Operations Research Lab Session

TA：陳嘉豪（Jack Chen）

陳宗霆（Tim Chen）
2014／02／24

Self－introduction

－陳嘉豪（Jack Chen）：r02725018＠ntu．edu．tw
■ 陳宗霆（Tim Chen）：r02725052＠ntu．edu．tw

Gauss-Jordan elimination (1)

(1) Use it to find a solution of an equation

Example:

$$
\begin{aligned}
x_{1}+2 x_{2} & =4 \\
2 x_{1}+x_{2} & =5
\end{aligned}
$$

What is the solution of the equation?

Gauss-Jordan elimination (1)

$$
\begin{aligned}
& {\left[\begin{array}{ll|l}
1 & 2 & 4 \\
2 & 1 & 5
\end{array}\right] \rightarrow\left[\begin{array}{cc|c}
1 & 2 & 4 \\
0 & -3 & -3
\end{array}\right] } \\
\rightarrow & {\left[\begin{array}{ll|l}
1 & 2 & 4 \\
0 & 1 & 1
\end{array}\right] \rightarrow\left[\begin{array}{lll|}
1 & 0 & 2 \\
0 & 1 & 1
\end{array}\right] } \\
\rightarrow & \left(x_{1}, x_{2}\right)=(2,1)
\end{aligned}
$$

Gauss-Jordan elimination (1)

Practice:

$$
\begin{aligned}
& x_{1}+2 x_{2}-3 x_{3}=2 \\
& x_{1}-x_{3}=0 \\
& x_{1}-x_{2}+2 x_{3}=3
\end{aligned}
$$

What is the solution of the equation?

Gauss-Jordan elimination (1)

$$
\begin{aligned}
& {\left[\begin{array}{ccc|c}
1 & 2 & -3 & 2 \\
1 & 0 & -1 & 0 \\
1 & -1 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & -3 & 2 \\
0 & -2 & 2 & -2 \\
0 & -3 & 5 & 1
\end{array}\right]} \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 2 & -3 & 2 \\
0 & 1 & -1 & 1 \\
0 & -3 & 5 & 1
\end{array}\right] \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 2 & 4
\end{array}\right] \\
& \rightarrow\left[\begin{array}{ccc|c}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 2
\end{array}\right] \rightarrow\left[\begin{array}{lll|l}
1 & 0 & 0 & 2 \\
0 & 1 & 0 & 3 \\
0 & 0 & 1 & 2
\end{array}\right] \\
& \rightarrow\left(x_{1}, x_{2}, x_{3}\right)=(2,3,2)
\end{aligned}
$$

Gauss-Jordan elimination (2)

(2) Use it to find the inverse of a matrix

Example:

$$
A=\left[\begin{array}{ll}
1 & 5 \\
2 & 3
\end{array}\right]
$$

What is the inverse of matrix A ?

Gauss-Jordan elimination (2)

$$
\begin{aligned}
& {\left[\begin{array}{ll|ll}
1 & 5 & 1 & 0 \\
2 & 3 & 0 & 1
\end{array}\right] \rightarrow\left[\begin{array}{cc|cc}
1 & 5 & 1 & 0 \\
0 & -7 & -2 & 1
\end{array}\right] } \\
\rightarrow & {\left[\begin{array}{ll|ll}
1 & 5 & 1 & 0 \\
0 & 1 & \frac{-1}{7} & \frac{-1}{7}
\end{array}\right] \rightarrow\left[\begin{array}{ll|ll}
1 & 0 & \frac{-3}{7} & \frac{5}{7} \\
0 & 1 & \frac{2}{7} & \frac{-1}{7}
\end{array}\right] } \\
\rightarrow & A^{-1}=\frac{1}{7}\left[\begin{array}{cc}
-3 & 5 \\
2 & -1
\end{array}\right]
\end{aligned}
$$

Gauss-Jordan elimination (2)

Practice:

$A=\left[\begin{array}{ccc}1 & 0 & 1 \\ 4 & 1 & -2 \\ 3 & 1 & -1\end{array}\right]$

What is the inverse of matrix A ?

