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Duality theorems

Road map

I Primal-dual pairs.

I Properties of dual programs.

I Shadow prices.
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Duality theorems

Upper bounds of a maximization LP

I Consider the following LP

z∗ = max
s.t.

4x1 + 5x2 + 8x3
x1 + 2x2 + 3x3 ≤ 6

2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

I Is there any way to find an upper bound of z∗ without solving
this LP?
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Duality theorems

Upper bounds of a maximization LP

I How about this: Multiplying the first constraint by 2, multiply
the second constraint by 1, and then add them together.

I This creates a redundant constraint

2(x1 + 2x2 + 3x3) + (2x1 + x2 + 2x3) ≤ 2× 6 + 4

⇒ 4x1 + 5x2 + 8x3 ≤ 16.

I If we add this constraint into the LP:

z∗ = max
s.t.

4x1 + 5x2 + 8x3
x1 + 2x2 + 3x3 ≤ 6

2x1 + x2 + 2x3 ≤ 4
4x1 + 5x2 + 8x3 ≤ 16

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

I So an upper bound of z∗ is 16.
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Duality theorems

Upper bounds of a maximization LP

I How to find an upper bound of z∗ for the following LP?

z∗ = max
s.t.

3x1 + 4x2 + 8x3
x1 + 2x2 + 3x3 ≤ 6

2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

I Let’s play the same trick. We will see 16 is also an upper bound:

2× 6 + 4 = 16

≥ 2(x1 + 2x2 + 3x3) + (2x1 + x2 + 2x3)

= 4x1 + 5x2 + 8x3

≥ 3x1 + 4x2 + 8x3. (because x1 ≥ 0, x2 ≥ 0)

I How to find a lower upper bound?
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Duality theorems

Better upper bounds?

z∗ = max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≤ 6
2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0.

I Suppose we are going to linearly combine the two constraints
with coefficients y1 and y2, respectively.

I Suppose y1 ≥ 0 and y2 ≥ 0 (why do we need this?). If

3 ≤ y1 + 2y2, 4 ≤ 2y1 + y2, and 8 ≤ 3y1 + 2y2,

then we have
3x1 + 4x2 + 8x3 ≤ 6y1 + 4y2,

which means 6y1 + 4y2 is an upper bound of z∗.
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Duality theorems

Looking for the lowest upper bound

I To look for the lowest upper bound, we solve another LP!

min
s.t.

6y1 + 4y2
y1 + 2y2 ≥ 3

2y1 + y2 ≥ 4
3y1 + 2y2 ≥ 8

y1 ≥ 0, y2 ≥ 0.

I We call the original LP the primal LP.

I We define this LP, which generates the lowest upper bound of
the primal LP, as its dual LP.

I This idea applies to any LP. Let’s see more examples.
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Duality theorems

Nonpositive or free variables

I Suppose variables are not all nonnegative:

z∗ = max
s.t.

3x1 + 4x2 + 8x3
x1 + 2x2 + 3x3 ≤ 6

2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

I With y1 ≥ 0 and y2 ≥ 0 as the coefficients, if we want

3x1 + 4x2 + 8x3 ≤ y1(x1 + 2x2 + 3x3) + y2(2x1 + x2 + 2x3)

= (y1 + 2y2)x1 + (2y1 + y2)x2 + (3y1 + 2y2),

what are the new conditions we need?
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Duality theorems

Nonpositive or free variables

I To have

3x1 + 4x2 + 8x3
≤ (y1 + 2y2)x1 + (2y1 + y2)x2 + (3y1 + 2y2)x3,

now we need

y1 + 2y2 ≥ 3 because x1 ≥ 0,
2y1 + y2 ≤ 4 because x2 ≤ 0, and
3y1 + 2y2 = 8 because x3 is free.

I So the dual LP is

min
s.t.

6y1 + 4y2
y1 + 2y2 ≥ 3

2y1 + y2 ≤ 4
3y1 + 2y2 = 8

y1 ≥ 0, y2 ≥ 0.
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Duality theorems

No-less-than and equality constraints

I Suppose constraints are not all no-greater-than:

z∗ = max
s.t.

