What is OR? 00000000000	Quiz O	Syllabus 00000000000000	Introduction to modeling 00000000000

IM 2010: Operations Research, Spring 2014

Overview

Ling-Chieh Kung

Department of Information Management National Taiwan University

February 20, 2014

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000
•0000000000	O	00000000000000	

Welcome!

- ► This is an **introductory** Operations Research course designed for second-year students majoring in **Information Management**.
- ▶ My plan for today:
 - ▶ Ch. 1: What is Operations Research?
 - ► Quiz.
 - Syllabus.
 - ▶ Ch. 2: Introduction to modeling.

What is OR?	Quiz	Syllabus	Introduction to modeling
0000000000	O	00000000000000	000000000000

What is Operations Research?

- ▶ Let's first ask: What is "management"?
- ▶ "Management is the attainment of organizational goals in an effective and efficient manner through planning, organizing, leading, and controlling organizational resources."¹
 - ▶ Use resources.
 - ▶ To achieve some goals.
 - In a smart way.
- ▶ Typical tools: intuitions, common senses, and experiences.
 - ▶ To make decisions.
 - ▶ To decide how to allocate scare resources.

¹Quoted from *Management* by Daft, the sixth edition.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000000000	000000000000

Tapioca milk tea delivery

- ▶ Suppose you want to start your own business by delivering tapioca milk tea to people in NTU.²
 - ▶ You have customers in the CS and Math departments.
 - ▶ Each noon you deliver five cups of tapioca milk tea to each location.
 - ▶ You go to Gongguan to buy tapioca milk tea, deliver them, and then come back to the college of management.
 - ▶ This must be done in one hour.

 $^{^2{\}rm Thanks}$ Chih-An Lin for sharing this idea with me. This completely imaginary example is modified from his real idea.

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000
00000000000	O	00000000000000	

Tapioca milk tea delivery

- ► To "manage" this "organization":
 - What are the decisions to make?
 - What are the scare resources?

What is OR?	Quiz	Syllabus	Introduction to modeling
0000000000	O	00000000000000	000000000000

Tapioca milk tea delivery

 One allocation (which seems to be very good).

	What is OR? 00000000000	Quiz O	Syllabus 00000000000000	Introduction to modeling 000000000000
--	----------------------------	-----------	----------------------------	---------------------------------------

Your business is successful!

- You now have customers in many different places (including the administration office and dorm 1 for girls).
- They together order more than 50 cups.
- ▶ Accept all orders?
- What is the best route?

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000000000	000000000000

Your business is really successful!

- ▶ If one day...
 - ▶ You get orders from the colleges of medicine and social sciences...
 - ▶ You start to hire workers...
 - One tea shop cannot make so many cups of tapioca milk tea...
 - Customers start to order more than one items...
- ▶ One day you will need a **scientific way** for making decisions.
 - ▶ You need to allocate resources.
 - ▶ You need to determine the operations to do and not to do.
 - ▶ You need to "do research on operations".
 - ▶ You need Operations Research.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	0	00000000000000	00000000000

What is Operations Research?

• Operations Research (OR) is:

- the methodology to "allocate the available resources to the various activities in a way that is most effective for the organization as a whole."
- "applied to problems that concern how to conduct and coordinate the operations (i.e., activities) within an organization."³

▶ It aims to support decision making.

- ▶ By doing OR studies, we generate some suggestions to **decision makers**.
- ▶ E.g., customer orders to be given up, routes for delivery, a plan to assign routes to workers, etc.

 $^3\mathrm{Both}$ quoted from Introduction to Operations Research by Hillier and Lieberman, the ninth edition.

Overview

What is OR?	Quiz	Syllabus	Introduction to modeling
0000000000000	O	00000000000000	000000000000

Industry applications

▶ Important questions:

- ▶ How to deliver 6.5 millions items to more than 220 countries each day?
- ▶ In each region, where to build distribution hubs?
- ▶ In each distribution hub, how to classify and sort items?
- ▶ In each city, how to choose routes?
- ▶ What do you need?
 - ▶ Well-designed information systems.
 - Operations Research!
- ► Further reading:
 - The application vignette in Section 1.3.
 - ▶ The article on CEIBA with the complete story.

