IM2010: Operations Research Game Theory: Static Games (Part 2) (Chapter 14 and Gibbons (1992))

Ling-Chieh Kung
Department of Information Management
National Taiwan University

May 30, 2013

Road map

- Mixed strategies.
- Zero-sum games.
- Zero-sum games and LP duality.

Mixed strategy

- Choosing a single action deterministically is said to implement a pure strategy.
- A mixed strategy for player i is a probability distribution over the strategy space S_{i}.
- She randomizes her choice of actions with the distribution.
- E.g., in the matching penny game, player 1's mixed strategy is a probability distribution $(q, 1-q)$, where $\operatorname{Pr}($ Head $)=q$ and $\operatorname{Pr}($ Tail $)=1-q$.
- Formally, if all the strategy spaces are finite and of size K_{i} :

Definition 1

A mixed strategy for player i is a vector $p_{i}=\left(p_{i 1}, \ldots, p_{i K_{i}}\right)$, where $0 \leq p_{i j} \leq 1$ for all $j=1, \ldots, K_{i}$ and $\sum_{j=1}^{K_{i}} p_{i j}=1$.

Mixed-strategy Nash equilibrium

- A profile is a mixed-strategy Nash equilibrium if no player can unilaterally deviate (modify her own mixed strategy) and obtain a strictly higher expected utility.
- Let's use the matching penny game as an example.

	Head	Tail
Head	$1,-1$	$-1,1$
Tail	$-1,1$	$1,-1$

- Let $(q, 1-q)$ be player 1's mixed strategy.
- Let $(r, 1-r)$ be player 2's mixed strategy.

Mixed-strategy Nash equilibrium

- Under their strategies, player 1 will earn:
- $u_{1}(H, H)=1$ with probability $q r$.
- $u_{1}(H, T)=-1$ with probability $q(1-r)$.
- $u_{1}(T, H)=-1$ with probability $(1-q) r$.
- $u_{1}(T, T)=1$ with probability $(1-q)(1-r)$.
- Player 1's expected utility is

$$
\begin{aligned}
& v_{1}(q, r)=\mathbb{E}\left[u_{1}(q, r)\right] \\
= & q r u_{1}(H, H)+q(1-r) u_{1}(H, T) \\
& +(1-q) r u_{1}(T, H)+(1-q)(1-r) u_{1}(T, T) \\
= & q r+(1-q)(1-r)-q(1-r)-(1-q) r \\
= & 4 q r-2 q-2 r+1=2 q(2 r-1)-2 r+1 .
\end{aligned}
$$

- Similarly, player 2's expected utility is

$$
v_{2}(q, r)=-4 q r+2 q+2 r-1=2 r(-2 q+1)+2 q-1 .
$$

Mixed-strategy Nash equilibrium

- For player 1 , let $q^{*}=R_{1}(r)$ be the best response that maximizes

$$
v_{1}(q, r)=2 q(2 r-1)-2 r+1 .
$$

- If $r<\frac{1}{2}, R_{1}(r)=0$.
- If $r>\frac{1}{2}, R_{1}(r)=1$.
- If $r=\frac{1}{2}, R_{1}(r)=[0,1]$ (q does not matter).

Mixed-strategy Nash equilibrium

- For player 2, the best response that maximizes

$$
v_{2}(q, r)=-4 q r+2 q+2 r-1=2 r(-2 q+1)+2 q-1 .
$$

$$
\text { is } r^{*}=R_{2}(q)=1 \text { if } q<\frac{1}{2}, 0 \text { if } q>\frac{1}{2} \text {, and [1,0] if } q=\frac{1}{2} \text {. }
$$

- The unique mixed-strategy Nash equilibrium is $\left(q^{*}, r^{*}\right)=\left(\frac{1}{2}, \frac{1}{2}\right)$.

BoS

- Consider the game BoS as another example.

