IM 2010: Operations Research, Spring 2014 The Simplex Method (Part 2)

Ling-Chieh Kung

Department of Information Management
National Taiwan University

March 13, 2014

Introduction

- Last time we introduced the simplex method.
- There remain some unsolved problem:
- How to find an initial bfs? How to know whether an LP is infeasible?
- What if an LP is unbounded?
- What if multiple nonbasic variables may be entered?
- What if there is a tie in a ratio test?
- How efficient the simplex method is?
- In this lecture, we will address these issues (and some more).
- Read Sections 4.5 and 4.6 thoroughly.
- Sections 4.8 and 4.9 contain discussions regarding efficiency.

Road map

- Information on tableaus.
- Finding an initial bfs.
- Degeneracy and efficiency.
- The matrix way of doing simplex.

Identifying unboundedness

- When is an LP unbounded?
- An LP is unbounded if:
- There is an improving direction.
- Along that direction, we may move forever.
- When we run the simplex method, this can be easily checked in a simplex tableau.
- Consider the following example:

$$
\begin{aligned}
\max & x_{1} \\
\text { s.t. } & x_{1}-x_{2} \leq 1 \\
& 2 x_{1}-x_{2} \leq 4 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

Unbounded LPs

- The standard form is:

$$
\begin{array}{ccl}
\max & x_{1} \\
\text { s.t. } & x_{1}-x_{2}+x_{3} & =1 \\
& 2 x_{1}-x_{2} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 4 .
\end{array}
$$

- The first iteration:

-1	0	0	0	0						
1 2	-1	1	0	$x_{3}=1$						
-1	0	1	$x_{4}=4$		$\quad \rightarrow \quad$	0	-1	1	0	1
:---:	:---:	:---:	:---:	:---:						
1 -1	1	0	$x_{1}=1$							
0	1	-2	1	$x_{4}=2$						

Unbounded LPs

- The second iteration:

0	-1	1	0	1						
1	-1	1	0	$x_{1}=1$						
0	1	-2	1	$x_{4}=2$	$\quad \rightarrow \quad$	0	0	-1	1	3
:---:	:---:	:---:	:---:	:---:						
1	0	-1	1	$x_{1}=3$						
0	1	-2	1	$x_{2}=2$						

- How may we do the third iteration? The ratio test fails!
- Only rows with positive denominators participate in the ratio test.
- Now all the denominators are nonpositive! Which variable to leave?
- No one should leave: Increasing x_{3} makes x_{1} and x_{2} become larger.
- Row 1: $x_{1}-x_{3}+x_{4}=3$.
- Row 2: $x_{2}-2 x_{3}+x_{4}=2$.
- The direction is thus an unbounded improving direction.

Unbounded improving directions

- At $(3,2)$, when we enter x_{3}, we move along the rightmost edge. Geometrically, both nonbinding constraints $x_{1} \geq 0$ and $x_{2} \geq 0$ are "behind us".

Detecting unbounded LPs

- For a minimization LP, whenever we see any column in any tableau

\bar{c}_{j}	
d_{1}	
\vdots	

such that $\bar{c}_{j}>0$ and $d_{i} \leq 0$ for all $i=1, \ldots, m$, we may stop and conclude that this LP is unbounded.

- $\bar{c}_{j}>0$: This is an improving direction.
- $d_{i} \leq 0$ for all $i=1, \ldots, m$: This is an unbounded direction.
- What is the unbounded condition for a maximization problem?

Multiple optimal solutions

- Consider another example (in standard form directly):

$$
\begin{array}{rrllllll}
\max & x_{1} & +x_{2} & & & & & \\
\text { s.t. } & x_{1} & +2 x_{2} & +x_{3} & & & & =12 \\
& 2 x_{1} & +x_{2} \\
& x_{1} & +x_{2} & & x_{4} & & =12 \\
& & & + & x_{5} & =7 \\
& x_{i} \geq 0 & \forall i=1, \ldots, 5 .
\end{array}
$$

Multiple optimal solutions

- In two iterations, we find an optimal solution:

-1	-1	0	0		0			-		0	$\frac{1}{2}$	0	6
1	2	1	0	0	$x_{3}=12$$x_{4}=12$$x_{5}=7$			$\frac{3}{2}$			$-\frac{1}{2}$		$x_{3}=6$
2	1	0	1	0			1	$\frac{1}{2}$			$\frac{1}{2}$	0	$x_{1}=6$
1	1						0	$\frac{1}{2}$			$-\frac{1}{2}$	1	$x_{5}=1$
							0	0	0	0		1	7
						\rightarrow	0	0	1	1			$x_{3}=3$
							1	0	0	1			$x_{1}=5$
													$x_{2}=2$

Multiple optimal solutions

- In practice, we will simply stop and report the optimal solution.
- But here the optimal tableau shows the existence of multiple optimal solutions.

