IM2010: Operations Research Game Theory: Dynamic Games

Ling-Chieh Kung

Department of Information Management
National Taiwan University

June 6, 2013

Road map

- Dynamic games.
- Pricing in a supply chain.

Dynamic BoS

- Recall the game "Bach or Stravinsky":

	Bach	Stravinsky
Bach	2,1	0,0
Stravinsky	0,0	1,2

- What if the two players make decisions sequentially rather than simultaneously?
- What will they do in equilibrium?
- How do their payoffs change?
- Is it better to be the leader or the follower?

Dynamic BoS

- Suppose player 1 moves first.
- Instead of a game matrix, the game can now be described by a game tree.
- At each internal node, the label shows who is moving.
- At each link, the label shows an action.
- At each leaf, the numbers show the payoffs.
- The games is played from the root to leaves.

Dynamic BoS: Player 2's strategy

- How should player 1 move?
- She needs to first predict how player 2 will response.
- She first treats herself as player 2:
- If B has been chosen, choose B.
- If S has been chosen, choose S.
- This is exactly player 2's best response to player 1's action.
- It is also player 2's optimal strategy.
- We use thick lines to mark player 2's optimal strategy.

Dynamic BoS: Player 1's strategy

- How should player 1 move?
- She knows how player 2 reacts.
- Based on that, she chooses her action.
- Player 1 thinks:
- If I choose B, I will end up with 2.
- If I choose S, I will end up with 1.
- So player 1 will choose B.
- We also use a thick line to mark player 1's optimal strategy.
- A thick line that connects the root and a leave is an equilibrium outcome.

- In equilibrium, they play (B, B).

Dynamic BoS vs. static BoS

- In static BoS, there are three (mixed-strategy) Nash equilibria.
- Two of them are pure-strategy: (B, B) and (S, S).
- Regarding predicting their behaviors:
- In the static case, we cannot perfectly predict what they will do.
- But in the dynamic case, we can!
- Their equilibrium behaviors change. Is it always the case?
- What if player 2 is the leader and player 1 is the follower?

Dynamic prisoners' dilemma

- Recall the game "prisoners' dilemma":

	Denial	Confession
Denial	$-1,-1$	$-9,0$
Confession	$0,-9$	$-6,-6$

- The equilibrium outcome is (Denial, Denial).
- This is due to the lack of coordination.
- In particular, they cannot communicate and cannot observe what the other player chooses.
- Will the outcome change when they move sequentially?

Dynamic prisoners' dilemma

- Suppose player 1 moves first.
- The game tree is depicted here.
- Again, before player 1 makes her decision, she must predict what player 2 will do.
- What will they do in equilibrium?

Dynamic prisoners' dilemma

- Player 2's optimal strategy:
- If she denies, I should confess.
- If she confesses, I should confess.
- Player 1's optimal strategy:
- If I denies, I will end up with -9 .
- If I confess, I will end up with -6 .
- In equilibrium, they will both confess.
- The outcome does not change!
- Even if they have agreed to both deny once they are caught, even if player 1 has denied and player 2 has observed
 it, player 2 will still confess.

Backward induction

- In the previous two examples, there are a leader and a follower.
- Before the leader can make her decision, she must anticipate what the follower will do.
- In general, when there are multiple stages in a dynamic game, we analyze those decision problems from the last stage.
- Then the second last stage problem can be solved by having the last stage behavior in mind.
- The the third last stage problem can be solved.
- We move backwards until the first stage problem is solved.
- This solution concept is called backward induction.

A three-stage dynamic game

- Consider the three-stage game depicted below:

- In this game, player 1 has two moves: at stage 1 and at stage 3 .
- Player 2 has only one move: at stage 2 .
- What will be the equilibrium outcome?

A discussion on rationality

- Is it really the case that "when player 2 has the chance to act, she will always choose C"?
- If player 1 is rational, player 2 should never get a chance to act.
- If player 2 gets a chance to act, that somehow means player 1 is not completely rational.
- Therefore, if player 2 chooses D, it is possible for player 1 to choose F.
- So player 2 should not completely abandon D.
- Bounded rationality has been studied in various subjects.
- We will not touch it in this course.

Leader's advantage

- In BoS, being the leader (who acts first) is beneficial.
- In prisoners' dilemma, being the leader or not does not matter.
- In most chess games, being the leader is advantageous.
- Is it always a good idea to be the leader?