What is OR?	Quiz	Syllabus	Introduction to modeling
0000000000000	O	00000000000000	000000000000

Industry applications

▶ Important questions:

- How to determine the cities to connect?
- ▶ How to schedule more than 2000 flights per day?
- ▶ How to assign crews to flights?
- ▶ How to reassign crews immediately when there is an emergency?
- ▶ What do you need?
 - ▶ Well-designed information systems.
 - Operations Research!
- ► Further reading:
 - The application vignette in Section 2.2.
 - ▶ The article on CEIBA with the complete story.

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000
00000000000	O	00000000000000	

Applicability and limitations

- ▶ It aims to support decision making in a **complicated** environment.
 - It is useless if we do not make decisions.
 - ▶ It is helpful if intuitions and experiences are not enough.
 - ▶ It is required if one's organization has many operations involved.
- ▶ It is a collection of **mathematical** methods.
 - ▶ Sometimes also **economic** methods and **computer science**.
 - ▶ It overlaps a lot with Management Science and Industrial Engineering.
- ► It is best for **quantifiable decisions**.
 - ▶ Those things that can be counted or measured.
 - Quantities to produce, inventory to stock, amount to invest, routes to go, workers to assign, etc.
 - It is not so helpful for qualitative decisions.
- ► It almost always requires **computers**.
 - ▶ So that large-scale computations are possible.

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000
0000000000	O	00000000000000	

- ▶ What is Operations Research?
- ▶ We use **scientific** approaches to solve **managerial** problems.
 - ▶ A field of applied mathematics for making **better decisions**.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	•	00000000000000	000000000000

Agenda

- ▶ Ch. 1: What is Operations Research?
- ► Quiz.
- ▶ Syllabus.
- ▶ Ch. 2: Introduction to modeling.

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000
00000000000	O	•0000000000000	

Agenda

- ▶ Ch. 1: What is Operations Research?
- ▶ Quiz.
- ► Syllabus.
- ▶ Ch. 2: Introduction to modeling.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	0●0000000000000	000000000000

Prerequisites and languages

- ▶ It is assumed that you have some knowledge about:
 - ► Calculus.
 - ▶ Linear Algebra (or Management Mathematics).
 - Economics (mainly Microeconomics).
 - ▶ Probability (maybe from a Statistics course).
 - Computer programming (with any programming language).
- ► Language: "All" English.
 - ▶ I give all lectures in English.
 - ▶ I may speak Chinese in lectures (when it helps).
 - ▶ All materials are in English.
 - ▶ TA speak Chinese in most TA sessions.
 - ▶ I speak either Chinese or English in my office hour.
 - Students may ask questions in Chinese.
 - ▶ Students are strongly encouraged to present in English.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00●00000000000	000000000000

Meetings and office hour

► Meetings:

Meeting	Time	Classroom	Language
Lectures	2:20-5:20pm Thursday	Room 201 Management Building II	English
TA sessions	12:20-1:10pm Monday	Large computer classroom Management Building I	$\mathrm{Chinese}^4$

▶ Office hour:

Provider	Time	Room	Language
Instructor	5:30-6:00pm, Thursday 4:30-6:00pm, Friday	Room 413, MB2	English or Chinese
TAs	1:20-2:00pm, Monday	LCC, MB1	Chinese

⁴English for 3/3 and 3/31.