3x1 + 4x2 + 8x3
x1 + 2x2 + 3x3 ≥ 6

2x1 + x2 + 2x3 = 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

I As we need an upper bound of z∗, we need to combine the two
constraints so that the RHS is no less than the LHS. How to
choose the sign of y1 and y2 to do that?
I That is, how to get this no-greater-than inequality

y1(x1 + 2x2 + 3x3) + y2(2x1 + x2 + 2x3) ≤ 6y1 + 4y2?
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Duality theorems

No-less-than and equality constraints

I To obtain

y1(x1 + 2x2 + 3x3) + y2(2x1 + x2 + 2x3) ≤ 6y1 + 4y2,

we only need y1 ≤ 0. y2 can be of any sign (i.e., free).

I We still need

3 ≤ y1 + 2y2, 4 ≥ 2y1 + y2, and 8 = 3y1 + 2y2

to obtain

3x1 + 4x2 + 8x3 ≤ y1(x1 + 2x2 + 3x3) + y2(2x1 + x2 + 2x3)
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Duality theorems

No-less-than and equality constraints

z∗ = max
s.t.

3x1 + 4x2 + 8x3

x1 + 2x2 + 3x3 ≥ 6
2x1 + x2 + 2x3 = 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

I As a summary, an upper bound is obtained as follows:

6y1 + 4y2 ≥ y1(x1 + 2x2 + 3x3) + y2(2x1 + x2 + 2x3)

= (y1 + 2y2)x1 + (2y1 + y2)x2 + (3y1 + 2y2)

≥ 3x1 + 4x2 + 8x3,

where the first inequality requires

y1 ≤ 0, y2 free.

and the second inequality requires

3 ≤ y1 + 2y2, 4 ≥ 2y1 + y2, and 8 = 3y1 + 2y2.
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Duality theorems

No-less-than and equality constraints

I So for the primal LP

z∗ = max
s.t.

3x1 + 4x2 + 8x3
x1 + 2x2 + 3x3 ≥ 6

2x1 + x2 + 2x3 = 4

x1 ≥ 0, x2 ≤ 0, x3 urs.,

the dual LP is

min
s.t.

6y1 + 4y2
y1 + 2y2 ≥ 3

2y1 + y2 ≤ 4
3y1 + 2y2 = 8

y1 ≤ 0, y2 = 0.
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Duality theorems

The general rule

I In general, if the primal LP is

max
s.t.

c1x1 + c2x2 + c3x3
A11x1 + A12x2 + A13x3 ≥ b1
A21x1 + A22x2 + A23x3 ≤ b2
A31x1 + A32x2 + A33x3 = b3

x1 ≥ 0, x2 ≤ 0, x3 urs.,

its dual LP is

min
s.t.

b1y1 + b2y2 + b3y3
A11y1 + A21y2 + A31y3 ≥ 0
A12y1 + A22y2 + A32y3 ≤ 0
A13y1 + A23y2 + A33y3 = 0

y1 ≤ 0, y2 ≥ 0, y3 urs.
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Duality theorems

The dual LP for a minimization primal LP

I For a minimization primal LP, its dual LP is to find the
greatest lower bound.

I Suppose the primal LP is

min
s.t.

3x1 + 4x2 + 8x3
x1 + 2x2 + 3x3 ≥ 6

2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≤ 0, x3 urs.

What conditions do we need to obtain the following lower bound?

6y1 + 4y2 ≤ y1(x1 + 2x2 + 3x3) + y2(2x1 + x2 + 2x3)

= (y1 + 2y2)x1 + (2y1 + y2)x2 + (3y1 + 2y2)

≤ 3x1 + 4x2 + 8x3,
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Duality theorems

The dual LP for a minimization primal LP

I For the primal LP

min
s.t.

3x1 + 4x2 + 8x3
x1 + 2x2 + 3x3 ≥ 6

2x1 + x2 + 2x3 ≤ 4

x1 ≥ 0, x2 ≤ 0, x3 urs.,

the dual LP is

max
s.t.

6y1 + 4y2
y1 + 2y2 ≤ 3

2y1 + y2 ≥ 4
3y1 + 2y2 = 8

y1 ≥ 0, y2 ≤ 0.
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Duality theorems

The general rule

I The general rule for finding the dual LP is summarized below:

Obj. function max min Obj. function

≤ ≥ 0
Constraint ≥ ≤ 0 Variable

= urs.

