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Mixed strategies

Mixed strategy

I Choosing a single action deterministically is said to implement a
pure strategy.

I A mixed strategy for player i is a probability distribution
over the strategy space Si.
I She randomizes her choice of actions with the distribution.
I E.g., in the matching penny game, player 1’s mixed strategy is a

probability distribution (q, 1− q), where Pr(Head) = q and
Pr(Tail) = 1− q.

I Formally, if all the strategy spaces are finite and of size Ki:

Definition 1

A mixed strategy for player i is a vector pi = (pi1, ..., piKi),
where 0 ≤ pij ≤ 1 for all j = 1, ...,Ki and

∑Ki
j=1 pij = 1.



Operations Research, Spring 2013 – Game Theory: Static Games (Part 2) 4 / 29

Mixed strategies

Mixed-strategy Nash equilibrium

I A profile is a mixed-strategy Nash equilibrium if no player
can unilaterally deviate (modify her own mixed strategy) and
obtain a strictly higher expected utility.

I Let’s use the matching penny game as an example.

Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1

I Let (q, 1− q) be player 1’s mixed strategy.
I Let (r, 1− r) be player 2’s mixed strategy.
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Mixed strategies

Mixed-strategy Nash equilibrium
I Under their strategies, player 1 will earn:

I u1(H,H) = 1 with probability qr.
I u1(H,T ) = −1 with probability q(1− r).
I u1(T,H) = −1 with probability (1− q)r.
I u1(T, T ) = 1 with probability (1− q)(1− r).

I Player 1’s expected utility is

v1(q, r) = E[u1(q, r)]

= qru1(H,H) + q(1− r)u1(H,T )

+ (1− q)ru1(T,H) + (1− q)(1− r)u1(T, T )

= qr + (1− q)(1− r)− q(1− r)− (1− q)r

= 4qr − 2q − 2r + 1 = 2q(2r − 1)− 2r + 1.

I Similarly, player 2’s expected utility is

v2(q, r) = −4qr + 2q + 2r − 1 = 2r(−2q + 1) + 2q − 1.
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Mixed strategies

Mixed-strategy Nash equilibrium
I For player 1, let q∗ = R1(r) be the best response that maximizes

v1(q, r) = 2q(2r − 1)− 2r + 1.

I If r < 1
2 , R1(r) = 0.

I If r > 1
2 , R1(r) = 1.

I If r = 1
2 , R1(r) = [0, 1] (q does not matter).
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Mixed strategies

Mixed-strategy Nash equilibrium

I For player 2, the best response that maximizes

v2(q, r) = −4qr + 2q + 2r − 1 = 2r(−2q + 1) + 2q − 1.

is r∗ = R2(q) = 1 if q < 1
2 , 0 if q > 1

2 , and [1, 0] if q = 1
2 .

I The unique mixed-strategy Nash equilibrium is (q∗, r∗) = (1
2 ,

1
2).
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Mixed strategies

BoS

I Consider the game BoS as another example.

Bach Stravinsky

Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

I There are two pure-strategy Nash equilibria. Which two?
I They are also mixed-strategy Nash equilibria.
I Is there other mixed-strategy Nash equilibrium?

I Mixed strategies:
I Let (q, 1− q) be player 1’s mixed strategy: Pr(B) = q = 1− Pr(S).
I Let (r, 1− r) be player 2’s mixed strategy: Pr(B) = r = 1− Pr(S).
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Mixed strategies

BoS

Bach Stravinsky

Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

I Player 1’s expected utility is q(3r − 1) + 1− r.

I Player 2’s expected utility is r(3q − 2) + 2(1− q).

I The best response functions are

R1(r) =


0 if r < 1

3

1 if r > 1
3

[1,0] if r = 1
3

and R2(q) =


0 if r < 2

3

1 if r > 2
3

[1,0] if r = 2
3

.
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Mixed strategies

BoS

I The two best response curves have three intersections!

I So there are three mixed-strategy Nash equilibria:
I (q∗, r∗) = (0, 0), ( 2

3 ,
1
3 ), and (1, 1).

I Two of them are pure-strategy Nash equilibria: (0, 0) means both
choosing S and (1, 1) means both choosing B.
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Mixed strategies

Mixed strategies over more actions

I Consider the game “Rock, paper, scissor”:

R P S

R 0, 0 −1, 1 1,−1

P 1,−1 0, 0 −1, 1

S −1, 1 1,−1 0, 0

I When a player has three actions, a mixed strategy is described
with two variables.
I E.g., player 1’s mixed strategy is (q1, q2, 1− q1 − q2).

