Operations Research, Spring 2014
 Suggested Solution for Homework 10

Instructor: Ling-Chieh Kung
Department of Information Management
National Taiwan University

1. (a) Replace t by $\frac{(A-B w)^{2}}{4 B}$, the objective function become

$$
\begin{aligned}
\pi_{M}^{* *} & =\max _{w \geq 0, t \geq 0} \quad(w-C)\left(\frac{A-B w}{2}\right)+t \\
& =\max _{w \geq 0} \quad(w-C)\left(\frac{A-B w}{2}\right)+\frac{(A-B w)^{2}}{4 B} \\
& =\max _{w \geq 0} \quad\left(-\frac{B}{2}+\frac{B^{2}}{4 B}\right) w^{2}+\ldots \\
& =\max _{w \geq 0} \quad\left(-\frac{B}{4}\right) w^{2}+\ldots
\end{aligned}
$$

Therefore, $\frac{d\left(\pi_{M}^{* *}\right)}{d w^{2}}=-\frac{B}{2} \leq 0$. Since the twice differentiation of $\pi_{M}^{* *}$ is small or equal to zero, the reduced problem is a convex program.
(b) By using FOC,

$$
\begin{aligned}
\frac{d\left(\pi_{M}^{* *}\right)}{d w} & =\left(-B+\frac{B}{2}\right) w+\frac{A}{2}+\frac{B C}{2}-\frac{A}{2} \\
& =\left(-\frac{B}{2}\right) w+\frac{B C}{2}
\end{aligned}
$$

$w^{*}=C$, and the manufacturer earns $\frac{(A-B C)^{2}}{4 B}$.
2. (a) The expected channel profit is

$$
\begin{aligned}
\pi_{C}(q) & =\int_{0}^{q} p x f(x) d x+\int_{q}^{100} p q f(x) d x-c q \\
& =\int_{0}^{q} p x f(x) d x+p q(1-F(q))-c q
\end{aligned}
$$

By using FOC, $F\left(q^{*}\right)=1-\frac{c}{p}=1-\frac{10}{50}=0.8 . q^{*}=80, \pi_{C}\left(q^{*}\right)=\pi_{C}^{F B}=1600$. Therefore, the efficient inventory level is 80 units , and the efficient expected channel profit is $\$ 1600$.
(b) Under a wholesale contract, the retailer's expected payoff is

$$
\pi_{R}^{(0)}(q)=\int_{0}^{q} p x f(x) d x+\int_{q}^{100} p q f(x) d x-w q
$$

By using FOC, $q^{*}=100-2 w$. And the manufacturer's expected payoff is

$$
\begin{aligned}
\pi_{M}^{(0)}(q) & =(w-c) q \\
& =(w-10)(100-2 w)
\end{aligned}
$$

By using FOC, $w^{*}=30 ; q^{*}=40 ; \pi_{M}^{(0)}=800 ; \pi_{R}^{(0)}=400$. The expected channel profit is $\pi_{C}^{(0)}=1200<\pi_{C}^{F B}$.
(c) Under a return contract with wholesale price $\$ 30$ and return credit $\$ 5$, the retailer's expected payoff is

$$
\begin{aligned}
\pi_{R}^{(1)}(q) & =\int_{0}^{q} p x f(x) d x+\int_{q}^{100} p q f(x) d x+\int_{0}^{q} 5(q-x) f(x) d x-w q \\
& =\int_{0}^{q} \frac{x}{2} d x+\int_{q}^{100} \frac{q}{2} d x+\int_{0}^{q} \frac{(q-x)}{20} d x-30 q \\
& =-\frac{9}{40} q^{2}+20 q
\end{aligned}
$$

By using FOC, $q^{*}=\frac{400}{9}$. The retailer's expected profit is $\pi_{R}^{(1)}\left(q^{*}\right) \approx \$ 444.44>\pi_{R}^{(0)}$. And the manufacturer's expected payoff is

$$
\begin{aligned}
\pi_{M}^{(1)}(q) & =(w-c) q-\int_{0}^{q} 5(q-x) f(x) d x \\
& =20 \frac{400}{9}-\int_{0}^{\frac{400}{9}} 5\left(\frac{400}{9}-x\right) f(x) d x \\
& \approx 839.51 \\
& >\pi_{M}^{(0)}
\end{aligned}
$$