0	0	0	0	1	7
0	0	1	1	-2	$x_{3}=3$
1	0	0	1	-2	$x_{1}=5$
0	1	0	-1	2	$x_{2}=2$

- What does a zero reduced cost mean?
- When we increase x_{4}, z will not be affected.
- As the current solution is optimal, if there is a direction such that moving along it does not change the objective value, all points along that direction are optimal.

Multiple optimal solutions

- At an optimal solution $(5,2)$, by entering x_{4}, we move along $x_{1}+x_{2}=7$. All points on that edge are optimal.
- For a nondegenerate LP, at an optimal tableau, if a nonbasic variable x_{j} has a zero reduced cost, the LP has multiple optimal solutions.
- For a degenerate LP (to be discussed later in this lecture), the condition is not sufficient.
- In practice, knowing this is not very valuable.

Road map

- Information on tableaus.
- Finding an initial bfs.
- Degeneracy and efficiency.
- The matrix way of doing simplex.

Feasibility of an LP

- When an LP

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x \leq b \\
& x \geq 0
\end{aligned}
$$

satisfies $b \geq 0$, finding a bfs for its standard form

$$
\begin{aligned}
\min & c^{T} x \\
\text { s.t. } & A x+I y=b \\
& x, y \geq 0
\end{aligned}
$$

is trivial.

- We may form a feasible basis with all the slack variables y.
- What if there are some " $=$ " or " \geq " constraints?

Feasibility of an LP

- For example, given an LP

$$
\begin{array}{cc}
\min & x_{1} \\
\mathrm{s.t.} & x_{1}+x_{2}-x_{3}+r x_{4} \geq 10 \\
& 3 x_{1}+2 x_{2}+9 x_{3}-2 \\
& x_{1}-8 x_{2}+2 x_{3}-6 \\
& x_{i} \geq 0 x_{4} \leq 10 \\
& \forall i=1, \ldots, 4
\end{array}
$$

whose standard form is

$$
\begin{array}{rrrrrrrrrrl}
\min & x_{1} \\
\text { s.t. } & x_{1} & + & x_{2} & - & x_{3} & + & x_{4} & - & x_{5} & \\
& 3 x_{1} & +2 x_{2} & +9 x_{3} & - & x_{4} & & & & & = \\
& x_{1} & -8 x_{2} & +2 x_{3} & - & 6 x_{4} & & & + & x_{6} & = \\
& x_{i} \geq 0 & \forall i=1, \ldots, 6,
\end{array}
$$

it is nontrivial to find a feasible basis (if there is one).

The two-phase implementation

- To find an initial bfs (or show that there is none), we may apply the two-phase implementation.
- Given a standard form LP (P), we construct a phase-I LP (Q) : 1

	min	$c^{T} x$
s.t.	$A x=b$	
	$x \geq 0$	

(Q) \quad s.t. $A x+I y=b$

$$
x, y \geq 0
$$

- (Q) has a trivial bfs $(x, y)=(0, b)$, so we can apply the simplex method on (Q). But so what?

Proposition 1

(P) is feasible if and only if (Q) has an optimal bfs $(x, y)=(\bar{x}, 0)$. In this case, \bar{x} is a bfs of (P).
${ }^{1}$ Even if in (P) we have a maximization objective function, (Q) is still the same.

The two-phase implementation

- After we solve (Q), either we know (P) is infeasible or we have a feasible basis of (P).
- In the latter case, we can recover the objective function of the original (P) to get a phase-II LP.
" "The phase-II LP" is nothing but the original (P).
- Phase I for a feasible solution and phase II for an optimal solution.
- Regarding those added variables:
- They are artificial variables and have no physical meaning. They are created only for checking feasibility.
- If a constraint already has a variable that can be included in a trivial basis, we do not need to add an artificial variable in that constraint.
- This happens to those " \leq " constraints (if the RHS is nonnegative).
- We then adjust the tableau according to the initial basis and continue applying the simplex method on the phase-II LP.

