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Road map

» Primal-dual pairs.

» Properties of dual programs.

» Shadow prices.
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Upper bounds of a maximization LP

» Consider the following LP

z*=max 4r; + bry + 8x3
st. x1 + 2z + 3z3

2r1 + To + 2x3

x1 >0, 9 >0, 3 > 0.

[AIA
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» Is there any way to find an upper bound of z* without solving
this LP?
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Upper bounds of a maximization LP

» How about this: Multiplying the first constraint by 2, multiply
the second constraint by 1, and then add them together.

» This creates a redundant constraint

2(z1 + 229 + 3x3) + (221 + w2 + 223) <2 x 6+ 4
= 4x1 + dxg + 8x3 < 16.

» If we add this constraint into the LP:

z*=max 4r;1 + 5Hxrs + 8x3

st. 1 4+ 229 + 3xz3 < 6
201 + o 4+ 223 < 4
4r1 + Ddxo + 8xz3 < 16

120, 22 >0, 3 >0.

» So an upper bound of z* is 16.
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Upper bounds of a maximization LP
» How to find an upper bound of z* for the following LP?

z*=max 3r;1 + 4x9 + 8x3
st. x1 4+ 2z + 3z3 <
2r1 + To + 223 < 4
1’120,33220,:6320.

(=}

» Let’s play the same trick. We will see 16 is also an upper bound:

2x6+4=16
> 2(x1 + 2x2 + 323) + (221 + 22 + 223)
= 4x1 + 5xo + 8x3
> 3x1 + 4xo + 8x3. (because 1 > 0, z9 > 0)

» How to find a lower upper bound?
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Better upper bounds?

2" =max 3x1 + 4x2 + 8x3
s.t. 1 + 2x2 + 3x3

2r1 + ®m2 + 2z3

1 >0, z2 >0, 3 > 0.

IAINA
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» Suppose we are going to linearly combine the two constraints
with coefficients y; and o, respectively.

» Suppose y; > 0 and y2 > 0 (why do we need this?). If
3<wy1+2ys, 4<2y;+yz and8 <3y + 2y,

then we have
3x1 + 4xo + 83 < 6y1 + 4y2,

which means 6y; + 4y2 is an upper bound of z*.
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Looking for the lowest upper bound

v

To look for the lowest upper bound, we solve another LP!

min 6y; + 4yo

st. y1 + 2y > 3
21 + oy > 4
3y1 + 2y2 > 8

y1 20, y2 > 0.

v

We call the original LP the primal LP.

We define this LP, which generates the lowest upper bound of
the primal LP, as its dual LP.

\4

v

This idea applies to any LP. Let’s see more examples.
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Nonpositive or free variables

» Suppose variables are not all nonnegative:

Z¥=max 3x7 + 4xzo + 8z3
st. x1 4+ 220 + 3z3
201 + 1z + 23

1 >0, z9 <0, x3 urs.

IAIN
W

» With y; > 0 and y2 > 0 as the coefficients, if we want

3x1 + 4xo + 8xg < yl(l‘l + 2x9 + 3$3) + y2(2x1 + 20 + 2333)
= (1 +2y2)z1 + (2y1 + y2)z2 + (3y1 + 242),

what are the new conditions we need?
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Nonpositive or free variables
» To have

3r1 + dre + 8x3
< (y1+2y2)r1 + 2y +y2)ze +  (Byr + 2y2)xs,

now we need

y1 + 2y > 3 because 1 > 0,
21 + ys < 4 because r9 < 0, and
3y1. + 2y = 8 because x3 is free.
» So the dual LP is
min 6y; + 4y
s.t. Y1 + 2y > 3
21 + y2 < A4
3y1 + 2y2 = 8
y1 >0, y2 > 0.
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No-less-than and equality constraints

» Suppose constraints are not all no-greater-than:

z*=max 3xr; + 4x9 + 8x3
st. x1 + 229 + 3x3 >
2r1 + To + 223 =
x1 >0, x9 <0, x3 urs.

6
4

» As we need an upper bound of z*, we need to combine the two
constraints so that the RHS is no less than the LHS. How to
choose the sign of y; and ys to do that?