What is OR? 00000000000	Quiz O	Syllabus 00000000000000	Introduction to modeling 000000000000

Grading

- ▶ Homework: 15%. Five case assignments: 15%. Project: 15%.
- ▶ Lecture problems: 15%.
- ► Two Exams: 40%:
 - \blacktriangleright Plan 1: midterm 20% and final 20%.
 - \blacktriangleright Plan 2: midterm 15% and final 25%.
- ▶ (Bonus!) Class participation: 5%.
- ▶ The final letter grades will be given according to the following conversion rule:

Letter	Range	Letter	Range	Letter	Range
A+ A A-	$[90, 100] \\ [85, 90) \\ [80, 85)$	B+ B B-	[77, 80) [73, 77) [70, 73)	C+ C C-	[67, 70) [63, 67) [60, 63)

\sim	
()	verview

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	000000000000000	000000000000

"Flipped classroom"

- ▶ Lectures in **videos**, then discussions in classes.
- ▶ Before each Thursday, the instructor uploads lecture videos.
 - ▶ Typically the videos will be no longer than 1.5 hours in total.
 - Students must watch the video by themselves before that Thursday.
- ▶ During the lecture, we do three things:
 - Discussing the lecture materials (0.5 to 1 hour).
 - ► Solving **lecture problems** (1 to 2 hours) in **teams**.
 - Further discussions (0.5 to 1 hour).
- ▶ After the lecture, students also need to do homework.

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000
00000000000	O	0000000000000	

Teams

- ▶ Students form teams to do lecture problems.
- Each team has **three** students.
 - Unless a special approval is obtained.
- ► Once some students form a team for one case assignment, they will be in the same team for lecture problems until the submission of the next case assignment.
 - ▶ Students may change teammates when submitting case assignments.

What is OR? 00000000000	Quiz O	Syllabus 00000000000000	Introduction to modeling 000000000000

Team periods

▶ The submissions of Homework 1 and the five case assignments divide the semester into six periods.

Week	Submission	Team	Week	Submission	Team
1		-	10		4
2	HW 1	1	11	CA 4	5
3		1	12		_
4	CA 1	2	13		5
5		2	14		5
6	CA 2	3	15		5
7		-	16	CA 5	6
8	CA 3	4	17		-
9		4	18		-

 Your teammates for lecture problems will be identical within each period but may differ for different periods.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	0000000●0000000	000000000000

Lecture problems

- Lecture problems:
 - For each problem assigned by the instructor in class, students discuss in teams for 5 to 10 minutes.
 - ▶ At least **one team** then demonstrate their answer to the class (in **English**) to get grades for class problems.
 - ▶ All students who are present get the same grades for lecture problems. Absent students get nothing.
 - ▶ Sometimes teams may volunteer; sometimes the instructor determines who to answer.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	0000000●000000	000000000000

Homework and class problems

► Homework:

- ► Homework will be assigned roughly weekly.
- For each homework, each individual needs to submit a hard copy of your work into my mailbox on the first floor of the Management Building II by the due time.
- ▶ The lowest two homework grades will be dropped (i.e., you may skip two homework if you want).
- ► Case assignments:
 - Five case assignments will be assigned.
 - Students form teams to work on case assignments. These teams are then units to work on lecture problems until the submission of the next case assignment.
 - One's teammates may be different for different case assignment.
 - Each team only needs to submit **one hard copy** into my **mailbox**.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000●00000	000000000000

Textbook and online resources

- Textbook: Introduction to Operations Research by F. S. Hillier and G. J. Lieberman, Ninth edition, McGraw Hill.
- Online resources:
 - We use CEIBA to post your grades, send group messages, and post materials protected by copyrights.
 - We post most materials at http://www.im.ntu.edu.tw/~lckung/courses/ORSp14/.
 - ▶ We invite discussions on the bulletin board "NTUIM-lckung" on PTT.
 - ▶ We use YouTube to post lecture videos.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	0000000000000000	000000000000

Important dates and tentative plan

Week	Event	Week	Event
1		10	
2		11	
3	TA session in English	12	Midterm exam
4		13	
5		14	
6		15	
7	TA session in English; spring recess	16	
8		17	Project presentations
9		18	Final exam

Please note the following important dates:

► Tentative plan:

