IM2010: Operations Research Duality (Chapter 6)

Ling-Chieh Kung

Department of Information Management
National Taiwan University
April 25, 2013

Road map

- Primal-dual pairs.
- Properties of dual programs.
- Shadow prices.

Upper bounds of a maximization LP

- Consider the following LP

$$
\begin{array}{cc}
z^{*}=\max & 4 x_{1}+5 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{array}
$$

- Is there any way to find an upper bound of z^{*} without solving this LP?

Upper bounds of a maximization LP

- How about this: Multiplying the first constraint by 2, multiply the second constraint by 1 , and then add them together.
- This creates a redundant constraint

$$
\begin{aligned}
& 2\left(x_{1}+2 x_{2}+3 x_{3}\right)+\left(2 x_{1}+x_{2}+2 x_{3}\right) \leq 2 \times 6+4 \\
\Rightarrow & 4 x_{1}+5 x_{2}+8 x_{3} \leq 16 .
\end{aligned}
$$

- If we add this constraint into the LP:

$$
\begin{array}{crl}
z^{*}=\max & 4 x_{1} & +5 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1} & +2 x_{2}+3 x_{3} \leq 6 \\
& 2 x_{1} & +x_{2}+2 x_{3} \leq \\
& 4 x_{1}+5 x_{2}+8 x_{3} \leq 16 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{array}
$$

- So an upper bound of z^{*} is 16 .

Upper bounds of a maximization LP

- How to find an upper bound of z^{*} for the following LP?

$$
\begin{array}{cc}
z^{*}=\max & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 .
\end{array}
$$

- Let's play the same trick. We will see 16 is also an upper bound:

$$
\begin{aligned}
& 2 \times 6+4=16 \\
\geq & 2\left(x_{1}+2 x_{2}+3 x_{3}\right)+\left(2 x_{1}+x_{2}+2 x_{3}\right) \\
= & 4 x_{1}+5 x_{2}+8 x_{3} \\
\geq & 3 x_{1}+4 x_{2}+8 x_{3} . \quad\left(\text { because } x_{1} \geq 0, x_{2} \geq 0\right)
\end{aligned}
$$

- How to find a lower upper bound?

Better upper bounds?

$$
\begin{aligned}
& z^{*}=\max 3 x_{1}+4 x_{2}+8 x_{3} \\
& \text { s.t. } x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0 \text {. }
\end{aligned}
$$

- Suppose we are going to linearly combine the two constraints with coefficients y_{1} and y_{2}, respectively.
- Suppose $y_{1} \geq 0$ and $y_{2} \geq 0$ (why do we need this?). If

$$
3 \leq y_{1}+2 y_{2}, \quad 4 \leq 2 y_{1}+y_{2}, \quad \text { and } 8 \leq 3 y_{1}+2 y_{2},
$$

then we have

$$
3 x_{1}+4 x_{2}+8 x_{3} \leq 6 y_{1}+4 y_{2},
$$

which means $6 y_{1}+4 y_{2}$ is an upper bound of z^{*}.

Looking for the lowest upper bound

- To look for the lowest upper bound, we solve another LP!

\min	$6 y_{1}+4 y_{2}$	
s.t.	$y_{1}+2 y_{2} \geq 3$	
	$2 y_{1}+y_{2} \geq 4$	
	$3 y_{1}+2 y_{2} \geq 8$	
	$y_{1} \geq 0, y_{2} \geq 0$.	

- We call the original LP the primal LP.
- We define this LP, which generates the lowest upper bound of the primal LP, as its dual LP.
- This idea applies to any LP. Let's see more examples.

Nonpositive or free variables

- Suppose variables are not all nonnegative:

$$
\begin{array}{cc}
z^{*}=\max & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \leq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4 \\
x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{array}
$$

- With $y_{1} \geq 0$ and $y_{2} \geq 0$ as the coefficients, if we want

$$
\begin{aligned}
3 x_{1}+4 x_{2}+8 x_{3} & \leq y_{1}\left(x_{1}+2 x_{2}+3 x_{3}\right)+y_{2}\left(2 x_{1}+x_{2}+2 x_{3}\right) \\
& =\left(y_{1}+2 y_{2}\right) x_{1}+\left(2 y_{1}+y_{2}\right) x_{2}+\left(3 y_{1}+2 y_{2}\right),
\end{aligned}
$$

what are the new conditions we need?

