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Dynamic games

Road map

I Dynamic games.

I Pricing in a supply chain.
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Dynamic games

Dynamic BoS

I Recall the game “Bach or Stravinsky”:

Bach Stravinsky

Bach 2, 1 0, 0

Stravinsky 0, 0 1, 2

I What if the two players make decisions sequentially rather
than simultaneously?
I What will they do in equilibrium?
I How do their payoffs change?
I Is it better to be the leader or the follower?
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Dynamic games

Dynamic BoS

I Suppose player 1 moves first.

I Instead of a game matrix, the game
can now be described by a game
tree.
I At each internal node, the label shows

who is moving.
I At each link, the label shows an action.
I At each leaf, the numbers show the

payoffs.

I The games is played from the root to
leaves.
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Dynamic games

Dynamic BoS: Player 2’s strategy

I How should player 1 move?
I She needs to first predict how player

2 will response.

I She first treats herself as player 2:
I If B has been chosen, choose B.
I If S has been chosen, choose S.

I This is exactly player 2’s best
response to player 1’s action.
I It is also player 2’s optimal strategy.

I We use thick lines to mark player 2’s
optimal strategy.
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Dynamic games

Dynamic BoS: Player 1’s strategy

I How should player 1 move?
I She knows how player 2 reacts.
I Based on that, she chooses her action.

I Player 1 thinks:
I If I choose B, I will end up with 2.
I If I choose S, I will end up with 1.

I So player 1 will choose B.

I We also use a thick line to mark player
1’s optimal strategy.

I A thick line that connects the root and
a leave is an equilibrium outcome.
I In equilibrium, they play (B, B).
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Dynamic games

Dynamic BoS vs. static BoS

I In static BoS, there are three (mixed-strategy) Nash equilibria.
I Two of them are pure-strategy: (B, B) and (S, S).

I Regarding predicting their behaviors:
I In the static case, we cannot perfectly predict what they will do.
I But in the dynamic case, we can!
I Their equilibrium behaviors change. Is it always the case?

I What if player 2 is the leader and player 1 is the follower?
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Dynamic games

Dynamic prisoners’ dilemma

I Recall the game “prisoners’ dilemma”:

Denial Confession

Denial −1,−1 −9, 0

Confession 0,−9 −6,−6

I The equilibrium outcome is (Denial, Denial).
I This is due to the lack of coordination.
I In particular, they cannot communicate and cannot observe what

the other player chooses.

I Will the outcome change when they move sequentially?
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Dynamic games

Dynamic prisoners’ dilemma

I Suppose player 1 moves first.

I The game tree is depicted here.

I Again, before player 1 makes her
decision, she must predict what player
2 will do.

I What will they do in equilibrium?
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Dynamic games

Dynamic prisoners’ dilemma

I Player 2’s optimal strategy:
I If she denies, I should confess.
I If she confesses, I should confess.

I Player 1’s optimal strategy:
I If I denies, I will end up with −9.
I If I confess, I will end up with −6.

I In equilibrium, they will both confess.
I The outcome does not change!
I Even if they have agreed to both deny

once they are caught, even if player 1
has denied and player 2 has observed
it, player 2 will still confess.



Operations Research, Spring 2013 – Game Theory: Dynamic Games 11 / 34

Dynamic games

Backward induction

I In the previous two examples, there are a leader and a follower.

I Before the leader can make her decision, she must anticipate
what the follower will do.

I In general, when there are multiple stages in a dynamic game,
we analyze those decision problems from the last stage.
I Then the second last stage problem can be solved by having the

last stage behavior in mind.
I The the third last stage problem can be solved.
I We move backwards until the first stage problem is solved.

I This solution concept is called backward induction.
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Dynamic games

A three-stage dynamic game

I Consider the three-stage game depicted below:

I In this game, player 1 has two moves: at stage 1 and at stage 3.
I Player 2 has only one move: at stage 2.

I What will be the equilibrium outcome?
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Dynamic games

A discussion on rationality

I Is it really the case that “when player 2 has the chance to act,
she will always choose C”?
I If player 1 is rational, player 2 should never get a chance to act.
I If player 2 gets a chance to act, that somehow means player 1 is not

completely rational.
I Therefore, if player 2 chooses D, it is possible for player 1 to

choose F.
I So player 2 should not completely abandon D.

