IM2010: Operations Research Integer Programming (Chapter 9)

Ling-Chieh Kung

Department of Information Management
National Taiwan University
April 11, 2013

Road map

- Integer programming formulation.
- Linear relaxation.
- Branch and bound.
- Branch and bound for knapsack.

Integer programming formulation

- In some cases, when variables should only take integer values, we apply integer programming.
- Moreover, we may introduce integer variables (mostly binary variables) to enrich our formulation and model more complicated situations.
- Here we will study some widely adopted integer programming formulation techniques.

The knapsack problem

- We start our illustration with the classic knapsack problem.
- There are four items to select:

Item	1	2	3	4
Value $(\$)$	16	22	12	8
Weight (kg)	5	7	4	3

- The knapsack capacity is 10 kg .
- We want to maximize the total value without exceeding the knapsack capacity.

The knapsack problem: basic formulation

- Let the decision variables be

$$
x_{i}= \begin{cases}1 & \text { if item } i \text { is selected } \\ 0 & \mathrm{o} / \mathrm{w}\end{cases}
$$

- The knapsack constraint:

$$
5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 10 .
$$

- The objective function:

$$
\max 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4} .
$$

- The complete formulation:

| \max | $16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4}$ |
| ---: | ---: | ---: |
| s.t. | $5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 10$ |
| | $x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4$. |

Some more requirements

- Integer programming allows us to implement some special selection rules.
- At least/most some items:
- Suppose we must select at least one item among items 2, 3, and 4:

$$
x_{2}+x_{3}+x_{4} \geq 1
$$

- Suppose we must select at most two items among items 1, 3, and 4:

$$
x_{1}+x_{3}+x_{4} \leq 2
$$

Some more requirements

- Or:
- Select item 2 or item 3:

$$
x_{2}+x_{3} \geq 1
$$

- Select item 2, otherwise, items 3 and 4 togehter:

$$
2 x_{2}+x_{3}+x_{4} \geq 2 .
$$

- If-else:
- If item 2 is not selected, do not select item 3:

$$
x_{2} \geq x_{3} .
$$

- If item 1 is selected, do not select items 3 and 4:

$$
2\left(1-x_{1}\right) \geq x_{3}+x_{4} .
$$

Fixed-charge constraints

- Consider the following example:
- n factories, 1 market, 1 product.
- Capacity of factory $i: K_{i}$.
- Unit production cost at factory $i: C_{i}$.
- Setup cost at factory $i: S_{i}$.
- Demand: D.
- We want to satisfy the demand with the minimum cost.
- One needs to pay the setup cost as
 long as any positive amount of products is produced.

Basic formulation

- Let the decision variables be
$x_{i}=$ production quantity at factory $i, i=1, \ldots, n$,
$y_{i}= \begin{cases}1 & \text { if some products are produced at factory } i, i=1, \ldots, n . \\ 0 & \text { o/w. }\end{cases}$
- Objective function:

$$
\min \sum_{i=1}^{n} C_{i} x_{i}+\sum_{i=1}^{n} S_{i} y_{i}
$$

- Capacity limitation:

$$
x_{i} \leq K_{i} \quad \forall i=1, \ldots, n .
$$

- Demand fulfillment:

$$
\sum_{i=1}^{n} x_{i} \geq D
$$

Setup costs

- How may we know whether we need to pay the setup cost at factory i ?
- If $x_{i}>0, y_{i}$ must be 1 ; if $x_{i}=0, y_{i}$ should be 0 .
- So the relationship between x_{i} and y_{i} should be:

$$
x_{i} \leq K_{i} y_{i} \quad \forall i=1, \ldots, n
$$

- If $x_{i}>0, y_{i}$ cannot be 0 .
- If $x_{i}=0, y_{i}$ can be 0 or 1 . Why y_{i} will always be 0 when $x_{i}=0$?
- Finally, binary and nonnegative constraints:

$$
x_{i} \geq 0, y_{i} \in\{0,1\} \quad \forall i=1, \ldots, n
$$

Fixed-charge constraints

- The setup cost constraint $x_{i} \leq K_{i} y_{i}$ is known as a fixed-charge constraint.
- In general, a fixed-charge constraint is

$$
x \leq M y .
$$

- Both x and y are decision variables.
- $y \in\{0,1\}$ is determined by x.
- M is a large enough constant.
- When x is binary, $x \leq y$ is sufficient.
- We need to make M an upper bound of x.
- For example, K_{i} is an upper bound of x_{i} in the factory example. Why?
- What if there is no capacity limitation?