Example 1: Phase I

- Consider an LP

$$
\begin{array}{rrl}
\max & x_{1} & +x_{2} \\
\text { s.t. } & 2 x_{1} & +x_{2} \geq 6 \\
& x_{1}+2 x_{2} \leq 6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

which has no trivial bfs (due to the " \geq " constraint).

- Its Phase-I standard form LP is
- We need only one artificial variable $x_{5} . x_{3}$ and x_{4} are slack variables.

Example 1: preparing the initial tableau

- Let's try to solve the Phase-I LP. First, let's prepare the initial tableau:

0	0	0	0	-1	0
2	1	-1	0	1	$x_{5}=6$
1	2	0	1	0	$x_{4}=6$

- Is this a valid tableau? No!
- For all basic columns (in this case, columns 4 and 5), the 0th row should contain 0 .
- So we need to first adjust the 0th row with elementary row operations.

Example 1: preparing the initial tableau

- Let's adjust row 0 by adding row 1 to row 0 .

0	0	0	0	-1	0							
2	1	-1	0	1	$x_{5}=6$							
1	2	0	1	0	$x_{4}=6$	$\overbrace{\rightarrow}^{\text {adjust }} \quad$	2	1	-1	0	0	6
:---:	:---:	:---:	:---:	:---:	:---:							
2 1 -1 0 1	$x_{5}=6$											
1	2	0	1	0	$x_{4}=6$							

- Now we have a valid initial tableau to start from!
- The current bfs is $x^{0}=(0,0,0,6,6)$, which corresponds to an infeasible solution to the original LP.
- We know this because there are positive artificial variables.

Example 1: solving the Phase-I LP

- Solving the Phase-I LP takes only one iteration:

2	1	-1	0	0	6						
2	1	-1	0	1	$x_{5}=6$						
1	2	0	1	0	$x_{4}=6$	\rightarrow	0	0	0	0	0
:---:	:---:	:---:	:---:	:---:							
1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_{1}=3$							
0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_{4}=3$							

- Whenever an artificial variable leaves the basis, we will not need to enter it again. Therefore, we may remove that column to save calculations.
- As we can remove all artificial variables, the original LP is feasible.
- A feasible basis for the original LP is $\left\{x_{1}, x_{4}\right\}$.

Example 1: solving the Phase-II LP

- Now let's construct the Phase-II LP.
- Step 1: put the original objective function "max $x_{1}+x_{2}$ " back:

-1	-1	0	0	0
1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_{1}=3$
0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_{4}=3$

- Is this a valid tableau? No!
- Column 1, which should be basic, contains a nonzero number in the 0th row. It must be adjusted to 0 .
- Before we run iterations, let's adjust the 0th row again.

Example 1: solving the Phase-II LP

- Let's fix the 0th row and then run two iterations.

$$
\begin{aligned}
& \begin{array}{cccc|c}
-1 & -1 & 0 & 0 & 0 \\
\hline 1 & \frac{1}{2} & -\frac{1}{2} & 0 & x_{1}=3 \\
0 & \frac{3}{2} & \frac{1}{2} & 1 & x_{4}=3
\end{array} \\
& \overbrace{\rightarrow}^{\text {adjust }} \begin{array}{cccc|c}
0 & -\frac{1}{2} & -\frac{1}{2} & 0 & 3 \\
\hline 1 & \frac{1}{2} & -\frac{1}{2} & 0 & x_{1}=3 \\
0 & \frac{3}{2} & \frac{1}{2} & 1 & x_{4}=3
\end{array} \\
& \rightarrow \begin{array}{cccc|c}
0 & 0 & -\frac{1}{3} & \frac{1}{3} & 4 \\
\hline 1 & 0 & -\frac{2}{3} & -\frac{1}{3} & x_{1}=2 \\
0 & 1 & \frac{1}{3} & \frac{2}{3} & x_{2}=2
\end{array} \\
& \rightarrow \quad \begin{array}{cccc|c}
0 & 1 & 0 & 1 & 6 \\
\hline 1 & 2 & 0 & 1 & x_{1}=6 \\
0 & 3 & 1 & 2 & x_{3}=6
\end{array}
\end{aligned}
$$

- The optimal bfs is $(6,0,6,0)$.

Example 1: visualization

- x^{0} is infeasible (the artificial variable x_{5} is positive).
- x^{1} is the initial bfs (as a result of Phase I).
- x^{3} is the optimal bfs (as a result of Phase II).