Nonpositive or free variables

- To have

$$
\begin{array}{rlrlr}
3 x_{1} & + & 4 x_{2} & + & 8 x_{3} \\
\leq & \left(y_{1}+2 y_{2}\right) x_{1} & + & \left(2 y_{1}+y_{2}\right) x_{2} & + \\
\left(3 y_{1}+2 y_{2}\right) x_{3}
\end{array}
$$

now we need

$$
\begin{array}{rll}
y_{1}+2 y_{2} & \geq 3 & \text { because } x_{1} \geq 0 \\
2 y_{1}+y_{2} & \leq 4 & \text { because } x_{2} \leq 0, \text { and } \\
3 y_{1}+2 y_{2} & =8 & \text { because } x_{3} \text { is free }
\end{array}
$$

- So the dual LP is

$$
\begin{array}{cc}
\min & 6 y_{1}+4 y_{2} \\
\text { s.t. } & y_{1}+2 y_{2} \geq 3 \\
& 2 y_{1}+y_{2} \leq 4 \\
& 3 y_{1}+2 y_{2}=8 \\
& y_{1} \geq 0, y_{2} \geq 0 .
\end{array}
$$

No-less-than and equality constraints

- Suppose constraints are not all no-greater-than:

$$
\begin{array}{cc}
z^{*}=\max & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \geq 6 \\
& 2 x_{1}+x_{2}+2 x_{3}=4 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{array}
$$

- As we need an upper bound of z^{*}, we need to combine the two constraints so that the RHS is no less than the LHS. How to choose the sign of y_{1} and y_{2} to do that?
- That is, how to get this no-greater-than inequality

$$
y_{1}\left(x_{1}+2 x_{2}+3 x_{3}\right)+y_{2}\left(2 x_{1}+x_{2}+2 x_{3}\right) \leq 6 y_{1}+4 y_{2} ?
$$

No-less-than and equality constraints

- To obtain

$$
y_{1}\left(x_{1}+2 x_{2}+3 x_{3}\right)+y_{2}\left(2 x_{1}+x_{2}+2 x_{3}\right) \leq 6 y_{1}+4 y_{2},
$$

we only need $y_{1} \leq 0 . y_{2}$ can be of any sign (i.e., free).

- We still need

$$
3 \leq y_{1}+2 y_{2}, \quad 4 \geq 2 y_{1}+y_{2}, \quad \text { and } 8=3 y_{1}+2 y_{2}
$$

to obtain

$$
3 x_{1}+4 x_{2}+8 x_{3} \leq y_{1}\left(x_{1}+2 x_{2}+3 x_{3}\right)+y_{2}\left(2 x_{1}+x_{2}+2 x_{3}\right)
$$

No-less-than and equality constraints

$$
\begin{aligned}
& z^{*}=\max 3 x_{1}+4 x_{2}+8 x_{3} \\
& \text { s.t. } \begin{aligned}
x_{1}+2 x_{2}+3 x_{3} & \geq 6 \\
2 x_{1}+x_{2}+2 x_{3} & =4
\end{aligned} \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{aligned}
$$

- As a summary, an upper bound is obtained as follows:

$$
\begin{aligned}
6 y_{1}+4 y_{2} & \geq y_{1}\left(x_{1}+2 x_{2}+3 x_{3}\right)+y_{2}\left(2 x_{1}+x_{2}+2 x_{3}\right) \\
& =\left(y_{1}+2 y_{2}\right) x_{1}+\left(2 y_{1}+y_{2}\right) x_{2}+\left(3 y_{1}+2 y_{2}\right) \\
& \geq 3 x_{1}+4 x_{2}+8 x_{3},
\end{aligned}
$$

where the first inequality requires

$$
y_{1} \leq 0, y_{2} \text { free. }
$$

and the second inequality requires

$$
3 \leq y_{1}+2 y_{2}, \quad 4 \geq 2 y_{1}+y_{2}, \quad \text { and } 8=3 y_{1}+2 y_{2}
$$

No-less-than and equality constraints

- So for the primal LP

$$
\begin{array}{cc}
z^{*}=\max & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \geq 6 \\
& 2 x_{1}+x_{2}+2 x_{3}=4 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{array}
$$

the dual LP is

$$
\begin{array}{cc}
\min & 6 y_{1}+4 y_{2} \\
\text { s.t. } & y_{1}+2 y_{2} \geq 3 \\
& 2 y_{1}+y_{2} \leq 4 \\
& 3 y_{1}+2 y_{2}=8 \\
& y_{1} \leq 0, y_{2}=0 .
\end{array}
$$