≥ 0 ≥
Variable ≤ 0 ≤ Constraint

urs. =

I If the primal LP is a maximization problem, do it from left to right.
I If the primal LP is a minimization problem, do it from right to left.
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Duality theorems

Examples of primal-dual pairs

I Example 1:

min
s.t.

2x1 + 3x2

4x1 + x2 ≤ 9
x1 ≥ 6

2x1 − x2 ≥ 8

x1 ≤ 0, x2 urs.

⇔

max
s.t.

9y1 + 6y2 + 8y3
4y1 + y2 + 2y3 ≥ 2
y1 − y3 = 3

y1 ≤ 0, y2 ≥ 0, y3 ≥ 0.

I Example 2:

max
s.t.

3x1 − x2

x1 + 2x2 = 6
3x1 + 3x2 ≤ −4

x1 urs., x2 ≥ 0.

⇔

min
s.t.

6y1 − 4y2
y1 + 3y2 = 3

2y1 + 3y2 ≥ −1

y1 urs., y2 ≥ 0.
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Duality theorems

Uniqueness and dual of dual

I Is the dual LP unique?

Proposition 1

For any LP, there is a unique dual LP.

I What is the dual of a dual LP?

Proposition 2

For any LP, the dual LP of its dual LP is itself.
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Duality theorems

Road map

I Primal-dual pairs.

I Duality theorems.

I Shadow prices.
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Duality theorems

Duality theorems

I Duality provides many interesting properties.

I We will illustrate these properties with the normal max and
normal min pair:

max cx
s.t. Ax ≤ b

x ≥ 0
⇔

min yb
s.t. yA ≥ c

y ≥ 0
(1)

I A ∈ Rm×n, b ∈ Rm×1, and c ∈ R1×n,
I x ∈ Rn×1 and y ∈ R1×m.

I It can be shown that all the properties we introduce apply to
general primal-dual pairs.



Operations Research, Spring 2013 – Duality 22 / 44

Duality theorems

Weak duality

I We first show that the dual LP indeed provides an upper bound
of the primal LP.

Proposition 3 (Weak duality)

For the LPs defined in (1), if x and y are primal and dual
feasible, then cx ≤ yb.

Proof. Since x ≥ 0 and yA ≥ c, we have yAx ≥ cx. Similarly,
y ≥ 0 and Ax ≤ b imply yAx ≤ yb. Combining yAx ≥ cx and
yAx ≤ yb proves the theorem.
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Duality theorems

The dual optimal solution

I If we have solved the primal LP, may we find the dual optimal
solution?

Proposition 4 (Dual optimal solution)

For the LPs defined in (1), if x̄ is primal optimal with basis B,
then ȳ = cBA

−1
B is dual optimal.

I This proposition tells us that, once we solve one of the two LPs,
the other one can be solved immediately.

I To prove this proposition, we need two lemmas.
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Duality theorems

The dual optimal solution

Lemma 1

If x̄ and ȳ are primal and dual feasible and cx̄ = ȳb, then x̄ and
ȳ are primal and dual optimal.

Proof. For all dual feasible y, we have cx̄ ≤ yb by weak duality.
But we are given that cx̄ = ȳb, so we have ȳb ≤ yb for all dual
feasible y. This just tells us that ȳ is dual optimal. For x̄ it is
the same.
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Duality theorems

The dual optimal solution

Lemma 2

If B is the primal optimal basis,, then cBA
−1
B is the reduced cost

of primal slacks.

Proof. The reduced cost for nonbasic variables is c̄ = cBA
−1
B AN − cN .

Let’s extend this definition also to basic variables and say that a basic
variable has 0 = cBA

−1
B AB − cB as its reduced cost. With this, we

can define
c̃ = cBA

−1
B A− c

as the reduced cost for all variables. For the ith primal slack xn+i, we
know cn+i = 0 and An+i = ei, where ei is a column vector whose ith
element is 1 and all others are 0. Therefore,

c̃n+i = cBA
−1
B Ai − cn+i = cBA

−1
B ei − 0 = (cTBA

−1
B )i.

As this applies to all i, the statement follows.
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Duality theorems

The dual optimal solution
I Now we are ready for the theorem for dual optimal solutions:

For the LPs defined in (1), if x̄ is primal optimal with
basis B, then ȳ = cBA

−1
B is dual optimal.

