IM2010: Operations Research Game Theory: Static Games (Part 2) (Chapter 14 and Gibbons (1992))

Ling-Chieh Kung

Department of Information Management National Taiwan University

May 30, 2013

Road map

- ► Mixed strategies.
- ▶ Zero-sum games.
- ▶ Zero-sum games and LP duality.

Mixed strategy

- Choosing a single action deterministically is said to implement a pure strategy.
- A <u>mixed strategy</u> for player i is a probability distribution over the strategy space S_i .
 - ▶ She **randomizes** her choice of actions with the distribution.
 - E.g., in the matching penny game, player 1's mixed strategy is a probability distribution (q, 1 q), where Pr(Head) = q and Pr(Tail) = 1 q.
- Formally, if all the strategy spaces are finite and of size K_i :

Definition 1

A mixed strategy for player i is a vector $p_i = (p_{i1}, ..., p_{iK_i})$, where $0 \le p_{ij} \le 1$ for all $j = 1, ..., K_i$ and $\sum_{j=1}^{K_i} p_{ij} = 1$.

Mixed-strategy Nash equilibrium

- ► A profile is a **mixed-strategy Nash equilibrium** if no player can unilaterally deviate (modify her own mixed strategy) and obtain a strictly higher **expected** utility.
- ▶ Let's use the matching penny game as an example.

	Head	Tail
Head	1, -1	-1, 1
Tail	-1, 1	1, -1

- Let (q, 1-q) be player 1's mixed strategy.
- Let (r, 1 r) be player 2's mixed strategy.

Mixed-strategy Nash equilibrium

▶ Under their strategies, player 1 will earn:

- $u_1(H, H) = 1$ with probability qr.
- $u_1(H,T) = -1$ with probability q(1-r).
- $u_1(T, H) = -1$ with probability (1 q)r.
- $u_1(T,T) = 1$ with probability (1-q)(1-r).

Player 1's expected utility is

$$v_1(q,r) = \mathbb{E}[u_1(q,r)]$$

= $qru_1(H,H) + q(1-r)u_1(H,T)$
+ $(1-q)ru_1(T,H) + (1-q)(1-r)u_1(T,T)$
= $qr + (1-q)(1-r) - q(1-r) - (1-q)r$
= $4qr - 2q - 2r + 1 = 2q(2r-1) - 2r + 1.$

Similarly, player 2's expected utility is

$$v_2(q,r) = -4qr + 2q + 2r - 1 = 2r(-2q + 1) + 2q - 1.$$

Mixed-strategy Nash equilibrium

▶ For player 1, let $q^* = R_1(r)$ be the best response that maximizes

$$v_1(q,r) = 2q(2r-1) - 2r + 1.$$

Mixed-strategy Nash equilibrium

▶ For player 2, the best response that maximizes

$$v_{2}(q,r) = -4qr + 2q + 2r - 1 = 2r(-2q + 1) + 2q - 1.$$

is $r^{*} = R_{2}(q) = 1$ if $q < \frac{1}{2}$, 0 if $q > \frac{1}{2}$, and $[1,0]$ if $q = \frac{1}{2}$.
(Head)
 r
 (Head)
 r
 $R_{1}(r)$
 $\frac{1}{2}$
 (Tail)
 $\frac{1}{2}$
 (Head)

▶ The unique mixed-strategy Nash equilibrium is $(q^*, r^*) = (\frac{1}{2}, \frac{1}{2})$.

BoS

▶ Consider the game BoS as another example.

_

	Bach	Stravinsky
Bach	2,1	0, 0
Stravinsky	0,0	1, 2

- ▶ There are two pure-strategy Nash equilibria. Which two?
 - ▶ They are also mixed-strategy Nash equilibria.
 - ▶ Is there other mixed-strategy Nash equilibrium?
- Mixed strategies:
 - Let (q, 1-q) be player 1's mixed strategy: Pr(B) = q = 1 Pr(S).
 - Let (r, 1 r) be player 2's mixed strategy: Pr(B) = r = 1 Pr(S).