The general rule

- In general, if the primal LP is

$$
\begin{aligned}
& \max \quad c_{1} x_{1}+c_{2} x_{2}+c_{3} x_{3} \\
& \text { set. } A_{11} x_{1}+A_{12} x_{2}+A_{13} x_{3} \geq b_{1} \\
& A_{21} x_{1}+A_{22} x_{2}+A_{23} x_{3} \leq b_{2} \\
& A_{31} x_{1}+A_{32} x_{2}+A_{33} x_{3}=b_{3} \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { ur., }
\end{aligned}
$$

its dual LP is

$$
\begin{array}{ccccc}
\min & b_{1} y_{1}+b_{2} y_{2}+b_{3} y_{3} \\
\text { s.t. } & A_{11} y_{1}+A_{21} y_{2}+A_{31} y_{3} \geq & \\
& A_{12} y_{1}+A_{22} y_{2}+A_{32} y_{3} \leq & \leq \\
& A_{13} y_{1}+A_{23} y_{2}+A_{33} y_{3}=0 \\
& y_{1} \leq 0, y_{2} \geq 0, y_{3} \text { urs. }
\end{array}
$$

The dual LP for a minimization primal LP

- For a minimization primal LP, its dual LP is to find the greatest lower bound.
- Suppose the primal LP is

$$
\begin{aligned}
\min & 3 x_{1} \\
\mathrm{s.t.} & x_{1}+4 x_{2}+8 x_{3} \\
& 2 x_{1}+3 x_{3} \geq 6 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. }
\end{aligned}
$$

What conditions do we need to obtain the following lower bound?

$$
\begin{aligned}
6 y_{1}+4 y_{2} & \leq y_{1}\left(x_{1}+2 x_{2}+3 x_{3}\right)+y_{2}\left(2 x_{1}+x_{2}+2 x_{3}\right) \\
& =\left(y_{1}+2 y_{2}\right) x_{1}+\left(2 y_{1}+y_{2}\right) x_{2}+\left(3 y_{1}+2 y_{2}\right) \\
& \leq 3 x_{1}+4 x_{2}+8 x_{3},
\end{aligned}
$$

The dual LP for a minimization primal LP

- For the primal LP

$$
\begin{array}{cc}
\min & 3 x_{1}+4 x_{2}+8 x_{3} \\
\text { s.t. } & x_{1}+2 x_{2}+3 x_{3} \geq 6 \\
& 2 x_{1}+x_{2}+2 x_{3} \leq 4 \\
& x_{1} \geq 0, x_{2} \leq 0, x_{3} \text { urs. },
\end{array}
$$

the dual LP is

$$
\begin{array}{rrl}
\max & 6 y_{1} & +4 y_{2} \\
\text { s.t. } & y_{1} & +2 y_{2} \leq 3 \\
& 2 y_{1} & +y_{2} \geq 4 \\
& 3 y_{1} & +2 y_{2}=8 \\
& y_{1} \geq 0, y_{2} \leq 0 .
\end{array}
$$

The general rule

- The general rule for finding the dual LP is summarized below:

Obj. function	\max	\min	Obj. function
Constraint	\leq	≥ 0	
	\geq	≤ 0	Variable
	$=$	urs.	
Variable	≥ 0	\geq	
	≤ 0	\leq	Constraint
	urs.	$=$	

- If the primal LP is a maximization problem, do it from left to right.
- If the primal LP is a minimization problem, do it from right to left.

Examples of primal-dual pairs

- Example 1:

$$
\begin{aligned}
& \min 2 x_{1}+3 x_{2}
\end{aligned}
$$

$$
\begin{aligned}
& x_{1} \leq 0, x_{2} \text { urs. } \\
& y_{1} \leq 0, y_{2} \geq 0, y_{3} \geq 0 .
\end{aligned}
$$

- Example 2:

$$
\begin{array}{rr}
\max & 3 x_{1}-x_{2} \\
\text { s.t. } & x_{1}+2 x_{2}= \\
& 3 x_{1}+3 x_{2} \leq \\
& x_{1} \text { urs., } x_{2} \geq 0 .
\end{array} \Leftrightarrow \begin{array}{rrrrr}
\min & 6 y_{1}-4 y_{2} \\
\text { s.t. } & y_{1}+3 y_{2} & = & 3 \\
2 y_{1} & +3 y_{2} \geq & -1 \\
& & & y_{1} \text { urs. }, y_{2} \geq 0 .
\end{array}
$$

Uniqueness and dual of dual

- Is the dual LP unique?