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

- There are two pure-strategy Nash equilibria. Which two?
- They are also mixed-strategy Nash equilibria.
- Is there other mixed-strategy Nash equilibrium?
- Mixed strategies:
- Let $(q, 1-q)$ be player 1's mixed strategy: $\operatorname{Pr}(B)=q=1-\operatorname{Pr}(S)$.
- Let $(r, 1-r)$ be player 2 's mixed strategy: $\operatorname{Pr}(B)=r=1-\operatorname{Pr}(S)$.

BoS

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

- Player 1's expected utility is $q(3 r-1)+1-r$.
- Player 2's expected utility is $r(3 q-2)+2(1-q)$.
- The best response functions are

$$
R_{1}(r)=\left\{\begin{array}{ll}
0 & \text { if } r<\frac{1}{3} \\
1 & \text { if } r>\frac{1}{3} \\
{[1,0]} & \text { if } r=\frac{1}{3}
\end{array} \text { and } R_{2}(q)=\left\{\begin{array}{ll}
0 & \text { if } r<\frac{2}{3} \\
1 & \text { if } r>\frac{2}{3} \\
{[1,0]} & \text { if } r=\frac{2}{3}
\end{array} .\right.\right.
$$

BoS

- The two best response curves have three intersections!

- So there are three mixed-strategy Nash equilibria:
- $\left(q^{*}, r^{*}\right)=(0,0),\left(\frac{2}{3}, \frac{1}{3}\right)$, and $(1,1)$.
- Two of them are pure-strategy Nash equilibria: $(0,0)$ means both choosing S and $(1,1)$ means both choosing B.

Mixed strategies over more actions

- Consider the game "Rock, paper, scissor":

	R	P	S
R	0,0	$-1,1$	$1,-1$
P	$1,-1$	0,0	$-1,1$
S	$-1,1$	$1,-1$	0,0

- When a player has three actions, a mixed strategy is described with two variables.
- E.g., player 1's mixed strategy is $\left(q_{1}, q_{2}, 1-q_{1}-q_{2}\right)$.
- When a player's action space is infinite (e.g., those players in the Cournot competition), a mixed strategy is a continuous probability distribution.

Existence of (mixed-strategy) Nash equilibrium

- In his work in 1950, John Nash proved the following theorem regarding the existence of Nash equilibrium:

Proposition 1

For a static game, if the number of players is finite and the action spaces are all finite, there exists at least one mixed-strategy Nash equilibrium.

- This is a sufficient condition. Is it necessary?

Road map

- Mixed strategies.
- Zero-sum games.
- Zero-sum games and LP duality.

Zero-sum games

- For some games, one's success is the other one's failure.
- When one earns $\$ 1$, the other one loses $\$ 1$.
- These games are called zero-sum games.
- The sum of all players' payoffs are always zero under any action profile is zero.
- What is the optimal strategy in a zero-sum game?
- One's optimal strategy is to destroy the other one.

Zero-sum games

- As an example, the following game is a zero-sum game:

	L	C	R
T	$4,-4$	$4,-4$	$10,-10$
M	$2,-2$	$3,-3$	$1,-1$
B	$6,-6$	$5,-5$	$7,-7$

- For a zero-sum game, we typically remove player 2's payoff:

	L	C	R
T	4	4	10
M	2	3	1
B	6	5	7

- Player 1 wants to maximize her payoff.
- Player 2 wants to minimize player 1's payoff.

Player 1's problem

- How to solve a zero-sum game?
- The idea of Nash equilibrium still applies. However, the unique structure of zero-sum games allows us to solve them differently.
- Player 1 thinks:
- If I choose T, he will choose L or C. I get 4.
- If I choose M, he will choose R. I get 1 .
- If I choose B, he will choose C. I get 5 .
- For each of player 1's actions, what he may get in equilibrium can only be the row minimum.

	L	C	R	Row min
T	4	4	10	4
M	2	3	1	1
B	6	5	7	5

Player 2's problem

- Player 2 thinks:
- If I choose L, she will choose B. She get 6 .
- If I choose C, she will choose B. She get 5 .
- If I choose R, she will choose T. She get 10 .
- For each of player 2's actions, what player 1 may get in equilibrium must be the column maximum.