Dynamic matching pennies

- Recall the game "matching pennies":

	Head	Tail
Head	$1,-1$	$-1,1$
Tail	$-1,1$	$1,-1$

- What is the equilibrium outcome?

Dynamic matching pennies

- In equilibrium, player 1 is always dominated by player 2 :
- Player 2 will choose whatever player 1 does not choose.
- It does not matter how player 1 acts
- There are multiple possible outcomes.
- Being the leader hurts player 1.

The ultimatum game

- We conclude this section with the classical ultimatum game.
- This is an example with an infinite action space.
- In an ultimatum game:
- Player 1 decides how to share $\$ 1$ with player 2 by offering him $\$ s$.
- Player 2 may accept or reject the offer.
- If he accepts, he earns $\$ s$ and player 1 earns $\$(1-s)$.
- If he rejects, both of them earns $\$ 0$.
- Suppose both of them are completely
 rational and want to maximize their payoffs. What will they do?

The time line representation

- In many cases (e.g., when a player has an infinite action space), it is a good idea to use a time line to illustrate the timing of a dynamic game.
player 1 chooses $0 \leq s \leq 1$
player 2

accepts
or rejects \quad time

The ultimatum game

- In equilibrium, player 1 earns $\$ 1$ and player 2 earns $\$ 0$!
- In practice, it may be player 1 earning $\$(1-\epsilon)$ and player 2 earning $\$ \epsilon$ for some $\epsilon>0$.
- Theoretically, however, only (0 , accept) and (0 , reject) may be equilibrium outcomes.
- This applies to many real-world cases:
- E.g., wage negotiation between an employer and a employee.
- How may we modify this game to achieve a fair allocation (to make both players earn $\$ 0.5$)?

Road map

- Dynamic games.
- Pricing in a supply chain.

Pricing in a supply chain

- There is a manufacturer and a retailer in a supply chain.

- The manufacturer produces and supplies to the retailer. The retailer sells to end consumers.
- The manufacturer sets the wholesale price w and then the retailer sets the retail price r.
- The demand is $D(r)=A-B r$, where A and B are known constants.
- The unit production cost is C, a known constant.

Pricing in a supply chain

- What is the equilibrium (i.e., what will the two players do)?
- We call an equilibrium as a solution of a game.
- To make our lives easier, let's assume $A=B=1$ and $C=0$.

- Let's apply backward induction to solve this game.

Pricing in a supply chain (illustrative)

- For the retailer, the wholesale price is given. His trade off:
- Making price lower decreases the profit margin $r-w$.
- Making price higher decreases the sales volume $1-r$.
- The retailer's problem:

$$
\begin{aligned}
& \max (r-w)(1-r) \\
= & \max -r^{2}+(w+1) r-w
\end{aligned}
$$

- The optimal solution (best response) is $r^{*}(w)=\frac{w+1}{2}$.

Pricing in a supply chain (illustrative)

- The manufacturer predicts the retailer's decision:
- Given her offer w, the retail price will be $r^{*}(w)=\frac{w+1}{2}$.
- More importantly, the order quantity will be

$$
1-r^{*}(w)=1-\frac{w+1}{2}=\frac{1-w}{2} .
$$

- The manufacturer's problem:

$$
\max w\left(\frac{1-w}{2}\right)=\max \frac{-w^{2}+w}{2}
$$

- The optimal solution is $w^{*}=\frac{1}{2}$.

Pricing in a supply chain (illustrative)

- Given that the manufacturer will offer the wholesale price $w^{*}=\frac{1}{2}$, the resulting retail price will be

$$
r^{*} \equiv r^{*}\left(w^{*}\right)=\frac{w^{*}+1}{2}=\frac{\frac{1}{2}+1}{2}=\frac{3}{4}>\frac{1}{2}=w^{*} .
$$

- A common practice called markup.
- The sales volume is $D\left(r^{*}\right)=1-r^{*}=\frac{1}{4}$.