$\pi_{C}^{(1)}=1283.95>\pi_{C}^{(0)}$. Since $\pi_{M}^{(1)}>\pi_{M}^{(0)}$ and $\pi_{R}^{(1)}>\pi_{R}^{(0)}$, it is a win-win situation.
(d) Under a return contract with wholesale price $\$ 30$ and return credit $\$ 10$, the retailer's expected payoff is

$$
\begin{aligned}
\pi_{R}^{(2)}(q) & =\int_{0}^{q} p x f(x) d x+\int_{q}^{100} p q f(x) d x+\int_{0}^{q} 10(q-x) f(x) d x-w q \\
& =\int_{0}^{q} \frac{x}{2} d x+\int_{q}^{100} \frac{q}{2} d x+\int_{0}^{q} \frac{(q-x)}{10} d x-30 q \\
& =-\frac{1}{5} q^{2}+20 q
\end{aligned}
$$

By using FOC, $q^{*}=50$. The retailer's expected profit is $\pi_{R}^{(2)}\left(q^{*}\right)=\$ 500>\pi_{R}^{(1)}$. And the manufacturer's expected payoff is

$$
\begin{aligned}
\pi_{M}^{(2)}(q) & =(w-c) q-\int_{0}^{q} 10(q-x) f(x) d x \\
& =1000-\int_{0}^{50} 5(50-x) f(x) d x \\
& =875 \\
& >\pi_{M}^{(1)}
\end{aligned}
$$

$\pi_{C}^{(2)}=1375>\pi_{C}^{(1)}$. Since $\pi_{M}^{(2)}>\pi_{M}^{(1)}$ and $\pi_{R}^{(2)}>\pi_{R}^{(1)}$, it is a win-win situation.
3. (a) When $\phi=0$, the retailer gives nothing to the manufacturer; Therefore the revenue sharing contract becomes wholesale contract.
(b) The retailer's expected payoff is

$$
\pi_{R}(q)=(1-\phi)\left\{\int_{0}^{q} p x f(x) d x+\int_{q}^{\infty} p q f(x) d x\right\}-w q
$$

By using FOC, $F\left(q^{*}\right)=1-\frac{w}{p(1-\phi)}$. The retailer optimal order quantity $q^{*}(w, \phi)=F^{-1}(1-$ $\left.\frac{w}{p(1-\phi)}\right)$.
(c) When channel is coordinated, the channel optimal order quantity satisfies $F\left(q_{C}^{*}\right)=1-\frac{c}{p}$. And when $q^{*}=q_{C}^{*}, \phi=1-\frac{w}{c}$. Since $\phi \in[0,1], w$ should less or equal to c. To sum up, if the manaufacturer provides a revenue sharing contract with $(w, \phi)=\left(w, 1-\frac{w}{c}\right)$ and $w \in[0, c]$ the channel will be coordinated.
4. Under ID:

We assume channel 1 has only one manufacturer (manufacturer 1), channel 2 has one manufacturer (manufacturer 2) and one retailer (retailer 2). First, for manufacturer 2 he should decide wholesale price w_{2} to solve

$$
\pi_{2}^{M}=\max _{w_{2}} w_{2} q_{2}
$$

Then manufacturer 1 and retailer 2 should decide their retail price p_{1}, p_{2} to solve

$$
\begin{aligned}
\pi_{1}^{M} & =\max _{p_{1}} p_{1} q_{1} \\
\pi_{2}^{R} & =\max _{p_{2}}\left(p_{2}-w_{2}\right) q_{2}
\end{aligned}
$$

Apply the backward induction, we solve second problem before first problem. By using FOC, we achieve

$$
\begin{aligned}
& p_{1}^{*}=\frac{2+\theta+\theta w_{2}}{4-\theta^{2}} \\
& p_{2}^{*}=\frac{2+\theta+2 w_{2}}{4-\theta^{2}}
\end{aligned}
$$

Then we solve manufacturer 2's problem and achieve

$$
\begin{aligned}
w_{2}^{*} & =\frac{2+\theta}{2\left(2-\theta^{2}\right)} \\
p_{1}^{*} & =\frac{4+\theta-2 \theta^{2}}{(2-\theta)\left(2-\theta^{2}\right)} \\
p_{2}^{*} & =\frac{3-\theta^{2}}{2(2-\theta)\left(2-\theta^{2}\right)}
\end{aligned}
$$

Therefore $\pi_{1}^{M}=\left[\frac{4+\theta-2 \theta^{2}}{2(2-\theta)\left(2-\theta^{2}\right)}\right]^{2}, \pi_{2}^{M}=\frac{2+\theta}{4(2-\theta)\left(2-\theta^{2}\right)}$.
5. Yes, DD may be an possible equilibrium industry structure. In II, two manufacturers play the Cournot game and consequently the equilibrium quantities are too high.If they change to DD , each channel has one additional layer and the quantity goes down since the wholesale price. Therefore we find that the system quantity is close to the optimal equilibrium quantity. .