	L	C	R	Row min
T	4	4	10	4
M	2	3	1	1
B	6	5	7	5
Column max	6	5	10	

- In equilibrium, player 1 maximizes the row minimum and player 2 minimizes the column maximum.
- The unique Nash equilibrium is (B, C).

Saddle points

- For a zero-sum game, a pure-strategy Nash equilibrium is called a saddle point.
- While there may not exist a pure-strategy Nash equilibrium for a general game, this also holds for a zero-sum game.
- Any example?
- Is there any condition for a pure-strategy Nash equilibrium to exist in a zero-sum game?

Existence of saddle points

	L	C	R	R. min
T	4	\| 4	\| 10	4
M	2	\| 3	1	2
B	6	\| 5	\| 7	5
C. max	6	5	\| 10	

	H	T	R. min
H	1	1	-1

- For the previous example with a pure-strategy Nash equilibrium,

$$
\max \{\text { row minima }\}=5=\min \{\text { column maxima }\} .
$$

- For the zero-sum game matching penny with no pure-strategy Nash equilibrium, $\max \{$ row minima $\}=1 \neq-1=\min \{$ column maxima $\}$.

Existence of saddle points

- Is there any relationship between the existence of saddle points and the values of $\max \{$ row minima $\}$ and $\min \{$ column maxima\}?

Proposition 2

For a two-player zero-sum game, if

$$
\max \{\text { row minima }\}=\min \{\text { column maxima }\},
$$

an intersection of $a \max \{$ row minima $\}$ and a $\min \{$ column maxima $\}$ is a saddle point.

- To prove this, we rely on linear programming. In particular, we will apply strong duality.

Road map

- Mixed strategies.
- Zero-sum games.
- Zero-sum games and LP duality.

Mixed strategies for zero-sum games

- For a zero-sum game:
- A pure-strategy Nash equilibrium (i.e., saddle point) may not exist.
- A mixed-strategy Nash equilibrium must exist.
- How do players choose their mixed strategies?
- Recall that when a saddle point exists:
- Player 1 chooses a row to maximize row minimum.
- Player 2 chooses a column to minimize the column maximum.
- In general:
- Player 1 chooses a row to maximize the expectation of row payoffs under player 2's mixed strategy.
- Player 2 chooses a column to minimize the expectation of column payoffs under player 1's mixed strategy.

Mixed strategies for zero-sum games

- Suppose player 1's mixed strategy is $x=\left(x_{1}, x_{2}, x_{3}\right)$:

	L	C	R
T (with probability x_{1})	4	4	10
M (with probability x_{2})	2	3	1
B (with probability $\left.x_{3}\right)$	6	5	7
Expected column payoff	$4 x_{1}+2 x_{2}+6 x_{3}$	$4 x_{1}+3 x_{2}+5 x_{3}$	$10 x_{1}+x_{2}+7 x_{3}$

- Player 2 will find the smallest expected column maximum.
- Therefore, Player 1 should solve

$$
\begin{aligned}
\max & \min \left\{4 x_{1}+2 x_{2}+6 x_{3}, 4 x_{1}+3 x_{2}+5 x_{3}, 10 x_{1}+x_{2}+7 x_{3}\right\} \\
\text { s.t. } & x_{1}+x_{2}+x_{3}=1 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 3
\end{aligned}
$$

Linearization of player 1's problem

$$
\begin{aligned}
\max & \min \left\{4 x_{1}+2 x_{2}+6 x_{3}, 4 x_{1}+3 x_{2}+5 x_{3}, 10 x_{1}+x_{2}+7 x_{3}\right\} \\
\mathrm{s.t.} & x_{1}+x_{2}+x_{3}=1 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 3
\end{aligned}
$$

- Player 1's problem is nonlinear.
- However, it is equivalent to the following linear program:

$$
\begin{array}{cl}
\max & v \\
\text { s.t. } & v \leq 4 x_{1}+2 x_{2}+6 x_{3} \\
& v \leq 4 x_{1}+3 x_{2}+5 x_{3} \\
& v \leq 10 x_{1}+x_{2}+7 x_{3} \\
& x_{1}+x_{2}+x_{3}=1 \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 3
\end{array}
$$