I Bounded rationality has been studied in various subjects.
I We will not touch it in this course.
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Dynamic games

Leader’s advantage

I In BoS, being the leader (who acts first) is beneficial.

I In prisoners’ dilemma, being the leader or not does not matter.

I In most chess games, being the leader is advantageous.

I Is it always a good idea to be the leader?
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Dynamic games

Dynamic matching pennies

I Recall the game “matching pennies”:

Head Tail

Head 1,−1 −1, 1

Tail −1, 1 1,−1

I What is the equilibrium outcome?
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Dynamic games

Dynamic matching pennies

I In equilibrium, player 1 is always
dominated by player 2:
I Player 2 will choose whatever player 1

does not choose.
I It does not matter how player 1 acts

I There are multiple possible outcomes.

I Being the leader hurts player 1.
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Dynamic games

The ultimatum game

I We conclude this section with the
classical ultimatum game.
I This is an example with an infinite

action space.

I In an ultimatum game:
I Player 1 decides how to share $1 with

player 2 by offering him $s.
I Player 2 may accept or reject the offer.
I If he accepts, he earns $s and player 1

earns $(1 − s).
I If he rejects, both of them earns $0.

I Suppose both of them are completely
rational and want to maximize their
payoffs. What will they do?
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Dynamic games

The time line representation

I In many cases (e.g., when a player has an infinite action space),
it is a good idea to use a time line to illustrate the timing of a
dynamic game.
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Dynamic games

The ultimatum game

I In equilibrium, player 1 earns $1 and player 2 earns $0!
I In practice, it may be player 1 earning $(1 − ε) and player 2 earning

$ε for some ε > 0.
I Theoretically, however, only (0, accept) and (0, reject) may be

equilibrium outcomes.

I This applies to many real-world cases:
I E.g., wage negotiation between an employer and a employee.

I How may we modify this game to achieve a fair allocation (to
make both players earn $0.5)?
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Pricing in a supply chain

Road map

I Dynamic games.

I Pricing in a supply chain.
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Pricing in a supply chain

Pricing in a supply chain

I There is a manufacturer and a retailer in a supply chain.

-C
Manufacturer -w

Retailer -r
D(r) = A−Br

I The manufacturer produces and supplies to the retailer. The
retailer sells to end consumers.

I The manufacturer sets the wholesale price w and then the
retailer sets the retail price r.

I The demand is D(r) = A−Br, where A and B are known
constants.

I The unit production cost is C, a known constant.
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Pricing in a supply chain

Pricing in a supply chain

I What is the equilibrium (i.e., what will the two players do)?

I We call an equilibrium as a solution of a game.

I To make our lives easier, let’s assume A = B = 1 and C = 0.

-0
Manufacturer -w

Retailer -r
D(r) = 1− r

I Let’s apply backward induction to solve this game.
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Pricing in a supply chain

Pricing in a supply chain (illustrative)

-0
Manufacturer -w

Retailer -r
D(r) = 1− r

I For the retailer, the wholesale price is given. His trade off:
I Making price lower decreases the profit margin r − w.
I Making price higher decreases the sales volume 1 − r.

I The retailer’s problem:

max (r − w)(1 − r)

= max −r2 + (w + 1)r − w

I The optimal solution (best response) is r∗(w) =
w + 1

2
.
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Pricing in a supply chain

Pricing in a supply chain (illustrative)

-0
Manufacturer -w

Retailer -r
D(r) = 1− r

I The manufacturer predicts the retailer’s decision:
I Given her offer w, the retail price will be r∗(w) = w+1

2 .
I More importantly, the order quantity will be

1 − r∗(w) = 1 − w + 1

2
=

1 − w

2
.

I The manufacturer’s problem:

max w

(
1 − w

2

)
= max

−w2 + w

2
.

I The optimal solution is w∗ =
1

2
.
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Pricing in a supply chain

Pricing in a supply chain (illustrative)

-0
Manufacturer -

w∗ = 1
2

Retailer -r
D(r) = 1− r

I Given that the manufacturer will offer the wholesale price
w∗ = 1

2 , the resulting retail price will be

r∗ ≡ r∗(w∗) =
w∗ + 1

2
=

1
2 + 1

2
=

3

4
>

1

2
= w∗.