At least/most some constraints

- Using a similar technique, we may flexibly select constraints.
- Suppose satisfying one of the two constraints

$$
g_{1}(x) \leq b_{1} \quad \text { and } \quad g_{2}(x) \leq b_{2}
$$

is enough. How to formulate this situation?

- Let's define a binary variable

$$
z= \begin{cases}0 & \text { if } g_{1}(x) \leq b_{1} \text { is satisfied } \\ 1 & \text { if } g_{2}(x) \leq b_{2} \text { is satisfied }\end{cases}
$$

- With M_{i} being an upper bound of each LHS, the following two constraints are what we need!

$$
\begin{aligned}
& g_{1}(x)-b_{1} \leq M_{1} z \\
& g_{2}(x)-b_{2} \leq M_{2}(1-z)
\end{aligned}
$$

At least/most some constraints

- Suppose at least two of the three constraints

$$
g_{i}(x) \leq b_{i}, \quad i=1,2,3,
$$

must be satisfied. How to play the same trick?

- Let

$$
z_{i}= \begin{cases}1 & \text { if } g_{i}(x) \leq b_{i} \text { must be satisfied } \\ 0 & \text { if } g_{i}(x) \leq b_{i} \text { may not be satisfied }\end{cases}
$$

- With M_{i} being an upper bound of each LHS, the following constraints are what we need:

$$
\begin{aligned}
& g_{i}(x)-b_{i} \leq M_{i}\left(1-z_{i}\right) \quad \forall i=1, \ldots, 3 . \\
& z_{1}+z_{2}+z_{3} \geq 2
\end{aligned}
$$

If-else constraints

- In some cases, if $g_{1}(x)>b_{1}$ is satisfied, then $g_{2}(x) \leq b_{2}$ must also be satisfied.
- How to model this situation?
- First, note that "if A then $B " \Leftrightarrow(\operatorname{not} A)$ or B ".
- So what we really want to do is $g_{1}(x) \leq b_{1}$ or $g_{2}(x) \leq b_{2}$.
- So simply select at least one of $g_{1}(x) \leq b_{1}$ and $g_{2}(x) \leq b_{2}$!

Road map

- Integer programming formulation.
- Linear relaxation.
- Branch and bound.
- Branch and bound for knapsack.

Solving an integer program

- Suppose we are given an integer program, how may we solve it?
- The simplex method certainly does not work!
- The feasible region is not "a" region.
- It is not convex. In fact, it is discrete.
- There is no way to "move along edges".
- But all we know is how to solve linear programs by the simplex method. How about solving a linear relaxation first?

Definition 1

For a given integer program, its linear relaxation is the resulting linear program after removing all the integer constraints.

Linear relaxation

- What is the linear relaxation of

$$
\begin{array}{rrr}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{1}+3 x_{2} \leq 10 \\
& 2 x_{1}-x_{2} \geq 5 \\
& x_{i} \in \mathbb{Z}_{+} \forall i=1,2 ?
\end{array}
$$

- \mathbb{Z} is the set of all integers. \mathbb{Z}_{+}is the set of all nonnegative integers.
- The linear relaxation is

$$
\begin{aligned}
\max & x_{1}+x_{2} \\
\text { s.t. } & x_{1}+3 x_{2}
\end{aligned} \leq 10
$$

Linear relaxation

- For the knapsack problem

$$
\begin{aligned}
\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 10 \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4,
\end{aligned}
$$

the linear relaxation is

$$
\begin{aligned}
\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 10 \\
& x_{i} \in[0,1] \quad \forall i=1, \ldots, 4,
\end{aligned}
$$

- $x_{i} \in[0,1]$ is equivalent to $x_{i} \geq 0$ and $x_{i} \leq 1$.