Proposition 1

For any $L P$, there is a unique dual $L P$.

- What is the dual of a dual LP?

Proposition 2
For any LP, the dual LP of its dual LP is itself.

Road map

- Primal-dual pairs.
- Duality theorems.
- Shadow prices.

Duality theorems

- Duality provides many interesting properties.
- We will illustrate these properties with the normal max and normal min pair:

$$
\begin{align*}
\max & c x \\
\text { s.t. } & A x \leq b \quad \Leftrightarrow \quad \min
\end{aligned} \quad y b \begin{aligned}
& \tag{1}\\
& x \geq 0
\end{align*}
$$

- $A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m \times 1}$, and $c \in \mathbb{R}^{1 \times n}$,
- $x \in \mathbb{R}^{n \times 1}$ and $y \in \mathbb{R}^{1 \times m}$.
- It can be shown that all the properties we introduce apply to general primal-dual pairs.

Weak duality

- We first show that the dual LP indeed provides an upper bound of the primal LP.

Proposition 3 (Weak duality)

For the LPs defined in (1), if x and y are primal and dual feasible, then $c x \leq y b$.

Proof. Since $x \geq 0$ and $y A \geq c$, we have $y A x \geq c x$. Similarly, $y \geq 0$ and $A x \leq b$ imply $y A x \leq y b$. Combining $y A x \geq c x$ and $y A x \leq y b$ proves the theorem.

The dual optimal solution

- If we have solved the primal LP, may we find the dual optimal solution?

Proposition 4 (Dual optimal solution)

For the LPs defined in (1), if \bar{x} is primal optimal with basis B, then $\bar{y}=c_{B} A_{B}^{-1}$ is dual optimal.

- This proposition tells us that, once we solve one of the two LPs, the other one can be solved immediately.
- To prove this proposition, we need two lemmas.

The dual optimal solution

Lemma 1

If \bar{x} and \bar{y} are primal and dual feasible and $c \bar{x}=\bar{y} b$, then \bar{x} and \bar{y} are primal and dual optimal.

Proof. For all dual feasible y, we have $c \bar{x} \leq y b$ by weak duality. But we are given that $c \bar{x}=\bar{y} b$, so we have $\bar{y} b \leq y b$ for all dual feasible y. This just tells us that \bar{y} is dual optimal. For \bar{x} it is the same.

The dual optimal solution

Lemma 2

If B is the primal optimal basis,, then $c_{B} A_{B}^{-1}$ is the reduced cost of primal slacks.

Proof. The reduced cost for nonbasic variables is $\bar{c}=c_{B} A_{B}^{-1} A_{N}-c_{N}$. Let's extend this definition also to basic variables and say that a basic variable has $0=c_{B} A_{B}^{-1} A_{B}-c_{B}$ as its reduced cost. With this, we can define

$$
\tilde{c}=c_{B} A_{B}^{-1} A-c
$$

as the reduced cost for all variables. For the i th primal slack x_{n+i}, we know $c_{n+i}=0$ and $A_{n+i}=e_{i}$, where e_{i} is a column vector whose i th element is 1 and all others are 0 . Therefore,

$$
\tilde{c}_{n+i}=c_{B} A_{B}^{-1} A_{i}-c_{n+i}=c_{B} A_{B}^{-1} e_{i}-0=\left(c_{B}^{T} A_{B}^{-1}\right)_{i}
$$

As this applies to all i, the statement follows.

The dual optimal solution

- Now we are ready for the theorem for dual optimal solutions:

For the LPs defined in (1), if \bar{x} is primal optimal with basis B, then $\bar{y}=c_{B} A_{B}^{-1}$ is dual optimal.

- First we show that \bar{y} is dual feasible:
- As B is the primal optimal basis, $c_{B} A_{B}^{-1} A_{N}-c_{N} \geq 0$ (otherwise B is not optimal) and thus $c_{B} A_{B}^{-1} A_{N} \geq c_{N}$. As $c_{B} A_{B}^{-1} A_{B}=c_{B}$, we have

$$
c_{B} A_{B}^{-1}\left[\begin{array}{ll}
A_{B} & A_{N}
\end{array}\right] \geq\left[\begin{array}{ll}
c_{B} & c_{N}
\end{array}\right] \quad \text { or } \quad c_{B} A_{B}^{-1} A \geq c,
$$

which is exactly $\bar{y} A \geq c$.