Gauss-Jordan elimination (2)

$$
\begin{aligned}
& {\left[\begin{array}{ccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
4 & 1 & -2 & 0 & 1 & 0 \\
3 & 1 & -1 & 0 & 0 & 1
\end{array}\right]}
\end{aligned} \rightarrow\left[\begin{array}{cccc|ccc}
1 & 0 & 1 & 1 & 0 & 0 \\
0 & 1 & -6 & -4 & 1 & 0 \\
0 & 1 & -4 & -3 & 0 & 1
\end{array}\right]
$$

Linearly independent / dependent

- $A=\left[\begin{array}{lll}1 & 2 & 5 \\ 0 & 1 & 2\end{array}\right]$
- Column vectors of $A=\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right],\left[\begin{array}{l}5 \\ 2\end{array}\right]\right\}$
\square Row vectors of $A=\left\{\left[\begin{array}{lll}1 & 2 & 5\end{array}\right],\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]\right\}$
\square Definition: A collection of vectors $\mathrm{a}^{1}, \ldots, \mathrm{a}^{\mathrm{n}}$ is linearly independent if $\sum_{j=1}^{n} c_{j} a^{j}=0$ imply that $c_{1}=c_{2}=\ldots=c_{n}=0$
- $1\left[\begin{array}{l}1 \\ 0\end{array}\right]+2\left[\begin{array}{l}2 \\ 1\end{array}\right]-1\left[\begin{array}{l}5 \\ 2\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
=> Column vectors of A are linearly dependent
$\square c_{1}\left[\begin{array}{lll}1 & 2 & 5\end{array}\right]+c_{2}\left[\begin{array}{lll}0 & 1 & 2\end{array}\right]=0$ only when $c_{1}=c_{2}=0$
=> Row vectors of A are linearly independent

Linearly independent / dependent

\square When row vectors of a matrix are linearly dependent
\square After Gauss-Jordan elimination there must exist at least a row that all element are 0 .

Example:
$B=\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right] \Rightarrow\left[\begin{array}{ll}1 & 2 \\ 0 & 0\end{array}\right] \Rightarrow$ No inverse!!!

Rank of a matrix

\square Column rank of matrix A is the maximal number of linearly independent column of A.
\square Row rank of matrix A is the maximal number of linearly independent row of A.
\square Since the column rank and row rank are always equal, they are simply called the rank of A.

Example:
$A=\left[\begin{array}{cc}1 & 2 \\ 0 & 3 \\ 2 & -1\end{array}\right] \rightarrow \operatorname{Rank}=2, \quad B=\left[\begin{array}{ll}1 & 2 \\ 0 & 0 \\ 2 & 4\end{array}\right] \rightarrow \operatorname{Rank}=1$

Rank of a matrix

$\square A=\left[\begin{array}{lll}1 & 2 & 3 \\ 2 & 5 & 4 \\ 1 & 1 & 5\end{array}\right], \operatorname{rank}(A)=? A^{-1} ?$
$\square\left[\begin{array}{ccc}1 & 0 & 7 \\ 0 & 1 & -2 \\ 0 & 0 & 0\end{array}\right]$
$\square \operatorname{Rank}(A)=2$, no inverse!

DFSI principle

\square Step 1: Define the decision variables (and the notations you use for parameters).
\square Step 2: Formulate the problem as a mathematical model by writing down the objective function and constraints.
\square Step 3: Solve the model by finding the values for all decision variables in an optimal solution.
\square Step 4: Interpret the optimal solution by indicating "what to do".

DFSI principle

Scenario:
\square You are in a market, and you have 5 dollars.
\square There are several drinks (Coke, Pepsi, Orange juice).
\square Each drink gives you different happiness level.
\square Which drinks should you buy?

DFSI principle

Step 1: Define the problem and collect relevant data

Goal: To maximize your happiness level.

Data:

Name	Price	Happiness level
Coke	2 dollars	3
Pepsi	3 dollars	6
Orange juice	2.5 dollars	4

DFSI principle

Step 2: Formulating the problem
Parameters: 5 dollars, 3 drinks....
Decision variables: For each drink, we decide whether to buy.
Let x_{i} be the amount of the drink we buy, $i=1,2,3$.
Objected function: $3 x_{1}+6 x_{2}+4 x_{3}$
Constraint: $2 x_{1}+3 x_{2}+2.5 x_{3} \leq 5$

Our model:

$$
\begin{aligned}
& \max 3 x_{1}+6 x_{2}+4 x_{3} \\
& \text { s.t. } 2 x_{1}+3 x_{2}+2.5 x_{3} \leq 5 \\
& x_{1}, x_{2}, x_{3} \in\{0,1\}
\end{aligned}
$$

DFSI principle

Step 3: Solving the model
$(1,1,0)$ will be the solution.
Objected value is 9

Step 4: Interpret

To get maximum happiness, we should buy a Coke and a Pepsi.
Finally we get 9 happiness level.

Thank you ©