Example 2: Phase-I LP

- Consider another LP

$$
\begin{array}{rrc}
\max & x_{1} & +x_{2} \\
\text { s.t. } & 2 x_{1} & +x_{2} \geq 6 \\
& x_{1}+2 x_{2}=6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

and its Phase-I LP

$$
\begin{array}{rrllllll}
\min & & x_{4} & +x_{5} \\
\mathrm{s.t.} & 2 x_{1} & + & x_{2} & -x_{3}+x_{4} & & \\
& x_{1}+2 x_{2} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 .
\end{array}
$$

- Please note that there are two artificial variables x_{4} and x_{5} (why?).
- How about x_{3} ?

Example 2: solving the Phase-I LP

- We first fix the 0th row and then run two iterations to remove all the artificial variables:

0	0	0	-1	-1	0		3	3	-1		0	12
2	1	-1	1	0	$x_{4}=6$		2	1	-1			$x_{4}=6$
1	2	0	0	1	$x_{5}=6$		1	2	0	0		$x_{5}=6$
							$x^{0}=(0,0,0, \underline{6}, \underline{6})$ is infeasible					

$\rightarrow \quad$0 $\frac{3}{2}$ $\frac{1}{2}$ 0 3 1 $\frac{1}{2}$ $-\frac{1}{2}$ 0 $x_{1}=3$ 0 $\frac{3}{2}$ $\frac{1}{2}$ 1 $x_{5}=3$						
	\rightarrow		0	0	0	0
:---:	:---:	:---:	:---:			

Example 2: solving the Phase-II LP

- With the initial basis $\left\{x_{1}, x_{2}\right\}$, we then solve the Phase-II LP in one iteration (do not forget to fix the 0th row). ${ }^{2}$

$\rightarrow \quad$| 0 | 1 | 0 | 6 |
| :---: | :---: | :---: | :---: |
| 1 | 2 | 0 | $x_{1}=6$ |
| 0 | 3 | 1 | $x_{3}=6$ |
| $x^{3}=(6,0,6)$ is optimal | | | |

${ }^{2}$ Would you visualize the whole process by yourself?

Example 3: Phase-I LP

- Consider the LP

$$
\begin{aligned}
\max & x_{1} \\
\text { s.t. } & 2 x_{1}+x_{2} \leq 4 \\
& x_{1}+x_{2}=6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

and its Phase-I LP

$$
\begin{array}{cc}
\min & \\
\mathrm{s.t.} & x_{4} \\
& 2 x_{1}+x_{2}+x_{3} \\
& x_{1}+x_{2} \\
& x_{i} \geq 0 \quad x_{4}=6 \\
& \forall i=1, \ldots, 4 .
\end{array}
$$

Example 3: solving the Phase-I LP

- After adjusting the 0th row, we run two iterations:

$$
\begin{aligned}
& x^{0}=(0,0,4, \underline{6}) \text { is infeasible } \\
& \rightarrow \begin{array}{cccc|c}
0 & \frac{1}{2} & -\frac{1}{2} & 0 & 4 \\
\hline
\end{array} \begin{array}{ccc}
1 & \overline{\frac{1}{2}} & \frac{1}{2} \\
0 & 0 & x_{1}=2 \\
0 & -\frac{1}{2} & 1
\end{array} \quad \rightarrow \quad \begin{array}{cccc|c}
-1 & 0 & -1 & 0 & 2 \\
\hline
\end{array} \quad \rightarrow \quad \begin{array}{cccc}
2 & 1 & 1 & 0
\end{array} x_{2}=4 \\
& x^{1}=(0,2,0, \underline{4}) \text { is infeasible } \quad x^{2}=(0,4,0, \underline{2}) \text { is infeasible }
\end{aligned}
$$

Example 3: solving the Phase-I LP

- The final tableau

-1	0	-1	0	2
2	1	1	0	$x_{2}=4$
-1	0	-1	1	$x_{4}=2$

is optimal (for the Phase-I LP).

- However, in the Phase-I optimal solution $(0,4,0,2)$, the artificial variable x_{4} is still in the basis (and positive).
- Therefore, we conclude that the original LP is infeasible. ${ }^{3}$

[^0]
Road map

- Information on tableaus.
- Finding an initial bfs.
- Degeneracy and efficiency.
- The matrix way of doing simplex.