- ▶ Introduction: One lecture.
- ▶ Linear Programming: Five lectures.
- ▶ Integer and Nonlinear Programming: Four lectures.
- ▶ Game Theory: Four lectures.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000000000000	000000000000

The role of OR in our IM department

 Operations Research is one of the few courses that lie in the interface between Business and Computer Science.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	000000000000000000000000000000000000	00000000000

The role of OR in our IM department

- It is a promising direction if you:
 - Want to learn something that does not require a lot of **experiences** and can help you **run business**.
- ▶ It will also be very useful if you:
 - ▶ Want to work on **mathematical problems** in Computer Science or other engineering fields.
- ▶ For those of you who have not decided yet:
 - ▶ Study it so that you will not miss a chance in the future.

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000
00000000000	O	00000000000000	

Organization of course materials

- ▶ We may cover only a tiny part of OR in one semester.
- ▶ This course is designed to contain "more applications, less theory".
 - We hope to let you know how to use OR to help you.
 - We hope to make you be interested in OR.
 - If you want to learn more about OR afterwards, please let me know so that I may give you some advises.
- ▶ We will still spend some (a lot of?) time on algorithms and theory.
 - ▶ Not just know how to use a tool. Know why it works.
 - ▶ Then you really know how to adjust your way of using the tool when the environment changes.
- ► Tentative topics:
 - Making an optimal decision for linear problems.
 - Making an optimal decision for discrete or nonlinear problems.
 - ▶ Making an optimal decision when others' decisions affect your payoff.

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000
00000000000	O	0000000000000●	

Before we start...

- ▶ If you are an IM student:
 - ▶ I will keep teaching this course before you graduate.
- ▶ If you are not:
 - ▶ Always welcome but think twice!
 - ▶ Ask for the codes for enrollment after this three-hour lecture.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000000000	●00000000000

Agenda

- ▶ Ch. 1: What is Operations Research?
- ► Quiz.
- ▶ Syllabus.
- ▶ Ch. 2: Introduction to modeling.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000000000	00000000000

Five steps of an OR study

- ► To apply OR to facilitate better decision making, we conduct OR studies in five steps:
 - Define the problem and collect relevant data.
 - ► Formulate a **mathematical model** to represent the problem.
 - Develop or apply a procedure to derive a solution from the model.
 - Test the model and refine it when needed.
 - ▶ Make managerial suggestions.

▶ One thing should be defined: What is a mathematical model?

What is OR?	Quiz	Syllabus	Introduction to modeling 000000000000000000000000000000000000
00000000000	O	000000000000000	

Mathematical modeling

- ▶ The main "weapon" we will use in OR is **mathematical modeling**.
 - ▶ Often a mathematical model is called a model, a formulation, or a program in OR.
- ► Modeling is a way of **abstracting** a physical problem into a model with **symbols** and **formulas**.
 - ▶ Use mathematics to describe a problem.
- ▶ Why modeling?
 - We use a model to describe a problem **precisely** and **concisely**.
 - Once an **algorithm** for a type of model is developed, all problems that can be modeled in that way can be solved.

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000000000	000000000000

An example: step 1

- ▶ Consider the following example.
 - ▶ I have three used textbooks to sell in a second-hand market.
 - ▶ I need to bring them to the market.
 - But I may carry at most 5 kg.
 - ▶ Which book(s) should I bring?
- ▶ Step 1: Define the problem and collect relevant data.
 - ▶ The problem: To maximize the sales revenue without hurting me.
 - Data:

Book	Title	Price (NT\$)	Weight (kg)
1	Calculus	500	4
2	Computer Programming	400	2
3	Operations Research	200	3

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	000000000000000	000000000000

Step 2: formulating the problem

- ► Step 2: Precisely **formulate** (i.e., describe) the problem.
- ▶ To describe a problem:
 - ▶ **Parameters**: What cannot be controlled by us?
 - **Decision variables**: What may we control?
 - **Objective function**: What do we want?
 - **Constraints**: What are the limitations?
- ▶ Parameters:
 - ▶ 5 kg and 3 books; 500, 400, and 200 dollars; 4 kg, 2 kg, and 3 kg.
- Decision variables:
 - ▶ For each book, we may control whether to bring it. We thus define

$$x_i = \begin{cases} 1 & \text{if I carry book } i \\ 0 & \text{otherwise} \end{cases}, i = 1, ..., 3$$

as our decision variables.