I When a player’s action space is infinite (e.g., those players in the
Cournot competition), a mixed strategy is a continuous
probability distribution.
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Mixed strategies

Existence of (mixed-strategy) Nash equilibrium

I In his work in 1950, John Nash proved the following theorem
regarding the existence of Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the
action spaces are all finite, there exists at least one
mixed-strategy Nash equilibrium.

I This is a sufficient condition. Is it necessary?
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Mixed strategies

Road map

I Mixed strategies.
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Mixed strategies

Zero-sum games

I For some games, one’s success is the other one’s failure.
I When one earns $1, the other one loses $1.

I These games are called zero-sum games.
I The sum of all players’ payoffs are always zero under any action

profile is zero.

I What is the optimal strategy in a zero-sum game?
I One’s optimal strategy is to destroy the other one.
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Mixed strategies

Zero-sum games

I As an example, the following game is a zero-sum game:

L C R

T 4,−4 4,−4 10,−10

M 2,−2 3,−3 1,−1

B 6,−6 5,−5 7,−7

I For a zero-sum game, we typically remove player 2’s payoff:

L C R

T 4 4 10

M 2 3 1

B 6 5 7

I Player 1 wants to maximize her payoff.
I Player 2 wants to minimize player 1’s payoff.
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Mixed strategies

Player 1’s problem

I How to solve a zero-sum game?
I The idea of Nash equilibrium still applies. However, the unique

structure of zero-sum games allows us to solve them differently.

I Player 1 thinks:
I If I choose T, he will choose L or C. I get 4.
I If I choose M, he will choose R. I get 1.
I If I choose B, he will choose C. I get 5.

I For each of player 1’s actions, what he may get in equilibrium
can only be the row minimum.

L C R Row min

T 4 4 10 4

M 2 3 1 1

B 6 5 7 5
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Mixed strategies

Player 2’s problem
I Player 2 thinks:

I If I choose L, she will choose B. She get 6.
I If I choose C, she will choose B. She get 5.
I If I choose R, she will choose T. She get 10.

I For each of player 2’s actions, what player 1 may get in
equilibrium must be the column maximum.

L C R Row min

T 4 4 10 4

M 2 3 1 1

B 6 5 7 5

Column max 6 5 10

I In equilibrium, player 1 maximizes the row minimum and
player 2 minimizes the column maximum.

I The unique Nash equilibrium is (B, C).
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Mixed strategies

Saddle points

I For a zero-sum game, a pure-strategy Nash equilibrium is called
a saddle point.

I While there may not exist a pure-strategy Nash equilibrium for a
general game, this also holds for a zero-sum game.
I Any example?

I Is there any condition for a pure-strategy Nash equilibrium to
exist in a zero-sum game?
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Mixed strategies

Existence of saddle points

L C R R. min

T 4 4 10 4

M 2 3 1 2

B 6 5 7 5

C. max 6 5 10

H T R. min

H 1 −1 −1

T −1 1 −1

C. max 1 1

I For the previous example with a pure-strategy Nash equilibrium,

max{row minima} = 5 = min{column maxima}.

I For the zero-sum game matching penny with no pure-strategy
Nash equilibrium,

max{row minima} = 1 6= −1 = min{column maxima}.
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Mixed strategies

Existence of saddle points

I Is there any relationship between the existence of saddle points
and the values of max{row minima} and min{column maxima}?

Proposition 2

For a two-player zero-sum game, if

max{row minima} = min{column maxima},

an intersection of a max{row minima} and a
min{column maxima} is a saddle point.

I To prove this, we rely on linear programming. In particular, we
will apply strong duality.
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Zero-sum games and LP duality
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Zero-sum games and LP duality

Mixed strategies for zero-sum games

I For a zero-sum game:
I A pure-strategy Nash equilibrium (i.e., saddle point) may not exist.
I A mixed-strategy Nash equilibrium must exist.

I How do players choose their mixed strategies?

I Recall that when a saddle point exists:
I Player 1 chooses a row to maximize row minimum.
I Player 2 chooses a column to minimize the column maximum.

I In general:
I Player 1 chooses a row to maximize the expectation of row payoffs

under player 2’s mixed strategy.
I Player 2 chooses a column to minimize the expectation of column

payoffs under player 1’s mixed strategy.
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Zero-sum games and LP duality

Mixed strategies for zero-sum games

I Suppose player 1’s mixed strategy is x = (x1, x2, x3):

L C R

T (with probability x1) 4 4 10

M (with probability x2) 2 3 1

B (with probability x3) 6 5 7

Expected column payoff 4x1 + 2x2 + 6x3 4x1 + 3x2 + 5x3 10x1 + x2 + 7x3

I Player 2 will find the smallest expected column maximum.