I A common practice called markup.

I The sales volume is D(r∗) = 1 − r∗ = 1
4 .



Operations Research, Spring 2013 – Game Theory: Dynamic Games 26 / 34

Pricing in a supply chain

Pricing in a supply chain (illustrative)

-0
Manufacturer -

w∗ = 1
2

Retailer -
r∗ = 3

4
D(r) = 1

4

I The retailer earns

(r∗ − w∗)D(r∗) =

(
1

4

)(
1

4

)
=

1

16
.

I The manufacturer earns

(w∗ − C)D(r∗) =

(
1

2

)(
1

4

)
=

1

8
.

I In total, they earn
1

16
+

1

8
=

3

16
.
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Pricing in a supply chain

Pricing in a supply chain (general)

I For the retailer, the wholesale price is given and fixed.

I His trade off:
I Making price lower decreases the profit margin w − r.
I Making price higher decreases the sales volume A−Br.

I The retailer’s problem:

max (r − w)(A−Br)

= max −Br2 + (Bw +A)r −Aw

I The optimal solution is r∗(w) =
Bw +A

2B
.
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Pricing in a supply chain

Pricing in a supply chain (general)

I The manufacturer predicts the retailer’s decision:
I Given her offer w, the retail price will be r∗(w) = Bw+A

2B .
I More importantly, the order quantity will be

A−Br∗(w) = A− Bw +A

2
=
A−Bw

2
.

I The manufacturer’s problem:

max (w − C)

(
A−Bw

2

)
= max

−Bw2 + (BC +A)w −AC

2

I The optimal solution is w∗ =
BC +A

2B
.
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Pricing in a supply chain

Pricing in a supply chain (general)

I Given that the manufacturer will offer the wholesale price
w∗ = BC+A

2B , the resulting retail price will be

r∗ ≡ r∗(w∗) =
Bw∗ +A

2B
=

BC+A
2 +A

2B
=
BC + 3A

4B
.

I The sales volume is D(r∗) = A−Br∗ = A−BC
4 .
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Pricing in a supply chain

Pricing in a supply chain (general)

I The retailer earns

(r∗ − w∗)D(r∗) =

(
A−BC

4B

)(
A−BC

4

)
=

(A−BC)2

16B
.

I The manufacturer earns

(w∗ − C)D(r∗) =

(
A−BC

2B

)(
A−BC

4

)
=

(A−BC)2

8B
.

I In total, they earn

(A−BC)2

16B
+

(A−BC)2

8B
=

3(A−BC)2

16B
.
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Pricing in a supply chain

Pricing in a cooperative supply chain

(Figure source: http://www.property.al/2009/03/
the-property-purchase-process-in-albania/)

I Suppose the two firms are cooperative, i.e., they sit down and
discuss what to do together.

I They can decide the wholesale and retail prices together.

I However, they must make sure that both players do better than
when the supply chain is decentralized.

I Any idea?
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Pricing in a supply chain

Pricing in a cooperative supply chain

I Consider the following proposal:
I Let’s set wFB = C = 0 and rFB = 1

2 .
I The sales volume is

D(rFB) = 1 − 1

2
=

1

2
.

I The total profit is

rFBD(rFB) =
1

4
.

I This is larger than 3
16 , the total profit generated under

decentralization.
I We then split this pie!
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Pricing in a supply chain

Pricing in a cooperative supply chain

I How to split the pie?

I Recall that the manufacturer earns 1
8 and the retailer earns 1

16
under decentralization.

I So how about this:
I First the manufacturer gets 1

8 .
I Then the retailer gets 1

16 .
I Then each of us gets the remaining 1

16 .

I Win-win!
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Pricing in a supply chain

Efficiency v.s. Inefficiency

I When the supply chain is not cooperative, it is operated under
decentralization.

I When the supply chain is cooperative or controlled by a single
central planner, it is under centralization.

I Centralization always results in a socially optimal solution.
I A socially optimal solution is called the “first best” solution.
I Only if the planner is smart ...
I And the distribution of wealth can be a problem.
I But anyway, cooperation is generally good.

I Decentralization often results in efficiency loss.
I The efficiency loss in this example is 1

4 − 3
16 = 1

16 .
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