I First we show that ȳ is dual feasible:
I As B is the primal optimal basis, cBA

−1
B AN − cN ≥ 0 (otherwise B

is not optimal) and thus cBA
−1
B AN ≥ cN . As cBA

−1
B AB = cB , we

have

cBA
−1
B [AB AN ] ≥ [cB cN ] or cBA

−1
B A ≥ c,

which is exactly ȳA ≥ c.
I By Lemma 2, we know ȳ is the reduced cost for primal slacks. As B

is primal optimal, we know the reduced cost for all variables must
be nonnegative, which means ȳ ≥ 0.

I Since ȳ is dual feasible and ȳb = cBA
−1
B b = cBxB = cx̄, we know

ȳ is dual optimal by Lemma 1.
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Duality theorems

Strong duality

I The fact that ȳ = cBA
−1
B is dual optimal implies strong duality:

Proposition 5 (Strong duality)

x̄ and ȳ are primal and dual optimal if and only if x̄ and ȳ are
primal and dual feasible and cT x̄ = ȳT b.

Proof. To prove this if-and-only-if statement:

I (⇐): By Lemma 1.
I (⇒): As ȳ is dual optimal, ȳb = cBA

−1
B b = cBxB = cx̄. Note that

even if there are multiple optimal solutions to the dual LP, ȳ can
only result in the same objective value as cBA

−1
B does because

cBA
−1
B is also dual optimal.
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Duality theorems

Implications of strong duality

I Strong duality is stronger than weak duality.
I Weak duality says that the dual LP provides a bound.
I Strong duality says the bound is tight, i.e., cannot be improved.

I Given the result of one LP, we may predict the result of its dual:

Primal
Dual

Infeasible Unbounded Finitely optimal

Infeasible
√ √

×
Unbounded

√
× ×

Finitely optimal × ×
√

I
√

means possible, × means impossible.
I Primal unbounded ⇒ no upper bound ⇒ dual infeasible.
I Primal finitely optimal ⇒ finite objective ⇒ dual finitely optimal.
I If primal is infeasible, the dual may still be infeasible.
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Shadow prices

Road map

I Primal-dual pairs.

I Duality theorems.

I Shadow prices.
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Shadow prices

A resource allocation problem

I Suppose we produce tables and chairs with wood and labors. In
total we have six units of wood and six labor hours.
I Each table, which can be sold at $3, requires two units of wood and

one labor hour.
I Each chair, which can be sold at $1, requires one unit of wood and

two labor hours.

How may we formulate an LP to maximize our sales revenue?

I The decision variables are

x1 = number of tables produced

x2 = number of chairs produced.
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Shadow prices

A resource allocation problem

I The LP:

max
s.t.

3x1 + x2
2x1 + x2 ≤ 6
x1 + 2x2 ≤ 6

xi ≥ 0 ∀i = 1, 2.

I The optimal solution is
x∗ = (3, 0).
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Shadow prices

“What-if” questions

I In practice, people often ask “what-if” questions:
I What if the unit price of chairs becomes $2?
I What if each table requires three unit of wood?
I What if we have ten units of woord?

I Why what-if questions?
I Parameters may fluctuate.
I Estimation of parameters may be inaccurate.
I Looking for ways to improve the business.

I For realistic problems, what-if questions can be hard.
I Even though it may be just a tiny modification of one parameter, it

is hard to imagine how the optimal solution will be affected.

I The tool for answering what-if questions is sensitivity analysis.
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Shadow prices

“What-if” questions

I In general, what-if questions can always be answered by
formulating and solving a new optimization problem.

I But this may be too time consuming!
I We will see that duality helps.

I Here we want to introduce only one type of what-if question:
What if I have additional units of a certain resource?

I Consider the following scenario:
I One day, a salesperson enters your office and wants to offer you one

additional unit of wood at $1. Should you accept or reject?
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Shadow prices

One more unit of wood

I To answer this question, you
may formulate a new LP:

max
s.t.

3x1 + x2
2x1 + x2 ≤ 7
x1 + 2x2 ≤ 6

xi ≥ 0 ∀i = 1, 2.

I As the new objective value
z′ = 3× 3.5 = 10.5 is larger
than the old objective value
z∗ = 9 by 1.5, it is good to
accept the offer.

I We earn $0.5 as our net benefit.
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Shadow prices

One more labor hour

I Suppose instead of offering one
addition unit of wood, the
salesperson offers one additional
labor hour at 1.

max
s.t.