I Therefore, Player 1 should solve

max min{4x1 + 2x2 + 6x3, 4x1 + 3x2 + 5x3, 10x1 + x2 + 7x3}
s.t. x1 + x2 + x3 = 1

xi ≥ 0 ∀i = 1, ..., 3.
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Zero-sum games and LP duality

Linearization of player 1’s problem

max min{4x1 + 2x2 + 6x3, 4x1 + 3x2 + 5x3, 10x1 + x2 + 7x3}
s.t. x1 + x2 + x3 = 1

xi ≥ 0 ∀i = 1, ..., 3.

I Player 1’s problem is nonlinear.

I However, it is equivalent to the following linear program:

max v

s.t. v ≤ 4x1 + 2x2 + 6x3

v ≤ 4x1 + 3x2 + 5x3

v ≤ 10x1 + x2 + 7x3

x1 + x2 + x3 = 1

xi ≥ 0 ∀i = 1, ..., 3.
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Zero-sum games and LP duality

Player 2’s problem

I Suppose player 2’s mixed strategy is y = (y1, y2, y3).

I Following the same logic, player 2 solves the linear program

min u

s.t. u ≥ 4y1 + 4y2 + 10y3

u ≥ 2y1 + 3y2 + y3

u ≥ 6y1 + 5y2 + 7y3

y1 + y2 + y3 = 1

yi ≥ 0 ∀i = 1, ..., 3.
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Zero-sum games and LP duality

Duality between the two players

I The two players’ problems can be rewritten to

z∗ = max
s.t.

v
−4x1 − 2x2 − 6x3 + v ≤ 0
−4x1 − 3x2 − 5x3 + v ≤ 0
−10x1 − x2 − 7x3 + v ≤ 0

x1 + x2 + x3 = 1

x1 ≥ 0, x2 ≥ 0, x3 ≥ 0, v urs.

w∗ = min
s.t.

u
−4y1 − 4y2 − 10y3 + u ≥ 0
−2y1 − 3y2 − y3 + u ≥ 0
−6y1 − 5y2 − 7y3 + u ≥ 0

y1 + y2 + y3 = 1

y1 ≥ 0, y2 ≥ 0, y3 ≥ 0, u urs.

I This is a primal-dual pair!
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Zero-sum games and LP duality

Duality between the two players

I For a two-player zero-sum game, if an LP finds player 1’s
optimal strategy, its dual finds player 2’s optimal strategy.
I A pair of primal and dual optimal solutions x∗ and y∗ form a

mixed-strategy Nash equilibrium.

I Some examples in business:
I Two competing retailers sharing a fixed amount of consumers.
I A retailer and a manufacturer negotiating the price of a product.

I Can any of these two LPs be infeasible or unbounded?
I No! Because a mixed-strategy Nash equilibrium always exists.
I So these two LPs must both have optimal solutions.
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Zero-sum games and LP duality

Existence of saddle points

I Now we are ready to prove the theorem regarding the existence
of saddle points:

For a two-player zero-sum game, if

max{row minima} = min{column maxima},

an intersection of a max{row minima} and a
min{column maxima} is a saddle point.
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Zero-sum games and LP duality

Existence of saddle points

I First of all, note that choosing a single row or column
corresponds to a feasible primal or dual solution:
I Choosing a single row is for player 1 to implement a pure strategy

(by setting the corresponding xi = 1 and xk = 0 for all k 6= i).
I This is a feasible solution to the primal LP.
I Similarly, choosing a single column corresponds to a feasible

solution to the dual LP with yj = 1 and yk = 0 for all k 6= j.

I Suppose max{row minima} = min{column maxima} is satisfied:
I Suppose this occurs at row i and column j.
I Let x∗ be the primal solution with x∗

i = 1 and x∗
k = 0 for all k 6= i.

I Let y∗ be the dual solution with y∗j = 1 and y∗k = 0 for all k 6= j.
I As the condition is satisfied, z∗ = w∗ for two feasible solutions. By

strong duality, these two feasible solutions are both optimal.

I A pair of primal-dual optimal solutions form a mixed-strategy
Nash equilibrium. As x∗i = y∗j = 1, x∗ and y∗ form a saddle point.
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