Degeneracy

- Recall that an LP is degenerate if multiple bases correspond to a single basic solution.
- As an example, consider the following LP

$$
\begin{aligned}
\max & x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}+x_{2} \leq 3 \\
& 2 x_{1}+3 x_{2} \leq 6 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{aligned}
$$

and its standard form

$$
\begin{aligned}
\max & x_{1}+3 x_{2} \\
\text { s.t. } & x_{1}+x_{2}+x_{3} \\
& 2 x_{1}+3 x_{2} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

Degeneracy

- The six bases of

$$
\begin{aligned}
& \max \quad x_{1}+3 x_{2} \\
& \text { s.t. } \begin{aligned}
x_{1}+x_{2}+x_{3} & =3 \\
2 x_{1} & +3 x_{2}
\end{aligned} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 4
\end{aligned}
$$

correspond to four distinct basic solutions.

Basis	Extreme point	Basic solution			
		x_{2}	x_{3}	x_{4}	
$\left\{x_{1}, x_{2}\right\}$		3	0	0	0
$\left\{x_{1}, x_{3}\right\}$		3	0	0	0
$\left\{x_{1}, x_{4}\right\}$		3	0	0	0
$\left\{x_{2}, x_{3}\right\}$	D	0	2	1	0
$\left\{x_{2}, x_{4}\right\}$	-	0	3	0	-3
$\left\{x_{3}, x_{4}\right\}$	E	0	0	3	6

Impact of degeneracy

- In a degenerate LP, multiple feasible bases correspond to the same bfs.
- For the simplex method, it is possible to move to another basis but still at the same bfs.
- Running an iteration may have no improvement!
- Let's run the simplex method on this example.

Solving degenerate LPs

- After three iterations, we find an optimal solution:

-1	-3	0	0	0						
1	1	1	0	$x_{3}=3$						
2	3	0	1	$x_{4}=6$	$\quad \rightarrow \quad$	0	-2	1	0	3
:---:	:---:	:---:	:---:	:---:						
1	1	1	0	$x_{1}=3$						
0	1	-2	1	$x_{4}=0$						

- In the second iteration, there is no improvement!
- The basis changes but the bfs does not change.

Efficiency of the simplex method

- In general, when we use the simplex method to solve a degenerate LP, there may be some iterations that have no improvements.
- That may happen when multiple rows win the ratio test at the same time; those basic variables become 0 simultaneously.
- For some (very strange) instances, the simplex method needs to travel through all the bfs before it can make a conclusion.
- Therefore, the simplex method is an exponential-time algorithm. ${ }^{4}$
- It may take an unacceptable long time to solve an LP.
- There are polynomial-time algorithms for Linear Programming.
- For many practical problems, the simplex method is still faster.
- The simplex method is the most popular method for LP in industry.
${ }^{4}$ The number of iteration is $O\left(\binom{n}{m}\right)$.

Efficiency of the simplex method

- When using the simplex method to solve an (original) LP, the number of functional constraints (m) greatly affects the computation time.
- The computation time is roughly $O\left(\mathrm{~m}^{3}\right)$: proportional to the cube of the number of functional constraints.
- Intuition: Number of iterations is $O(m)$ and number of operations in an iteration is $O\left(m^{2}\right)$.
- The number of variables, on the contrary, is not so important.
- We calculate $x_{B}=A_{B}^{-1} b$ in each iteration, and $A_{B} \in \mathbb{R}^{m \times m}$.
- The sparsity of the coefficient matrix A is also important.
- A is sparse means it has many zeros.
- Practical problems typically have sparse coefficient matrices.
- For more information, see Chapters 5 and 7 (which will not be covered in this course).

Cycling

- One thing is even worse than running for a long time.
- At a degenerate bfs, the simplex method may enter an infinite loop! This is called cycling.
- Basis $1 \rightarrow$ basis $2 \rightarrow$ basis $3 \rightarrow \cdots \rightarrow$ basis 1 .
- This may happen when we use a "not so good" way of selecting entering and leaving variables.
- If we select the nonbasic variable with the "most significant reduced cost", cycling may occur.
- There are at least two ways to avoid cycling:
- Randomize the selection of variables.
- Apply an anti-cycling variable selection rule.

The smallest index rule

- One anti-cycling rule is the smallest index rule: ${ }^{5}$

Proposition 2 (The smallest index rule)

Using the following rule guarantees to solve a minimization LP in finite steps:

- Among nonbasic variables with positive reduced costs, pick the one with the smallest index to enter the basis.
- Among basic variables that have the smallest valid ratios, pick the one with smallest index to exist.
- The smallest index rule may not generate the least iterations toward an optimal solution.
- No variable selection rule can guarantee to be the most efficient!
- The smallest index rule can guarantee no cycling!