Player 2's problem

- Suppose player 2's mixed strategy is $y=\left(y_{1}, y_{2}, y_{3}\right)$.
- Following the same logic, player 2 solves the linear program

$$
\begin{array}{cl}
\min & u \\
\mathrm{s.t.} & u \geq 4 y_{1}+4 y_{2}+10 y_{3} \\
& u \geq 2 y_{1}+3 y_{2}+y_{3} \\
& u \geq 6 y_{1}+5 y_{2}+7 y_{3} \\
& y_{1}+y_{2}+y_{3}=1 \\
& y_{i} \geq 0 \quad \forall i=1, \ldots, 3 .
\end{array}
$$

Duality between the two players

- The two players' problems can be rewritten to

$$
\begin{aligned}
& z^{*}=\max \quad v \\
& \text { s.t. }-4 x_{1}-2 x_{2}-6 x_{3}+v \leq 0 \\
& \begin{array}{r}
-4 x_{1}-3 x_{2}-5 x_{3}+v \leq 0 \\
-10 x_{1}-x_{2}-7 x_{3}+v \leq 0
\end{array} \\
& x_{1}+x_{2}+x_{3}=1 \\
& x_{1} \geq 0, x_{2} \geq 0, x_{3} \geq 0, v \text { urs. } \\
& w^{*}=\min \quad u \\
& \text { s.t. }-4 y_{1}-4 y_{2}-10 y_{3}+u \geq 0 \\
& -2 y_{1}-3 y_{2}-y_{3}+u \geq 0 \\
& \begin{aligned}
-6 y_{1}-5 y_{2}-7 y_{3}+u & \geq 0 \\
y_{1}+y_{2}+y_{3} & =1
\end{aligned} \\
& y_{1} \geq 0, y_{2} \geq 0, y_{3} \geq 0, u \text { urs. }
\end{aligned}
$$

- This is a primal-dual pair!

Duality between the two players

- For a two-player zero-sum game, if an LP finds player 1's optimal strategy, its dual finds player 2's optimal strategy.
- A pair of primal and dual optimal solutions x^{*} and y^{*} form a mixed-strategy Nash equilibrium.
- Some examples in business:
- Two competing retailers sharing a fixed amount of consumers.
- A retailer and a manufacturer negotiating the price of a product.
- Can any of these two LPs be infeasible or unbounded?
- No! Because a mixed-strategy Nash equilibrium always exists.
- So these two LPs must both have optimal solutions.

Existence of saddle points

- Now we are ready to prove the theorem regarding the existence of saddle points:

For a two-player zero-sum game, if

$$
\max \{\text { row } \operatorname{minima}\}=\min \{\text { column maxima }\},
$$

an intersection of $a \max \{$ row minima $\}$ and a $\min \{$ column maxima $\}$ is a saddle point.

Existence of saddle points

- First of all, note that choosing a single row or column corresponds to a feasible primal or dual solution:
- Choosing a single row is for player 1 to implement a pure strategy (by setting the corresponding $x_{i}=1$ and $x_{k}=0$ for all $k \neq i$).
- This is a feasible solution to the primal LP.
- Similarly, choosing a single column corresponds to a feasible solution to the dual LP with $y_{j}=1$ and $y_{k}=0$ for all $k \neq j$.
- Suppose $\max \{$ row minima $\}=\min \{$ column maxima\} is satisfied:
- Suppose this occurs at row i and column j.
- Let x^{*} be the primal solution with $x_{i}^{*}=1$ and $x_{k}^{*}=0$ for all $k \neq i$.
- Let y^{*} be the dual solution with $y_{j}^{*}=1$ and $y_{k}^{*}=0$ for all $k \neq j$.
- As the condition is satisfied, $z^{*}=w^{*}$ for two feasible solutions. By strong duality, these two feasible solutions are both optimal.
- A pair of primal-dual optimal solutions form a mixed-strategy Nash equilibrium. As $x_{i}^{*}=y_{j}^{*}=1, x^{*}$ and y^{*} form a saddle point.

