Operations Research, Spring 2014
 Suggested Solution for Homework 8

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. (a) Let $\lambda \in \mathbb{R}^{2}$ be the Lagrange multipliers for the two constraints. The Lagrangian is

$$
\mathcal{L}(x \mid \lambda)=x_{1}-x_{2}+\lambda_{1}\left(4-x_{1}^{2}-x_{2}^{2}\right)+\lambda_{2}\left(x_{1}^{2}+\left(x_{2}+2\right)^{2}-4\right)
$$

and the FOC for the Lagrangian is

$$
1-2 \lambda_{1} x_{1}+2 \lambda_{2} x_{1}=0 \quad \text { and } \quad-1-2 \lambda_{1} x_{2}+2 \lambda_{2}\left(x_{2}+2\right)=0 .
$$

Therefore, the KKT condition for this problem is the following: If a solution \bar{x} is a local maximum, there exist $\lambda \in \mathbb{R}^{2}$ such that:
i. (Primal feasibility) $x_{1}^{2}+x_{2}^{2} \leq 4$ and $x_{1}^{2}+\left(x_{2}+2\right)^{2} \geq 4$.
ii. (Dual feasibility) $\lambda_{1} \geq 0, \lambda_{2} \geq 0,1-2 \lambda_{1} x_{1}+2 \lambda_{2} x_{1}=0$, and $-1-2 \lambda_{1} x_{2}+2 \lambda_{2}\left(x_{2}+2\right)=0$.
iii. (Complementary slackness) $\lambda_{1}\left(4-x_{1}^{2}-x_{2}^{2}\right)=0$ and $\lambda_{2}\left(x_{1}^{2}+\left(x_{2}+2\right)^{2}-4\right)=0$.
(b) For the point to satisfy the KKT condition, first observe that primal feasibility and complementary slackness are both satisfied (as the two constraints are binding at $(\sqrt{3},-1)$. For dual feasibility, we need

$$
1-2 \lambda_{1} \sqrt{3}+2 \lambda_{2} \sqrt{3}=0 \quad \text { and } \quad-1+2 \lambda_{1}+2 \lambda_{2}=0,
$$

whose solution is $\lambda_{1}=\frac{3+\sqrt{3}}{12}$ and $\lambda_{2}=\frac{3-\sqrt{3}}{12}$. As both multipliers are nonnegative, dual feasibility is also satisfied.
(c) Show that $(2,0)$ violates the KKT condition.

First, it satisfies primal feasibility. Due to complementary slackness, we can see that λ_{2} must be 0 . Now, for dual feasibility, we need

$$
1-2 \lambda_{1}=0 \quad \text { and } \quad-1=0,
$$

which is impossible. Therefore, $(2,0)$ violates the KKT condition. Graphically, we can see that $(2,0)$ is indeed not a local maximum.
Note. For an NLP, if a solution satisfies the KKT condition, it may or may not be a local optimum. However, if a solution violates the KKT condition, it cannot be a local optimum.
2. First of all, we can see that this is a convex program. Therefore, the KKT condition is necessary and sufficient and a local maximum is a global maximum. Let $\lambda \in \mathbb{R}$ be the Lagrange multiplier, the Lagrangian is

$$
x_{1}-x_{2}+\lambda\left(4-x_{1}^{2}-x_{2}^{2}\right)
$$

and the FOC for the Lagrangian is

$$
1-2 \lambda x_{1}=0 \quad \text { and } \quad-1-2 \lambda x_{2}=0 .
$$

To satisfy these two equalities, we need $x_{1}=-x_{2}$. Moreover, it is required that $\lambda>0$. According to complementary slackness, we now know that $x_{1}^{2}+x_{2}^{2}=4$. Therefore, to satisfy the KKT condition, we need to satisfy the two equalities

$$
x_{1}=-x_{2} \quad \text { and } \quad x_{1}^{2}+x_{2}^{2}=4 .
$$

The unique solution is $(\sqrt{2},-\sqrt{2})$. As it satisfies the KKT condition for this convex program, it is an optimal solution.