» That is, how to get this no-greater-than inequality

y1(z1 4 229 + 323) + Y2 (221 + 22 + 223) < 6y; + 4yo?
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No-less-than and equality constraints

» To obtain
y1(x1 + 2x9 + 3x3) + y2 (221 + x2 + 223) < 6y1 + 4y2,

we only need y; < 0. y2 can be of any sign (i.e., free).
» We still need

3<yi+2y2, 4>2y;+y2, and8=3y;+ 2y
to obtain

3x1 4+ 4x2 4+ 8x3 < 1 (w1 + 229 + 3%3) + y2(2:C1 + 9 + 21‘3)
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No-less-than and equality constraints

z"=max 3z1 + 4dx2 + 8z3
s.t. 1 + 2x2 + 3x3

2¢1 + w2 +  2x3

z1 >0, z2 <0, x3 urs.

v
o

» As a summary, an upper bound is obtained as follows:

6y1 + 4y2 > y1(z1 + 222 + 3x3) + y2(221 + x2 + 223)
= (y1 + 2y2)w1 + (2y1 + y2)z2 + (3y1 + 242)
> 3x1 + 4x2 + 8z,

where the first inequality requires
y1 < 0,y2 free.
and the second inequality requires

3<y1+2y2, 422y +y2, and 8=3y; + 2ys.
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No-less-than and equality constraints

» So for the primal LP

z*=max 3r; + 4xs + 8x3
st. a1 + 2z + 3x3 >
2r1 + To + 2x3 =
x1 >0, 29 <0, x3 urs.,

6
4

the dual LP is

min 6y; + 4y2
st. y1 4+ 2y2 > 3
21 + y2 < 4
3y1 + 2y = 8

)

y1 <0, y2 =



Operations Research, Spring 2013 — Duality

LDuality theorems

The general rule

» In general, if the primal LP is

max C121
s.t. Allvxl
Ao
Asz1x1
€1

its dual LP is
min b1y1
s.t. A
A2y
A1z
n

v

o+

o+ 4+

Cox2 + C3X3
Apzy +  Ajzxs
Agoxy +  Agzxs
Agoxy +  Aszzxs
r9 < 0, x3 urs.,

baya +  bsys
Asiys + Asziys
Axys + Azys
Axzys +  Aszys

y2 > 0, y3 urs.

A IV

I IA TV

bo
b3

e}
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The dual LP for a minimization primal LP

» For a minimization primal LP, its dual LP is to find the
greatest lower bound.

» Suppose the primal LP is

min 3xr; + 4xe2 + 8xj

st. x1 4+ 220 + 3z3 > 6
201 + xo 4+ 2z3 < 4
1 >0, z9 <0, x3 urs.

What conditions do we need to obtain the following lower bound?

6y1 + 4y2 < 1 (.731 + 2z + 3.733) + y2(2x1 + 9 + 21’3)
= (y1 + 2y2)z1 + (2y1 + y2)22 + (Y1 + 292)
< 3x1 + 4o + 83,
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The dual LP for a minimization primal LP

» For the primal LP

min 3z; + 4x2 + 8x3

st. x1 + 220 + 3x3 > 6
2r1 + To + 2x3 < 4
x1 >0, 29 <0, x3 urs.,
the dual LP is
max 6y; + 4y
st. oy + 2y < 3
2+ oy > 4
3y1 + 2y2 = 8

y1 >0, yo <

)
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The general rule
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» The general rule for finding the dual LP is summarized below:

Obj. function ‘ max ‘ min ‘ Obj. function

Constraint

IV IA

Variable

Variable

IN IV
VALY,

Constraint

» If the primal LP is a maximization problem, do it from left to right.
» If the primal LP is a minimization problem, do it from right to left.
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Examples of primal-dual pairs

» Example 1:
min 2r; —+
s.t. 41‘1 +

T
2%1 —

3$2
€2

IV IV A

T2

r1 <0, zo urs.

» Example 2:
max 3
s.t. T
33’]1

_ Zo
+  2z9
+ 3$2

o & ©

<

xp urs., xo > 0.

-

6
—4

max 9y

s.t.

=

4y
al

+ 6y2 + 8ys
+ oy + 2y
Y3

v

y1 <0, y2 >0, y3 >0.

min
s.t.

6yr — 4y
Y1 + 3y = 3
201+ 3y = -1

Y1 urs., yo > 0.
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Uniqueness and dual of dual

» Is the dual LP unique?

Proposition 1

For any LP, there is a unique dual LP.

» What is the dual of a dual LP?

Proposition 2

For any LP, the dual LP of its dual LP is itself.
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Road map

» Primal-dual pairs.
» Duality theorems.

» Shadow prices.
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Duality theorems

» Duality provides many interesting properties.

» We will illustrate these properties with the normal max and
normal min pair:

max cx min yb
st. Az <b & st. yA>c (1)
x>0 y>0

» AcR™*" bhe R™1 and c € RYX7,
» £ € R™*! and y € RY*™,

» It can be shown that all the properties we introduce apply to
general primal-dual pairs.
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Weak duality

» We first show that the dual LP indeed provides an upper bound
of the primal LP.

Proposition 3 (Weak duality)

For the LPs defined in (1), if x and y are primal and dual
feasible, then cx < yb.

Proof. Since £ > 0 and yA > ¢, we have yAx > cx. Similarly,
y > 0 and Ax < b imply yAz < yb. Combining yAx > cx and
yAx < yb proves the theorem. O



Operations Research, Spring 2013 — Duality 23 /44
LDuality theorems

The dual optimal solution

» If we have solved the primal LP, may we find the dual optimal
solution?

