:---:	:---:	:---:	:---:	\quad	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_{1}=3$	
:---:	:---:	:---:	:---:	:---:							
0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_{5}=3$							

- Whenever an artificial variable leaves the basis, we will not need to enter it again. Therefore, we can remove the corresponding column to save some time.
- Because we successfully remove all the artificial variable, the original program is feasible.
- The initial basis for the original program is $\left\{x_{1}, x_{5}\right\}$.

Example 1: solving the Phase-II program

- Now we may solve the Phase-II program (which is just the original program).
- First, let's put the original objective function back:

-1	-1	0	0	0
1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_{1}=3$
0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_{5}=3$

- From the last tableau to this one, we only modify the 0th row. All other rows remain unchanged.
- Is this a valid tableau? No!
- Column 1, which is basic, contains a nonzero number in the 0th row. It must be fixed to 0 .
- Before we run iterations, let's fix the 0th row again.

Example 1: solving the Phase-II program

- Let's fix the 0th row and then run two iterations:

- The optimal basic feasible solution is $(6,0,6,0)$.

Example 1: visualization

- x^{0} is infeasible $\left(x_{4}>0\right)$.
- x^{1} is the initial bfs (as a result of Phase I).
- x^{3} is the optimal bfs (as a result of Phase II).

Example 2: Phase-I program

- Consider a linear program

$$
\begin{aligned}
\max & x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \geq 6 \\
& x_{1}+2 x_{2}=6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

and its Phase-I program

$$
\begin{array}{rrlrl}
\max & & & -x_{4}-x_{5} \\
\text { s.t. } & 2 x_{1} & +x_{2}-x_{3}+x_{4} & & =6 \\
& x_{1}+2 x_{2} & & & \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 .
\end{array}
$$

Example 2: solving the Phase-I program

- We first fix the 0th row and then run two iterations to remove all the artificial variables:

Example 2: solving the Phase-II program

- With the initial basis $\left\{x_{1}, x_{2}\right\}$, we then solve the Phase-II program in one iteration (do not forget to fix the 0th row):

$$
\left.\begin{array}{ccc|cc}
-1 & -1 & 0 & 0 \\
\hline 1 & 0 & -\frac{2}{3} & x_{1}=2 \\
0 & 1 & \frac{1}{3} & x_{2}=2
\end{array} \rightarrow \begin{array}{rrr|c}
0 & 0 & -\frac{1}{3} & 4 \\
\hline 1 & 0 & -\frac{2}{3} & x_{1}=2 \\
0 & 1 & \frac{1}{3} & x_{2}=2
\end{array}\right] \begin{gathered}
x^{2}=(2,2,0) \text { is not optimal }
\end{gathered}
$$

Example 2: visualization

- x^{0} and x^{1} are infeasible.
- x^{2} is the initial bfs (as a result of Phase I).
- x^{3} is the optimal bfs
(as a result of Phase II).

Road map

- The idea.
- Feasible examples.
- Infeasible examples.

Example: Phase-I program

- Consider the linear program

$$
\begin{aligned}
\max & x_{1} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 4 \\
& x_{1}+x_{2}=6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

and its Phase-I program

Example: solving the Phase-I program

- After fixing the 0th row, we run two iterations...

$$
\begin{aligned}
& \rightarrow \begin{array}{cccc|c}
1 & 1 & 0 & 0 & 6 \\
\hline \begin{array}{|cccc|c}
2 & 1 & 1 & 0 & x_{3}=4 \\
1 & 1 & 0 & 1 & x_{4}=6
\end{array}
\end{array} \\
& x^{0}=(0,0,4, \underline{6}) \text { is infeasible }
\end{aligned}
$$

Example: solving the Phase-I program

- The final tableau

-1	0	-1	0	2
2	1	1	0	$x_{2}=4$
-1	0	-1	1	$x_{4}=2$

is optimal (for the Phase-I program).

- However, in the optimal solution ($0,4,0,2$), the artificial variable x_{4} is still in the basis (and positive).
- Therefore, we conclude that the original program is infeasible.

Example: visualization

- The feasible region of the original program is empty.