[^1]
Road map

- Information on tableaus.
- Finding an initial bfs.
- Degeneracy and efficiency.
- The matrix way of doing simplex.

Implementation of the simplex method

- When one implements the simplex method with computer programs, using tableaus is not the most efficient way.
- Using matrices is the most efficient.
- Recall that the standard form LP can be expressed as

$$
\begin{array}{cl}
\min & c_{B}^{T} A_{B}^{-1} b-\left(c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T}\right) x_{N} \\
\text { s.t. } & x_{B}=A_{B}^{-1} b-A_{B}^{-1} A_{N} x_{N} \\
& x_{B}, x_{N} \geq 0
\end{array}
$$

or

$$
\begin{aligned}
z \quad+\left(c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T}\right) x_{N} & =c_{B}^{T} A_{B}^{-1} b \\
I x_{B}+\quad A_{B}^{-1} A_{N} x_{N} & =A_{B}^{-1} b .
\end{aligned}
$$

- We may do matrix operations to do iterations.

At any feasible basis

$$
\left.\begin{array}{rl}
z & +\quad\left(c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}\right) x_{N}
\end{array}\right)=c_{B}^{T} A_{B}^{-1} b .
$$

- At any feasible basis B :
- The current bfs is $x=\left(x_{B}, x_{N}\right)=\left(A_{B}^{-1} b, 0\right)$ and the current $z=c_{B}^{T} A_{B}^{-1} b$.
- For the entering variable:
- The reduced costs are $\bar{c}_{N}^{T}=c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T}$.
- The reduced cost of variable x_{j} is $\bar{c}_{j}=c_{B}^{T} A_{B}^{-1} A_{j}-c_{j}$ for all $j \in N$.
- If there exists $j \in N$ such that $\bar{c}_{j}>0, x_{j}$ may enter.
- For the leaving variable:
- If x_{j} enters, the ratio test is to compare the ratios $\frac{\left(A_{B}^{-1} b\right)_{i}}{\left(A_{B}^{-1} A_{j}\right)_{i}}$.
- The basic variable corresponding to row i may leave if $\left(A_{B}^{-1} A_{j}\right)_{i}>0$ and

$$
\frac{\left(A_{B}^{-1} b\right)_{i}}{\left(A_{B}^{-1} A_{j}\right)_{i}} \leq \frac{\left(A_{B}^{-1} b\right)_{k}}{\left(A_{B}^{-1} A_{j}\right)_{k}} \quad \forall k=1, \ldots, m \text { such that }\left(A_{B}^{-1} A_{j}\right)_{k}>0
$$

When we stop

- At any optimal basis B, we know that
- The reduced costs $\bar{c}_{N}^{T}=c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T} \leq 0$.
- The optimal bfs is $x^{*}=\left(x_{B}^{*}, x_{N}^{*}\right)=\left(A_{B}^{-1} b, 0\right)$.
- The current objective value is $z^{*}=c_{B}^{T} A_{B}^{-1} b$.
- To detect multiple optimal solutions:
- $\bar{c}_{N}^{T}=c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T} \leq 0$.
- There exists $j \in N$ such that $\bar{c}_{j}=0$.
- To detect unboundedness:
- There exists $j \in N$ such that $\bar{c}_{j}>0$.
- Moreover, $\left(A_{B}^{-1} A_{j}\right)_{i} \leq 0$ for all $i \in B$.

Example

- Consider the example again:

$$
\begin{aligned}
& \min \quad-x_{1} \\
& \text { s.t. } \begin{array}{rlrl}
2 x_{1}-x_{2}+x_{3} & & & \\
2 x_{1}+x_{2} \\
& x_{2}
\end{array} \\
& x_{i} \geq 0 \quad \forall i=1, \ldots, 5 .
\end{aligned}
$$

- In the matrix representation, we have

$$
\begin{aligned}
c^{T} & =\left[\begin{array}{ccccc}
-1 & 0 & 0 & 0 & 0
\end{array}\right], \\
A & =\left[\begin{array}{ccccc}
2 & -1 & 1 & 0 & 0 \\
2 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right], \quad \text { and } b=\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right] .
\end{aligned}
$$