Linear relaxation provides a bound

- What kind of relationship do we have between an integer program and its linear relaxation?
- For a minimization integer program, the linear relaxation provides a lower bound.

Proposition 1

Let z^{*} and z^{\prime} be the objective values associated to the optimal solutions of a minimization integer program and its linear relaxation, respectively, then $z^{\prime} \leq z^{*}$.

Proof. The linear relaxation has the same objective function as the integer program does. However, its feasible region is at least weakly larger than that of the integer program.

- For a maximization integer program, the linear relaxation provides an upper bound.

Linear relaxation may be optimal

- If we are lucky, the optimal solution to the linear relaxation may be feasible to the original integer program.
- When this happens, what does that imply?

Proposition 2

Let x^{\prime} be the optimal solutions to the linear relaxation of an integer program. If x^{\prime} is feasible to the integer program, it is optimal to the integer program.

Proof. Suppose x^{\prime} is not optimal to the IP, there must be another feasible solution $x^{\prime \prime}$ that is better. However, as $x^{\prime \prime}$ is feasible to the IP, it is also feasible to the linear relaxation, which implies that x^{\prime} cannot be optimal to the linear relaxation.

Linear relaxation

- In general, for any given mathematical program:
- When we relax some constraints, a resulting optimal solution provides a bound to the original program.
- If an optimal solution to the relaxed program is feasible to the original program, it is optimal to the original program.
- Therefore, one attempt of solving an integer program is to first solve its linear relaxation.
- If we are lucky and get a solution feasible to the integer program, we can stop and report it!
- What if the solution is not feasible to the integer program?
- An optimal solution to the linear relaxation still provides some suggestions to our decision making.
- If we really need an optimal solution to the integer program, how?

Rounding a fractional solution

- Suppose we solve a linear relaxation with an optimal solution x^{\prime}.
- x^{\prime}, however, has at least one variable violating the integer constraint in the original integer program.
- As we cannot find the true optimal solution x^{*} to the original integer program, we may choose to round the variable.
- How do we know whether to round up or down?
- Is the resulting solution always feasible?
- Intuitively, the resulting solution should be close to x^{*}. Is it true?

Rounding a fractional solution

- Consider the following integer program

- The optimal solution is $x^{*}=(5,0)$.
- The optimal solution to the linear relaxation is $x^{1}=\left(\frac{15}{4}, \frac{9}{4}\right)$.

Rounding a fractional solution

- For $x^{1}=\left(\frac{15}{4}, \frac{9}{4}\right)$:
- Rounding up any variable results in infeasible solutions.
- None of the four grip points around x^{\prime} is optimal.
- We need a way that guarantees to find an optimal solution.
- The method we will introduce is the branch-and-bound algorithm.

Road map

- Integer programming formulation.
- Linear relaxation.
- Branch and bound.
- Branch and bound for knapsack.

Rounding a fractional solution

- Recall that we obtain $x^{1}=\left(\frac{15}{4}, \frac{9}{4}\right)$. as the result of solving the linear relaxation.
- We hate fractional values!
- How may we remove fractional values?
- Consider x_{1}, for example.
- Rounding up or down x_{1} (i.e., adding $x_{1}=4$ or $x_{1}=3$ into the program) both fail to find the optimal solution.
- Because we eliminate too large a search space!
- Instead of adding equalities, we should add inequalities.
- What will happen if we add $x_{1} \geq 4$ or $x_{1} \leq 3$ into the program?
- We will branch this problem into two problems, one with an additional constraint.

Rounding a fractional solution

- The optimal solution to the integer program must be contained in one of the above two feasible regions. Why?