Overview

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000000000	

Step 2: formulating the problem

▶ What do we want? We want to maximize the sales revenue:

 $500x_1 + 400x_2 + 200x_3.$

▶ What prevent us from bringing everything? We are not strong enough:

$$4x_1 + 2x_2 + 3x_3 \le 5.$$

• Our first model:

	What is OR? 00000000000	Quiz O	Syllabus 000000000000000	Introduction to modeling 000000000000000000000000000000000000
--	----------------------------	-----------	-----------------------------	---

Step 3: solving the model

Now we want to solve the model

\max	$500x_{1}$	+	$400x_2$	+	$200x_{3}$		
s.t.	$4x_1$	+	$2x_2$	+	$3x_3$	\leq	5.

- Wait... this problem is **unbounded**.
 - (0,0,0) is feasible and results in \$0 as my revenue.
 - (-1, 2, 0) is feasible and results in \$300 as my revenue.
 - (-2, 4, 0) is feasible and results in \$600 as my revenue.
 - And so on and so on.
- ▶ We will become millionaires! What is wrong here?

	What is OR? 00000000000	Quiz O	Syllabus 00000000000000	Introduction to modeling 0000000000000
--	----------------------------	-----------	----------------------------	--

Step 4: testing and revising the model

- ▶ We cannot bring "negative two" textbooks.
- ► How about this:

- The best solution is (0, 2.5, 0). Still wrong!
- ▶ How about this:

▶ The best solution is (0.75, 1, 0). Still wrong!

What is OR?	Quiz	Syllabus	Introduction to modeling
00000000000	O	00000000000000	0000000000000

Step 4: testing and revising the model

▶ What we still need: We cannot split a book:

$$x_i \in \{0, 1\} \quad \forall i = 1, ..., 3.$$

▶ The final formulation:⁵

• The best solution is (0, 1, 1). Makes sense!

 5 The problem is an example of the **knapsack** problem, one of the most fundamental problem in Computer Science.

Overview

What is OR?	Quiz	Syllabus	Introduction to modeling 00000000000000
00000000000	O	00000000000000	

Lastly: Making managerial suggestions

- "(0, 1, 1)" means nothing to you.
 - ▶ It will also mean nothing to your boss or any manager.
 - We need **suggestions** on what to do!
 - We need to **interpret** the solution.
- ▶ Step 5: Given our model and the solution we obtain, we suggest you to sell the textbooks of Computer Programming and OR!
 - ▶ Please do so at least after you pass these courses.

What is OR? 00000000000	Quiz O	Syllabus 00000000000000	Introduction to modeling $000000000000000000000000000000000000$

Summary

▶ An OR study is conducted in the following five steps:

- ▶ In this course, we will focus on Steps 2 and 3.
 - ▶ These technical parts require **practices** but no **experience**.
 - ▶ You will do Step 4 by yourselves from time to time.
 - ▶ You will get a taste on Steps 1 and 5 when doing your final project.

What is OR?	Quiz	Syllabus	Introduction to modeling $000000000000000000000000000000000000$
00000000000	O	00000000000000	

The DFSI principle

- When you are asked to solve a decision problem in this course, you MUST do the following four things:
 - Step 1: Define the decision variables (and the notations you use for parameters).
 - Step 2: Formulate the problem as a mathematical model by writing down the objective function and constraints.
 - ▶ Step 3: Solve the model by finding the values for all decision variables in an optimal solution.
 - ► Step 4: Interpret the optimal solution by indicating "what to do".