3x1 + x2
2x1 + x2 ≤ 6
x1 + 2x2 ≤ 7

xi ≥ 0 ∀i = 1, 2.

I It is not worthwhile to buy it:
The objective value does not
increase.
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Shadow prices

Shadow prices

I So for this environment, we know for each resource there is a
maximum amount of price we are willing to pay for one
additional unit.
I For wood, this price is $1.5.
I For labor hours, this price is $0.

I This motivates us to define shadow prices for each constraint:

Definition 1

For an LP that has an optimal solution, the shadow price of a
constraint is the amount of objective value improved when the
RHS of that constraint is increased by 1, assuming the current
optimal basis remains optimal.

I For max LPs, improvement means increasing the objective value.
I For min LPs, improvement means decreasing the objective value.
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Shadow prices

Shadow prices

I So for our table-chair example,
the shadow prices for
constraints 1 and 2 are 1.5 and
0, respectively.

I Note that we assume that the
current optimal basis does not
change.

I Consider another example:

z∗ = max
s.t.

3x1 + x2

x1 + x2 ≤ 4
x1 + 2x2 ≤ 4.5

xi ≥ 0 ∀i = 1, 2.
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Shadow prices

Shadow prices

I If we want to find the shadow
price of constraint 1, we may
try to solve a new LP:

z∗∗ = max
s.t.

3x1 + x2

x1 + x2 ≤ 5
x1 + 2x2 ≤ 4.5

xi ≥ 0 ∀i = 1, 2.

I Though z∗∗ = 13.5 and z∗ = 12,
the shadow price is not 1.5!

I By definition, it is 15− 12 = 3.
Why?

I So shadow prices measure the
rate of improvement.
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Shadow prices

Properties of shadow prices

I As a shadow price measures how the objective value is
improved, its sign is determined based on how the feasible
region changes:

Proposition 6

Shadow prices are

I nonnegative for less-than-or-equal-to constraints,
I nonpositive for greater-than-or-equal-to constraints, and
I urs. for equality constraints.

I Less-than-or-equal-to constraint ⇒ increasing RHS (weakly)
enlarges the feasible region ⇒ we can do (weakly) better ⇒ the
objective value (weakly) increases ⇒ nonnegative shadow price.
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Shadow prices

Properties of shadow prices

I If shifting a constraint does not affect the optimal solution, the
shadow price must be zero:

Proposition 7

Shadow prices are 0 for constraints that are not binding at the
optimal solution.

I Not all binding constraints has nonzero shadow prices. Why?

I Now we know finding shadow prices allows us to answer the
questions regarding additional units of resources. But how to
find all shadow prices?
I Let m be the number of constraints.
I Is there a better way than solving m LPs?
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Shadow prices

Dual optimal solution provide shadow prices
I Duality helps!

Proposition 8

For a maximization LP, shadow prices equal the values of dual
variables in the dual optimal solution.

Proof. Let B be the old optimal basis and z = cBA
−1
B b be the

old objective value. If b1 becomes b′1 = b1 + 1, then z becomes

z′ = cBA
−1
B

(
b +


1
0
...
0


)

= z +
(
cBA

−1
B

)
1
.

So the shadow price of constraint 1 is (cBA
−1
B )1. In general, the

shadow price of constraint i is (cBA
−1
B )i. as cBA

−1
B is the dual

solution, the proof is complete.
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Shadow prices

Shadow prices for minimization LPs

I Therefore, to find m shadow prices, we do not need to solve m
new LPs. It suffices to solve only one LP, the dual LP.

I For minimization LPs, simply negate the dual optimal solution:

Proposition 9

For a minimization LP, shadow prices equal the negation of the
values of dual variables in the dual optimal solution.
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Shadow prices

An example

I What are the shadow prices of
the two functional constraints?

max
s.t.

3x1 + 5x2
2x1 + 3x2 ≤ 25
x1 + 2x2 ≤ 15

xi ≥ 0 ∀i = 1, 2.
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Shadow prices

An example

I We solve the dual LP

max
s.t.

25y1 + 15y2
2y1 + y2 ≥ 3
3y1 + 2y2 ≥ 5

yi ≥ 0 ∀i = 1, 2.

The dual optimal solution is
y∗ = (1, 1).

I So shadow prices are 1 and 1 for
primal constraints 1 and 2,
respectively.
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