Rounding a fractional solution

- So when we solve the linear relaxation and find any variable fractional, we will branch this problem into two problems, one with an additional constraint.
- Note that the two new programs are still linear programs.
- Once we solved them:
- If each of them results in a feasible solution to the original integer program, simply compare these two and choose the better one.
- If any of them results in a variable violating the integer constraint, branch again on that variable.
- Eventually compare all the feasible solutions we obtain.

Example

- Let's illustrate the branch-and-bound algorithm with the following example:
$\begin{array}{cc}\left(P_{0}\right) \quad \text { s.t. } \quad 4 x_{1} \quad+\quad 2 x_{2} \leq 11 \\ & x_{i} \in \mathbb{Z}_{+} \quad \forall i=1,2 .\end{array}$

Subproblem 1

- First we solve the linear relaxation:

	\max	$3 x_{1}+x_{2}$
$\left(P_{1}\right) \quad$	+11	
	s.t.	$4 x_{1} \quad+\quad 2 x_{2} \leq 11$
		$x_{i} \geq 0 \quad \forall i=1,2$.

- The optimal solution is $x^{1}=\left(\frac{11}{4}, 0\right)$.
- So we need to branch on x_{1}.

Branching tree

- The branch and bound algorithm produces a branching tree.
- Each node represents a subproblem.
- Each time we branch on a variable, we create two child nodes.

Subproblem 2

- When we add $x_{1} \leq 2$:

- The optimal solution $x^{2}=\left(2, \frac{3}{2}\right)$, so later we may need to branch on x_{2}.
- Before that, let's solve subproblem 3.

Subproblem 3

- When we add $x_{1} \geq 3$:

$$
\begin{aligned}
\max & 3 x_{1}+x_{2} \\
\text { s.t. } & 4 x_{1}+2 x_{2} \leq 11 \\
& x_{1} \geq 3 \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{aligned}
$$

- The problem is infeasible!
- This node is "dead" and does not produce any candidate solution.

Branching tree

- The current progress can be summarized in the branching tree.

- Note that $z_{2}=7.5<8.25=z_{1}$.
- In general, when we branch to the next level, the objective value associated with the optimal solution will always be weakly lower (for a maximization problem).
- Why?

Branching tree

- As $x_{2}=\frac{3}{2}$ in x^{2}, we will branch subproblem 2 on x_{2}.

Subproblem 4

- When we add $x_{2} \leq 1$:

- Note that we add $x_{2} \leq 1$ into subproblem 2 , so $x_{1} \leq 2$ is still there.

Subproblem 5

- When we add $x_{2} \geq 2$:

Branching tree

- x^{4} satisfies all the integer constraints.
- It is a candidate solution to the original integer program.
- But branching subproblem 5 may result in a better solution.

Branching tree

- Let's branch subproblem 5 on x_{1}.

Subproblem 6

- When we add $x_{1} \leq 1$:
(P_{6})

$$
\begin{array}{rccc}
\max & 3 x_{1} & + & x_{2} \\
\text { s.t. } & 4 x_{1} & +2 x_{2} & \leq \\
& x_{1} & & \\
& & x_{2} \geq 2 \\
& & \leq 2 \\
& x_{1} & \leq \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{array}
$$

- $x^{6}=\left(1, \frac{7}{2}\right)$. We may need to branch on x_{2} again. However, let's solve subproblem 7 first.

Subproblem 7

- When we add $x_{1} \geq 2$:

- The problem is infeasible.
- The node is "dead".

Branching tree

- The only "alive" node is
subproblem 6, with x_{2} fractional.
- Before we branch subproblem 6, consider the following:

Bounding

- The current objective value of note 6 is $z_{6}=\frac{13}{2}$.
- If we branch subproblem 6, all the candidate solution generated under it will have objective values weakly lower than $\frac{13}{2}$.
- However, $\frac{13}{2}<7=z_{4}$, and x_{4} is already a candidate solution!
- So there is no need to branch subproblem 6. This is the "bounding" situation in the branch-and-bound algorithm.
- This allows us to solve fewer subproblems.