BoS

	Bach	Stravinsky
Bach	2, 1	0, 0
Stravinsky	0, 0	1, 2

- ▶ Player 1's expected utility is q(3r-1) + 1 r.
- ▶ Player 2's expected utility is r(3q-2) + 2(1-q).
- ▶ The best response functions are

$$R_1(r) = \begin{cases} 0 & \text{if } r < \frac{1}{3} \\ 1 & \text{if } r > \frac{1}{3} \\ [1,0] & \text{if } r = \frac{1}{3} \end{cases} \text{ and } R_2(q) = \begin{cases} 0 & \text{if } r < \frac{2}{3} \\ 1 & \text{if } r > \frac{2}{3} \\ [1,0] & \text{if } r = \frac{2}{3} \end{cases}$$

٠

BoS

▶ The two best response curves have three intersections!

- ▶ So there are three mixed-strategy Nash equilibria:
 - $(q^*, r^*) = (0, 0), (\frac{2}{3}, \frac{1}{3}), \text{ and } (1, 1).$
 - Two of them are pure-strategy Nash equilibria: (0,0) means both choosing S and (1,1) means both choosing B.

Mixed strategies over more actions

▶ Consider the game "Rock, paper, scissor":

- When a player has three actions, a mixed strategy is described with two variables.
 - E.g., player 1's mixed strategy is $(q_1, q_2, 1 q_1 q_2)$.
- When a player's action space is infinite (e.g., those players in the Cournot competition), a mixed strategy is a continuous probability distribution.

Existence of (mixed-strategy) Nash equilibrium

▶ In his work in 1950, John Nash proved the following theorem regarding the **existence** of Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action spaces are all finite, there exists at least one mixed-strategy Nash equilibrium.

▶ This is a sufficient condition. Is it necessary?

Road map

- ▶ Mixed strategies.
- ► Zero-sum games.
- ▶ Zero-sum games and LP duality.

Zero-sum games

- ► For some games, one's **success** is the other one's **failure**.
 - ▶ When one earns \$1, the other one loses \$1.
- ▶ These games are called **zero-sum games**.
 - ▶ The sum of all players' payoffs are always zero under any action profile is zero.
- ▶ What is the optimal strategy in a zero-sum game?
 - One's optimal strategy is to **destroy** the other one.

Zero-sum games

▶ As an example, the following game is a zero-sum game:

▶ For a zero-sum game, we typically remove player 2's payoff:

	L	C	R
Т	4	4	10
Μ	2	3	1
В	6	5	7

- Player 1 wants to maximize her payoff.
- Player 2 wants to minimize player 1's payoff.

Player 1's problem

- ▶ How to solve a zero-sum game?
 - ▶ The idea of Nash equilibrium still applies. However, the unique structure of zero-sum games allows us to solve them differently.
- ▶ Player 1 thinks:
 - ▶ If I choose T, he will choose L or C. I get 4.
 - ▶ If I choose M, he will choose R. I get 1.
 - ▶ If I choose B, he will choose C. I get 5.
- ► For each of player 1's actions, what he may get in equilibrium can only be the **row minimum**.

L C	R F	Row min
$T \mid 4 \mid 4$	10	4
M 2 3	1	1
$\mathbf{B} \mid 6 \mid 5$	7	5

Player 2's problem

- ► Player 2 thinks:
 - ▶ If I choose L, she will choose B. She get 6.
 - ▶ If I choose C, she will choose B. She get 5.
 - ▶ If I choose R, she will choose T. She get 10.
- ► For each of player 2's actions, what player 1 may get in equilibrium must be the **column maximum**.

	\mid L \mid C \mid R \mid Row min
Т	
М	$\left \begin{array}{c cccccccccccccccccccccccccccccccccc$
В	6 5 7 5
Column max	: 6 5 10

- ▶ In equilibrium, player 1 maximizes the row minimum and player 2 minimizes the column maximum.
- The unique Nash equilibrium is (B, C).