A feasible basis

- Given $x_{B}=\left(x_{1}, x_{4}, x_{5}\right)$ and $x_{N}=\left(x_{2}, x_{3}\right)$, we have

$$
\begin{array}{ll}
c_{B}^{T}=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right], & c_{N}^{T}=\left[\begin{array}{ll}
0 & 0
\end{array}\right], \\
A_{B}=\left[\begin{array}{lll}
2 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right], & A_{N}=\left[\begin{array}{cc}
-1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right] .
\end{array}
$$

- Given the basis, we have

$$
\begin{aligned}
x_{B} & =A_{B}^{-1} b=\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{4} \\
x_{5}
\end{array}\right], \text { and } \\
z & =c_{B}^{T} A_{B}^{-1} b=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
2 \\
4 \\
3
\end{array}\right]=-2 .
\end{aligned}
$$

- The current bfs is $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(2,0,0,4,3)$.

A feasible basis

- For $x_{N}=\left(x_{2}, x_{3}\right)$, the reduced costs are

$$
\begin{aligned}
\bar{c}_{N}^{T} & =c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T} \\
& =\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{2} & 0 & 0 \\
-1 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 & 1 \\
1 & 0 \\
1 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
\frac{1}{2} & -\frac{1}{2}
\end{array}\right] .
\end{aligned}
$$

- x_{2} enters. For $x_{B}=\left(x_{1}, x_{4}, x_{5}\right)$, we have
- $A_{B}^{-1} A_{2}=\left[\begin{array}{ccc}\frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{c}-1 \\ 1 \\ 1\end{array}\right]=\left[\begin{array}{c}-\frac{1}{2} \\ 2 \\ 1\end{array}\right]$ and $A_{B}^{-1} b=\left[\begin{array}{l}2 \\ 4 \\ 3\end{array}\right]$.
- $\frac{4}{2}<\frac{3}{1}$, so x_{4} leaves.

An optimal basis

- Given $x_{B}=\left(x_{1}, x_{2}, x_{5}\right)$ and $x_{N}=\left(x_{3}, x_{4}\right)$ we have

$$
\begin{aligned}
& c_{B}^{T}=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right], \quad c_{N}^{T}=\left[\begin{array}{ll}
0 & 0
\end{array}\right], \\
& A_{B}=\left[\begin{array}{ccc}
2 & -1 & 0 \\
2 & 1 & 0 \\
0 & 1 & 1
\end{array}\right], \quad A_{N}=\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right], \quad b=\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right] .
\end{aligned}
$$

- Given the basis, we have

$$
\begin{aligned}
x_{B} & =A_{B}^{-1} b=\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{l}
4 \\
8 \\
3
\end{array}\right]=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{5}
\end{array}\right], \text { and } \\
z & =c_{B}^{T} A_{B}^{-1} b=\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right]=-3 .
\end{aligned}
$$

- The current bfs is $x=\left(x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\right)=(3,2,0,0,1)$.

An optimal basis

- For $x_{N}=\left(x_{3}, x_{4}\right)$, the reduced costs are

$$
\begin{aligned}
\bar{c}_{N}^{T} & =c_{B}^{T} A_{B}^{-1} A_{N}-c_{N}^{T} \\
& =\left[\begin{array}{lll}
-1 & 0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\frac{1}{4} & \frac{1}{4} & 0 \\
-\frac{1}{2} & \frac{1}{2} & 0 \\
\frac{1}{2} & -\frac{1}{2} & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
0 & 1 \\
0 & 0
\end{array}\right]-\left[\begin{array}{ll}
0 & 0
\end{array}\right] \\
& =\left[\begin{array}{ll}
-\frac{1}{4} & -\frac{1}{4}
\end{array}\right] .
\end{aligned}
$$

- No variable should enter: This bfs is optimal.

The matrix way

- In short, the simplex method may be run with matrix calculations.
- In this way, the bottleneck is the calculation of A_{B}^{-1}.
- Nevertheless, because the current basis B and the previous one have only one variable different, the current A_{B} and the previous one have only one column different.
- Calculating A_{B}^{-1} can be faster with the previous one. ${ }^{6}$
- In fact, how do you know that A_{B} is still invertible after changing one column?
${ }^{6}$ Section 5.4 contains relevant discussion about calculating A_{B}^{-1}.

[^0]: ${ }^{3}$ Try to visualize this!

[^1]: ${ }^{5}$ Developed by Bland in 1977.