- By Lemma 2, we know \bar{y} is the reduced cost for primal slacks. As B is primal optimal, we know the reduced cost for all variables must be nonnegative, which means $\bar{y} \geq 0$.
- Since \bar{y} is dual feasible and $\bar{y} b=c_{B} A_{B}^{-1} b=c_{B} x_{B}=c \bar{x}$, we know \bar{y} is dual optimal by Lemma 1 .

Strong duality

- The fact that $\bar{y}=c_{B} A_{B}^{-1}$ is dual optimal implies strong duality:

Proposition 5 (Strong duality)

\bar{x} and \bar{y} are primal and dual optimal if and only if \bar{x} and \bar{y} are primal and dual feasible and $c^{T} \bar{x}=\bar{y}^{T} b$.

Proof. To prove this if-and-only-if statement:

- (\Leftarrow) : By Lemma 1.
- (\Rightarrow) : As \bar{y} is dual optimal, $\bar{y} b=c_{B} A_{B}^{-1} b=c_{B} x_{B}=c \bar{x}$. Note that even if there are multiple optimal solutions to the dual LP, \bar{y} can only result in the same objective value as $c_{B} A_{B}^{-1}$ does because $c_{B} A_{B}^{-1}$ is also dual optimal.

Implications of strong duality

- Strong duality is stronger than weak duality.
- Weak duality says that the dual LP provides a bound.
- Strong duality says the bound is tight, i.e., cannot be improved.
- Given the result of one LP, we may predict the result of its dual:

Primal	Dual		
	Infeasible	Unbounded	Finitely optimal
Infeasible	$\sqrt{ }$	$\sqrt{ }$	\times
Unbounded	$\sqrt{ }$	\times	\times
Finitely optimal	\times	\times	$\sqrt{ }$

- $\sqrt{ }$ means possible, \times means impossible.
- Primal unbounded \Rightarrow no upper bound \Rightarrow dual infeasible.
- Primal finitely optimal \Rightarrow finite objective \Rightarrow dual finitely optimal.
- If primal is infeasible, the dual may still be infeasible.

Road map

- Primal-dual pairs.
- Duality theorems.
- Shadow prices.

A resource allocation problem

- Suppose we produce tables and chairs with wood and labors. In total we have six units of wood and six labor hours.
- Each table, which can be sold at $\$ 3$, requires two units of wood and one labor hour.
- Each chair, which can be sold at $\$ 1$, requires one unit of wood and two labor hours.

How may we formulate an LP to maximize our sales revenue?

- The decision variables are

$$
\begin{aligned}
& x_{1}=\text { number of tables produced } \\
& x_{2}=\text { number of chairs produced } .
\end{aligned}
$$

A resource allocation problem

- The LP:

$$
\begin{array}{rc}
\max & 3 x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 6 \\
& x_{1}+2 x_{2} \leq 6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

- The optimal solution is $x^{*}=(3,0)$.

"What-if" questions

- In practice, people often ask "what-if" questions:
- What if the unit price of chairs becomes $\$ 2$?
- What if each table requires three unit of wood?
- What if we have ten units of woord?
- Why what-if questions?
- Parameters may fluctuate.
- Estimation of parameters may be inaccurate.
- Looking for ways to improve the business.
- For realistic problems, what-if questions can be hard.
- Even though it may be just a tiny modification of one parameter, it is hard to imagine how the optimal solution will be affected.
- The tool for answering what-if questions is sensitivity analysis.

"What-if" questions

- In general, what-if questions can always be answered by formulating and solving a new optimization problem.
- But this may be too time consuming!
- We will see that duality helps.
- Here we want to introduce only one type of what-if question: What if I have additional units of a certain resource?
- Consider the following scenario:
- One day, a salesperson enters your office and wants to offer you one additional unit of wood at $\$ 1$. Should you accept or reject?

One more unit of wood

- To answer this question, you may formulate a new LP:

\max	$3 x_{1}+x_{2}$
s.t.	$2 x_{1}+x_{2} \leq 7$
	$x_{1}+2 x_{2} \leq 6$
	$x_{i} \geq 0 \quad \forall i=1,2$.

- As the new objective value $z^{\prime}=3 \times 3.5=10.5$ is larger than the old objective value $z^{*}=9$ by 1.5 , it is good to accept the offer.

- We earn $\$ 0.5$ as our net benefit.