Saddle points

- ▶ For a zero-sum game, a pure-strategy Nash equilibrium is called a saddle point.
- ▶ While there may not exist a pure-strategy Nash equilibrium for a general game, this also holds for a zero-sum game.
 - ► Any example?
- ▶ Is there any condition for a pure-strategy Nash equilibrium to exist in a zero-sum game?

Existence of saddle points

L $ $ C $ $ R $ $ R. min	H T R. min
$\mathbf{T} \begin{array}{c c} 4 & 4 & 10 \\ \end{array} \begin{array}{c c} 4 \end{array}$	
M 2 3 1 2	$\mathbf{H} \left \begin{array}{c c} 1 \end{array} \right \begin{array}{c c} -1 \end{array} \right -1$
	T -1 1 -1
$\mathbf{B} \left \begin{array}{c c} 6 & 5 & 7 \end{array} \right 5$	
C. max 6 5 10	C. max 1 1

▶ For the previous example with a pure-strategy Nash equilibrium,

 $\max\{\text{row minima}\} = 5 = \min\{\text{column maxima}\}.$

▶ For the zero-sum game matching penny with no pure-strategy Nash equilibrium,

 $\max\{\text{row minima}\} = 1 \neq -1 = \min\{\text{column maxima}\}.$

Existence of saddle points

▶ Is there any relationship between the existence of saddle points and the values of max{row minima} and min{column maxima}?

Proposition 2

For a two-player zero-sum game, if

 $\max\{row \ minima\} = \min\{column \ maxima\},\$

an intersection of a max{row minima} and a min{column maxima} is a saddle point.

► To prove this, we rely on linear programming. In particular, we will apply **strong duality**.

21/29

Road map

- ▶ Mixed strategies.
- ▶ Zero-sum games.
- ► Zero-sum games and LP duality.

Mixed strategies for zero-sum games

▶ For a zero-sum game:

- ▶ A pure-strategy Nash equilibrium (i.e., saddle point) may not exist.
- ▶ A mixed-strategy Nash equilibrium must exist.
- ▶ How do players choose their mixed strategies?
- ▶ Recall that when a saddle point exists:
 - ▶ Player 1 chooses a row to maximize row minimum.
 - ▶ Player 2 chooses a column to minimize the column maximum.
- ▶ In general:
 - Player 1 chooses a row to maximize the expectation of row payoffs under player 2's mixed strategy.
 - Player 2 chooses a column to minimize the expectation of column payoffs under player 1's mixed strategy.

Mixed strategies for zero-sum games

• Suppose player 1's mixed strategy is $x = (x_1, x_2, x_3)$:

I	\mathbf{L}	\mathbf{C}	R	
T (with probability x_1)	4	4	10	
M (with probability x_2)	2	3	1	
B (with probability x_3)	6	5	7	

Expected column payoff $| 4x_1 + 2x_2 + 6x_3 | 4x_1 + 3x_2 + 5x_3 | 10x_1 + x_2 + 7x_3$

- ▶ Player 2 will find the smallest expected column maximum.
- ▶ Therefore, Player 1 should solve

 $\begin{array}{ll} \max & \min\{4x_1+2x_2+6x_3, 4x_1+3x_2+5x_3, 10x_1+x_2+7x_3\}\\ \text{s.t.} & x_1+x_2+x_3=1\\ & x_i\geq 0 \quad \forall i=1,...,3. \end{array}$

Linearization of player 1's problem

$$\max \min\{4x_1 + 2x_2 + 6x_3, 4x_1 + 3x_2 + 5x_3, 10x_1 + x_2 + 7x_3\}$$

s.t. $x_1 + x_2 + x_3 = 1$
 $x_i \ge 0 \quad \forall i = 1, ..., 3.$

- ▶ Player 1's problem is nonlinear.
- ▶ However, it is equivalent to the following linear program:

$$\begin{array}{ll} \max & v \\ \text{s.t.} & v \leq 4x_1 + 2x_2 + 6x_3 \\ & v \leq 4x_1 + 3x_2 + 5x_3 \\ & v \leq 10x_1 + x_2 + 5x_3 \\ & x_1 + x_2 + x_3 = 1 \\ & x_i \geq 0 \quad \forall i = 1, ..., 3. \end{array}$$