Proposition 4 (Dual optimal solution)

For the LPs defined in (1), if T is primal optimal with basis B,
then § = CBAél s dual optimal.

» This proposition tells us that, once we solve one of the two LPs,
the other one can be solved immediately.

» To prove this proposition, we need two lemmas.



Operations Research, Spring 2013 — Duality 24 /44
LDuality theorems

The dual optimal solution

Lemma 1

If & and y are primal and dual feasible and cx = yb, then T and
y are primal and dual optimal.

Proof. For all dual feasible y, we have ¢z < yb by weak duality.
But we are given that cx = yb, so we have b < yb for all dual
feasible y. This just tells us that 7 is dual optimal. For T it is
the same. O
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The dual optimal solution

Lemma 2

If B is the primal optimal basis,, then cBAE;1 1s the reduced cost
of primal slacks.

Proof. The reduced cost for nonbasic variables is ¢ = cBAglA N —CN.
Let’s extend this definition also to basic variables and say that a basic
variable has 0 = cBAglAB — cp as its reduced cost. With this, we
can define

c=c BA;A —c

as the reduced cost for all variables. For the ith primal slack z,;, we
know c¢,4+; = 0 and A, +; = e;, where e; is a column vector whose ith
element is 1 and all others are 0. Therefore,

~ -1 -1 T p—1
Cn+i = CBAB A, — Cp+i = CBAB €; — 0= (CBAB )z

As this applies to all 4, the statement follows. O
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The dual optimal solution

» Now we are ready for the theorem for dual optimal solutions:

For the LPs defined in (1), if T is primal optimal with
basis B, then § = CBAgl 1s dual optimal.

» First we show that g is dual feasible:

» As B is the primal optimal basis, cBAglAN —¢n > 0 (otherwise B
is not optimal) and thus cBAglAN >cn. As cBAglAB =cpg, we
have

CBABI [AB AN] Z [CB CN] or CBAélA Z C,

which is exactly yA > c.

» By Lemma 2, we know g is the reduced cost for primal slacks. As B
is primal optimal, we know the reduced cost for all variables must
be nonnegative, which means y > 0.

» Since g is dual feasible and yb = cBAglb = cgpxp = T, we know
7y is dual optimal by Lemma 1. [
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Strong duality

» The fact that y = CBAEI is dual optimal implies strong duality:

Proposition 5 (Strong duality)

T and y are primal and dual optimal if and only if T and § are
primal and dual feasible and 'z = g'b.

Proof. To prove this if-and-only-if statement:

» («): By Lemma 1.

> (=): As g is dual optimal, gb = cBAg,lb = cgpxp = cZ. Note that
even if there are multiple optimal solutions to the dual LP, § can
only result in the same objective value as cBAgl does because
CBAJ?;1 is also dual optimal. O
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Implications of strong duality

» Strong duality is stronger than weak duality.

» Weak duality says that the dual LP provides a bound.
» Strong duality says the bound is tight, i.e., cannot be improved.

» Given the result of one LP, we may predict the result of its dual:

Dual
Primal
Infeasible Unbounded Finitely optimal
Infeasible Vv Vv
Unbounded V4 X X
Finitely optimal X X V4

/ means possible, X means impossible.

Primal unbounded =- no upper bound = dual infeasible.

Primal finitely optimal = finite objective = dual finitely optimal.
If primal is infeasible, the dual may still be infeasible.

vV vy VvYyy
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Road map

» Primal-dual pairs.
» Duality theorems.

» Shadow prices.
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A resource allocation problem

» Suppose we produce tables and chairs with wood and labors. In
total we have six units of wood and six labor hours.

» Each table, which can be sold at $3, requires two units of wood and
one labor hour.

» Each chair, which can be sold at $1, requires one unit of wood and
two labor hours.

How may we formulate an LP to maximize our sales revenue?

» The decision variables are

21 = number of tables produced

r9 = number of chairs produced.
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A resource allocation problem

AT2 .
» The LP:
max 3zr; + T9
st. 21 + a9 < 6
1 + 22 < 6
;>0 Vi=1,2.

» The optimal solution is
x* = (3,0).
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“What-if” questions

» In practice, people often ask “what-if’ questions:

» What if the unit price of chairs becomes $27
» What if each table requires three unit of wood?
» What if we have ten units of woord?

» Why what-if questions?
» Parameters may fluctuate.

» Estimation of parameters may be inaccurate.
» Looking for ways to improve the business.

» For realistic problems, what-if questions can be hard.

» Even though it may be just a tiny modification of one parameter, it
is hard to imagine how the optimal solution will be affected.