One more labor hour

- Suppose instead of offering one addition unit of wood, the salesperson offers one additional labor hour at 1 .

$$
\begin{aligned}
\max & 3 x_{1}+x_{2} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 6 \\
& x_{1}+2 x_{2} \leq 7 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

- It is not worthwhile to buy it: The objective value does not increase.

Shadow prices

- So for this environment, we know for each resource there is a maximum amount of price we are willing to pay for one additional unit.
- For wood, this price is $\$ 1.5$.
- For labor hours, this price is $\$ 0$.
- This motivates us to define shadow prices for each constraint:

> Definition 1
> For an LP that has an optimal solution, the shadow price of a constraint is the amount of objective value improved when the RHS of that constraint is increased by 1, assuming the current optimal basis remains optimal.

- For max LPs, improvement means increasing the objective value.
- For min LPs, improvement means decreasing the objective value.

Shadow prices

- So for our table-chair example, the shadow prices for constraints 1 and 2 are 1.5 and 0 , respectively.
- Note that we assume that the current optimal basis does not change.
- Consider another example:

$$
\begin{array}{rll}
z^{*}=\max & 3 x_{1} & +x_{2} \\
\text { s.t. } & x_{1} & +x_{2} \leq \\
& x_{1} & +2 x_{2} \leq \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

Shadow prices

- If we want to find the shadow price of constraint 1 , we may try to solve a new LP:

$$
\begin{aligned}
z^{* *}=\max & 3 x_{1} \\
\text { s.t. } & x_{1}+x_{2} \\
& x_{1}+2 x_{2} \leq \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

- So shadow prices measure the rate of improvement.

Properties of shadow prices

- As a shadow price measures how the objective value is improved, its sign is determined based on how the feasible region changes:

Proposition 6

Shadow prices are

- nonnegative for less-than-or-equal-to constraints,
- nonpositive for greater-than-or-equal-to constraints, and
- urs. for equality constraints.
- Less-than-or-equal-to constraint \Rightarrow increasing RHS (weakly) enlarges the feasible region \Rightarrow we can do (weakly) better \Rightarrow the objective value (weakly) increases \Rightarrow nonnegative shadow price.

Properties of shadow prices

- If shifting a constraint does not affect the optimal solution, the shadow price must be zero:

Proposition 7

Shadow prices are 0 for constraints that are not binding at the optimal solution.

- Not all binding constraints has nonzero shadow prices. Why?
- Now we know finding shadow prices allows us to answer the questions regarding additional units of resources. But how to find all shadow prices?
- Let m be the number of constraints.
- Is there a better way than solving m LPs?

Dual optimal solution provide shadow prices

- Duality helps!

Proposition 8

For a maximization $L P$, shadow prices equal the values of dual variables in the dual optimal solution.

Proof. Let B be the old optimal basis and $z=c_{B} A_{B}^{-1} b$ be the old objective value. If b_{1} becomes $b_{1}^{\prime}=b_{1}+1$, then z becomes

$$
z^{\prime}=c_{B} A_{B}^{-1}\left(b+\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right]\right)=z+\left(c_{B} A_{B}^{-1}\right)_{1}
$$

So the shadow price of constraint 1 is $\left(c_{B} A_{B}^{-1}\right)_{1}$. In general, the shadow price of constraint i is $\left(c_{B} A_{B}^{-1}\right)_{i}$. as $c_{B} A_{B}^{-1}$ is the dual solution, the proof is complete.

Shadow prices for minimization LPs

- Therefore, to find m shadow prices, we do not need to solve m new LPs. It suffices to solve only one LP, the dual LP.
- For minimization LPs, simply negate the dual optimal solution:

Proposition 9

For a minimization $L P$, shadow prices equal the negation of the values of dual variables in the dual optimal solution.

An example

- What are the shadow prices of the two functional constraints?

$$
\begin{aligned}
\max & 3 x_{1}+5 x_{2} \\
\text { s.t. } & 2 x_{1}+3 x_{2} \leq 25 \\
& x_{1}+2 x_{2} \leq 15 \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{aligned}
$$

An example

- We solve the dual LP

$$
\begin{array}{rrr}
\max & 25 y_{1} & +15 y_{2} \\
\text { s.t. } & 2 y_{1}+y_{2} \geq 3 \\
& 3 y_{1}+2 y_{2} \geq 5 \\
& y_{i} \geq 0 \quad \forall i=1,2 .
\end{array}
$$

The dual optimal solution is $y^{*}=(1,1)$.

- So shadow prices are 1 and 1 for primal constraints 1 and 2, respectively.