Player 2's problem

- Suppose player 2's mixed strategy is $y = (y_1, y_2, y_3)$.
- ▶ Following the same logic, player 2 solves the linear program

 $\begin{array}{ll} \min & u \\ \text{s.t.} & u \geq 4y_1 + 4y_2 + 10y_3 \\ & u \geq 2y_1 + 3y_2 + y_3 \\ & u \geq 6y_1 + 5y_2 + 7y_3 \\ & y_1 + y_2 + y_3 = 1 \\ & y_i \geq 0 \quad \forall i = 1, ..., 3. \end{array}$

Duality between the two players

▶ The two players' problems can be rewritten to

$$z^* = \max \qquad v$$

s.t.
$$-4x_1 - 2x_2 - 6x_3 + v \leq 0$$
$$-4x_1 - 3x_2 - 5x_3 + v \leq 0$$
$$-10x_1 - x_2 - 7x_3 + v \leq 0$$
$$x_1 + x_2 + x_3 = 1$$
$$x_1 \geq 0, \ x_2 \geq 0, \ x_3 \geq 0, \ v \text{ urs.}$$

$$w^* = \min \qquad u$$

s.t.
$$-4y_1 - 4y_2 - 10y_3 + u \ge 0$$

$$-2y_1 - 3y_2 - y_3 + u \ge 0$$

$$-6y_1 - 5y_2 - 7y_3 + u \ge 0$$

$$y_1 + y_2 + y_3 = 1$$

$$y_1 \ge 0, y_2 \ge 0, y_3 \ge 0, u \text{ urs.}$$

This is a primal-dual pair!

Duality between the two players

- For a two-player zero-sum game, if an LP finds player 1's optimal strategy, its dual finds player 2's optimal strategy.
 - ► A pair of primal and dual optimal solutions x^{*} and y^{*} form a mixed-strategy Nash equilibrium.
- ▶ Some examples in business:
 - ▶ Two competing retailers sharing a fixed amount of consumers.
 - A retailer and a manufacturer negotiating the price of a product.
- ▶ Can any of these two LPs be infeasible or unbounded?
 - ▶ No! Because a mixed-strategy Nash equilibrium always exists.
 - ▶ So these two LPs must both have optimal solutions.

Existence of saddle points

Now we are ready to prove the theorem regarding the existence of saddle points:

For a two-player zero-sum game, if

```
\max\{row \ minima\} = \min\{column \ maxima\},\
```

an intersection of a max{row minima} and a min{column maxima} is a saddle point.

Existence of saddle points

- ▶ First of all, note that choosing a single row or column corresponds to a feasible primal or dual solution:
 - Choosing a single row is for player 1 to implement a pure strategy (by setting the corresponding $x_i = 1$ and $x_k = 0$ for all $k \neq i$).
 - This is a feasible solution to the primal LP.
 - Similarly, choosing a single column corresponds to a feasible solution to the dual LP with $y_j = 1$ and $y_k = 0$ for all $k \neq j$.
- Suppose $\max\{\text{row minima}\} = \min\{\text{column maxima}\}$ is satisfied:
 - Suppose this occurs at row i and column j.
 - Let x^* be the primal solution with $x_i^* = 1$ and $x_k^* = 0$ for all $k \neq i$.
 - Let y^* be the dual solution with $y_j^* = 1$ and $y_k^* = 0$ for all $k \neq j$.
 - As the condition is satisfied, $z^* = w^*$ for two feasible solutions. By strong duality, these two feasible solutions are both optimal.
- ▶ A pair of primal-dual optimal solutions form a mixed-strategy Nash equilibrium. As $x_i^* = y_j^* = 1$, x^* and y^* form a saddle point.