Summary

- In running the branch-and-bound algorithm, we maintain a branching tree.
- If the solution of a subproblem is feasible to the original integer program, set it to the candidate solution if it is currently the best among all feasible solutions. Stop branching this node.
- If a subproblem is infeasible, stop branching this node.
- If the solution of a subproblem is not feasible to the original integer program:
- If it is better than the current candidate solution, branch.
- Otherwise, stop branching.

Another example

- Now let's go back to our motivating example:
$\left(Q_{0}\right)$

$$
\begin{array}{rrr}
\max & 8 x_{1}+5 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 6 \\
& 9 x_{1}+5 x_{2} \leq 45 \\
& x_{i} \in \mathbb{Z}_{+} \quad \forall i=1,2 .
\end{array}
$$

- Let's solve it with the branch-and-bound algorithm.

Subproblem 1

- $x^{1}=\left(\frac{15}{4}, \frac{9}{4}\right)$.
- We may branch on either variable. Let's branch on x_{1}.

Subproblems 2 and 3

- Subproblem 2 generates a candidate solution.
- $x^{3}=\left(4, \frac{9}{5}\right)$. As $z_{3}=41>z_{2}=39$, we should branch subproblem 3 .

Subproblems 4 and 5

- $x^{4}=\left(\frac{40}{9}, 1\right)$. As $z_{4}=40.25>z_{2}=39$, we should branch subproblem 4.
- Subproblem 5 is infeasible.

Subproblems 6 and 7

- $x^{6}=(4,1)$ but $z_{6}=37<39=z_{2}$.
- $x^{7}=(5,0)$ and $z_{7}=40>39=z_{2}$. As it is also the last node, x^{7} is an optimal solution.

Remarks

- To select a node to branch:
- Among all alive nodes, there are many different ways of selecting a node to branch.
- One common approach is to branch the node with the highest objective value (for a maximization problem). Why?
- Another popular approach is "once a node is branched, all its descendants are branched before any nondescendant. Why?
- The branch-and-bound algorithm guarantees to find an optimal solution, if one exists.
- However, it is an exponential-time algorithm.

Road map

- Integer programming formulation.
- Linear relaxation.
- Branch and bound.
- Branch and bound for knapsack.

Branch and bound for knapsack

- The branch-and-bound algorithm is particularly useful for solving the knapsack problem.
- Because the linear relaxation of a knapsack problem can be solved very easily.
- Consider the example

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6 \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

How to solve its linear relaxation?

Branch and bound for knapsack

- The linear relaxation

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6 \\
& x_{i} \in[0,1] \quad \forall i=1, \ldots, 4
\end{aligned}
$$

can be solved greedily by sorting the variables according to the benefit-cost ratio.

- The four ratios are $\frac{5}{3} \approx 1.67, \frac{8}{5}=1.6, \frac{3}{2}=1.5$, and $\frac{7}{4}=1.75$.
- x_{4} has the highest priority then x_{1}, then x_{2}, then x_{3}.
- First set $x_{4}=1$. Then set $x_{1}=\frac{2}{3}$ (because setting $x_{1}=1$ violates the constraint). Then $x_{2}=x_{3}=0$.
- Let's now use the branch-and-bound algorithm to solve this knapsack problem. For each node, we can use the above rule (instead of the simplex method) to find an optimal solution.

Solving the knapsack problem

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6, \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

- We branch subproblem 1 on x_{1} :
- Note that $x_{1} \leq 0$ is equivalent to $x_{1}=0$ for this binary variable.

Solving the knapsack problem

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6, \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

- We branch subproblem 3 first (why?)

Solving the knapsack problem

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6, \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

- We branch subproblem 2 before we branch subproblem 4 (why?).
- Then, luckily, we will not need to branch subproblem 4.

Solving the knapsack problem

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6, \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

- We do not need to branch subproblem 7.
- An optimal solution is found.