Pricing in a supply chain (illustrative)

- The retailer earns

$$
\left(r^{*}-w^{*}\right) D\left(r^{*}\right)=\left(\frac{1}{4}\right)\left(\frac{1}{4}\right)=\frac{1}{16} .
$$

- The manufacturer earns

$$
\left(w^{*}-C\right) D\left(r^{*}\right)=\left(\frac{1}{2}\right)\left(\frac{1}{4}\right)=\frac{1}{8} .
$$

- In total, they earn

$$
\frac{1}{16}+\frac{1}{8}=\frac{3}{16} .
$$

Pricing in a supply chain (general)

- For the retailer, the wholesale price is given and fixed.
- His trade off:
- Making price lower decreases the profit margin $w-r$.
- Making price higher decreases the sales volume $A-B r$.
- The retailer's problem:

$$
\begin{aligned}
& \max (r-w)(A-B r) \\
= & \max -B r^{2}+(B w+A) r-A w
\end{aligned}
$$

- The optimal solution is $r^{*}(w)=\frac{B w+A}{2 B}$.

Pricing in a supply chain (general)

- The manufacturer predicts the retailer's decision:
- Given her offer w, the retail price will be $r^{*}(w)=\frac{B w+A}{2 B}$.
- More importantly, the order quantity will be

$$
A-B r^{*}(w)=A-\frac{B w+A}{2}=\frac{A-B w}{2} .
$$

- The manufacturer's problem:

$$
\begin{aligned}
& \max (w-C)\left(\frac{A-B w}{2}\right) \\
= & \max \frac{-B w^{2}+(B C+A) w-A C}{2}
\end{aligned}
$$

- The optimal solution is $w^{*}=\frac{B C+A}{2 B}$.

Pricing in a supply chain (general)

- Given that the manufacturer will offer the wholesale price $w^{*}=\frac{B C+A}{2 B}$, the resulting retail price will be

$$
r^{*} \equiv r^{*}\left(w^{*}\right)=\frac{B w^{*}+A}{2 B}=\frac{\frac{B C+A}{2}+A}{2 B}=\frac{B C+3 A}{4 B} .
$$

- The sales volume is $D\left(r^{*}\right)=A-B r^{*}=\frac{A-B C}{4}$.

Pricing in a supply chain (general)

- The retailer earns

$$
\left(r^{*}-w^{*}\right) D\left(r^{*}\right)=\left(\frac{A-B C}{4 B}\right)\left(\frac{A-B C}{4}\right)=\frac{(A-B C)^{2}}{16 B} .
$$

- The manufacturer earns

$$
\left(w^{*}-C\right) D\left(r^{*}\right)=\left(\frac{A-B C}{2 B}\right)\left(\frac{A-B C}{4}\right)=\frac{(A-B C)^{2}}{8 B} .
$$

- In total, they earn

$$
\frac{(A-B C)^{2}}{16 B}+\frac{(A-B C)^{2}}{8 B}=\frac{3(A-B C)^{2}}{16 B} .
$$

Pricing in a cooperative supply chain

(Figure source: http://www.property.al/2009/03/ the-property-purchase-process-in-albania/)

- Suppose the two firms are cooperative, i.e., they sit down and discuss what to do together.
- They can decide the wholesale and retail prices together.
- However, they must make sure that both players do better than when the supply chain is decentralized.
- Any idea?

Pricing in a cooperative supply chain

- Consider the following proposal:
- Let's set $w^{F B}=C=0$ and $r^{F B}=\frac{1}{2}$.
- The sales volume is

$$
D\left(r^{F B}\right)=1-\frac{1}{2}=\frac{1}{2}
$$

- The total profit is

$$
r^{F B} D\left(r^{F B}\right)=\frac{1}{4}
$$

- This is larger than $\frac{3}{16}$, the total profit generated under decentralization.
- We then split this pie!

Pricing in a cooperative supply chain

- How to split the pie?
- Recall that the manufacturer earns $\frac{1}{8}$ and the retailer earns $\frac{1}{16}$ under decentralization.
- So how about this:
- First the manufacturer gets $\frac{1}{8}$.
- Then the retailer gets $\frac{1}{16}$.
- Then each of us gets the remaining $\frac{1}{16}$.
- Win-win!

Efficiency v.s. Inefficiency

- When the supply chain is not cooperative, it is operated under decentralization.
- When the supply chain is cooperative or controlled by a single central planner, it is under centralization.
- Centralization always results in a socially optimal solution.
- A socially optimal solution is called the "first best" solution.
- Only if the planner is smart ...
- And the distribution of wealth can be a problem.
- But anyway, cooperation is generally good.
- Decentralization often results in efficiency loss.
- The efficiency loss in this example is $\frac{1}{4}-\frac{3}{16}=\frac{1}{16}$.