» The tool for answering what-if questions is
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“What-if” questions

» In general, what-if questions can always be answered by
formulating and solving a new optimization problem.
» But this may be too time consuming!
» We will see that duality helps.
» Here we want to introduce only one type of what-if question:
What if I have additional units of a certain resource?
» Consider the following scenario:

» One day, a salesperson enters your office and wants to offer you one
additional unit of wood at $1. Should you accept or reject?
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One more unit of wood

» To answer this question, you
may formulate a new LP:

max 3xr1 + X9

st. 21 4+ x99 < 7
Ty + 229 < 6
z; >0 Vi=1,2.

» As the new objective value
2z =3 x3.5=10.5 is larger
than the old objective value
z* =9 by 1.5, it is good to
accept the offer.

» We earn $0.5 as our net benefit.

34 /44
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One more labor hour

» Suppose instead of offering one
addition unit of wood, the
salesperson offers one additional
labor hour at 1.

max 3r;1 + X9

st. 2x1 + 22 < 6
1 + 229 <7
z; >0 Vi=1,2.

» It is not worthwhile to buy it:
The objective value does not
increase.

35/ 44
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Shadow prices

>

So for this environment, we know for each resource there is a
maximum amount of price we are willing to pay for one
additional unit.

» For wood, this price is $1.5.

» For labor hours, this price is $0.

This motivates us to define for each constraint:

Definition 1

For an LP that has an optimal solution, the shadow price of a
constraint is the amount of objective value improved when the
RHS of that constraint is increased by 1, assuming the current
optimal basis remains optimal.

» For max LPs, improvement means increasing the objective value.
» For min LPs, improvement means decreasing the objective value.
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Shadow prices

» So for our table-chair example,
the shadow prices for
constraints 1 and 2 are 1.5 and
0, respectively.

» Note that we assume that the
current optimal basis does not
change.

» Consider another example:

z¥=max 3z1 + 22
s.t. r1  + T2 < 4
1 + 2w < 4.5
>0 Yi=1,2.
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Shadow prices

» If we want to find the shadow
price of constraint 1, we may AT2 )
try to solve a new LP: \ (3,1)
)

2 =max 3z1 + 2

s.t. r1 + xr2 < 5
r1 + 2xz2 < 4.5
r; >0 Vi=1,2.

N

» Though z** =13.5 and 2* =12, 2.25

the shadow price is not 1.5!

» By definition, it is 15 — 12 = 3.
Why?

» So shadow prices measure the
rate of improvement.
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Properties of shadow prices

» As a shadow price measures how the objective value is
improved, its sign is determined based on how the feasible
region changes:

Proposition 6
Shadow prices are

> nonnegative for less-than-or-equal-to constraints,
> nonpositive for greater-than-or-equal-to constraints, and
> urs. for equality constraints.

» Less-than-or-equal-to constraint = increasing RHS (weakly)
enlarges the feasible region = we can do (weakly) better = the
objective value (weakly) increases = nonnegative shadow price.
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Properties of shadow prices

» If shifting a constraint does not affect the optimal solution, the
shadow price must be zero:

Proposition 7

Shadow prices are 0 for constraints that are not binding at the
optimal solution.

» Not all binding constraints has nonzero shadow prices. Why?

» Now we know finding shadow prices allows us to answer the
questions regarding additional units of resources. But how to
find all shadow prices?

» Let m be the number of constraints.
» Is there a better way than solving m LPs?
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Dual optimal solution provide shadow prices
» Duality helps!

Proposition 8

For a mazimization LP, shadow prices equal the values of dual
variables in the dual optimal solution.

Proof. Let B be the old optimal basis and z = CBA]_B,lb be the
old objective value. If b; becomes b} = by + 1, then z becomes

1

0
2 =cpAyt (b + | . ) =z + (cAg"),.
0

So the shadow price of constraint 1 is (cgA5')1. In general, the
shadow price of constraint 7 is (cBAgl)i. as CBAél is the dual
solution, the proof is complete. [
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Shadow prices for minimization LPs

» Therefore, to find m shadow prices, we do not need to solve m
new LPs. It suffices to solve only one LP, the dual LP.

» For minimization LPs, simply negate the dual optimal solution:

Proposition 9

For a minimization LP, shadow prices equal the negation of the
values of dual variables in the dual optimal solution.
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An example

A2
» What are the shadow prices of
the two functional constraints? 8.33
AN
max 3r; + 5x9 5\

st. 2x1 4+ 3x9 < 25
r1 + 2x9 < 15
z; >0 Vi=1,2.

u]
&)
I

i
it
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An example

» We solve the dual LP

max 25y; + 15y
st. 2y + oy >
3y1 + 2y >
2

The dual optimal solution is
Y= (1a 1)'

» So shadow prices are 1 and 1 for
primal constraints 1 and 2,
respectively.

AY2
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