IM 2010: Operations Research, Spring 2014The Simplex Method (Part 2)

Ling-Chieh Kung

Department of Information Management National Taiwan University

March 13, 2014

Introduction

- ▶ Last time we introduced the simplex method.
- ▶ There remain some unsolved problem:
 - ▶ How to find an initial bfs? How to know whether an LP is infeasible?
 - ▶ What if an LP is unbounded?
 - ▶ What if multiple nonbasic variables may be entered?
 - ▶ What if there is a tie in a ratio test?
 - ▶ How efficient the simplex method is?
- ▶ In this lecture, we will address these issues (and some more).
- ▶ Read Sections 4.5 and 4.6 thoroughly.
 - ▶ Sections 4.8 and 4.9 contain discussions regarding efficiency.

Road map

- ► Information on tableaus.
- ▶ Finding an initial bfs.
- Degeneracy and efficiency.
- ▶ The matrix way of doing simplex.

Identifying unboundedness

- ▶ When is an LP **unbounded**?
- ► An LP is unbounded if:
 - ▶ There is an improving direction.
 - ▶ Along that direction, we may move forever.
- ▶ When we run the simplex method, this can be easily checked in a simplex tableau.
- ► Consider the following example:

Unbounded LPs

► The standard form is:

▶ The first iteration:

Degeneracy and efficiency

Unbounded LPs

The second iteration:

0	-1	1	0	1		0	0	-1	1	3
1	-1	1	0	$x_1 = 1$	\rightarrow	1	0	-1	1	$x_1 = 3$
				$x_4 = 2$						$x_2 = 2$

- ▶ How may we do the third iteration? The **ratio** test fails!
 - ▶ Only rows with positive denominators participate in the ratio test.
 - ▶ Now all the denominators are nonpositive! Which variable to leave?
- ▶ No one should leave: Increasing x_3 makes x_1 and x_2 become larger.
 - $ightharpoonup \text{Row 1: } x_1 x_3 + x_4 = 3.$
 - Now 2: $x_2 2x_3 + x_4 = 2$.
- ▶ The direction is thus an unbounded improving direction.

Unbounded improving directions

▶ At (3,2), when we enter x_3 , we move along the rightmost edge. Geometrically, both nonbinding constraints $x_1 \ge 0$ and $x_2 \ge 0$ are "behind us".

Detecting unbounded LPs

► For a minimization LP, whenever we see any column in any tableau

such that $\bar{c}_j > 0$ and $d_i \leq 0$ for all i = 1, ..., m, we may stop and conclude that this LP is unbounded.

- $ightharpoonup \bar{c}_i > 0$: This is an improving direction.
- ▶ $d_i \leq 0$ for all i = 1, ..., m: This is an unbounded direction.
- ▶ What is the unbounded condition for a **maximization** problem?

▶ Consider another example (in standard form directly):

▶ In two iterations, we find an optimal solution:

	-1					
1	2	1	0	0	$\begin{vmatrix} x_3 = 12 \\ x_4 = 12 \\ x_5 = 7 \end{vmatrix}$	\rightarrow
2	1	0	1	0	$x_4 = 12$,
1	1	0	0	1	$x_5 = 7$	

0	$-\frac{1}{2}$	0	$\frac{1}{2}$	0	6
0	$\frac{3}{2}$	1	$-\frac{1}{2}$	0	$\begin{vmatrix} x_3 = 6 \\ x_1 = 6 \end{vmatrix}$
1	$\frac{1}{2}$	0	$\frac{1}{2}$	0	$x_1 = 6$
0	$\frac{1}{2}$	0	$-\frac{1}{2}$	1	$x_5 = 1$

- ▶ In practice, we will simply stop and report the optimal solution.
- ▶ But here the optimal tableau shows the existence of **multiple** optimal solutions.

- ▶ What does a zero reduced cost mean?
 - ▶ When we increase x_4 , z will not be affected.
- ▶ As the current solution is optimal, if there is a direction such that moving along it does not change the objective value, all points along that direction are optimal.

- At an optimal solution (5,2), by entering x_4 , we move along $x_1 + x_2 = 7$. All points on that edge are optimal.
- ▶ For a nondegenerate LP, at an optimal tableau, if a nonbasic variable x_j has a zero reduced cost, the LP has multiple optimal solutions.
 - For a degenerate LP (to be discussed later in this lecture), the condition is not sufficient.
 - ► In practice, knowing this is not very valuable.

Road map

- ▶ Information on tableaus.
- ► Finding an initial bfs.
- Degeneracy and efficiency.
- ▶ The matrix way of doing simplex.

Feasibility of an LP

▶ When an LP

satisfies $b \geq 0$, finding a bfs for its standard form

min
$$c^T x$$

s.t. $Ax + Iy = b$
 $x, y \ge 0$,

is trivial.

- \triangleright We may form a feasible basis with all the slack variables y.
- ▶ What if there are some "=" or ">" constraints?

Feasibility of an LP

► For example, given an LP

whose standard form is

it is nontrivial to find a feasible basis (if there is one).

The two-phase implementation

- ► To find an initial bfs (or show that there is none), we may apply the **two-phase implementation**.
- ▶ Given a standard form LP (P), we construct a **phase-I LP** (Q):

▶ (Q) has a trivial bfs (x, y) = (0, b), so we can apply the simplex method on (Q). But so what?

Proposition 1

(P) is feasible if and only if (Q) has an optimal bfs $(x,y) = (\bar{x},0)$. In this case, \bar{x} is a bfs of (P).

¹Even if in (P) we have a maximization objective function, (Q) is still the same.

The two-phase implementation

- After we solve (Q), either we know (P) is infeasible or we have a feasible basis of (P).
- ▶ In the latter case, we can recover the objective function of the original (P) to get a **phase-II LP**.
 - ightharpoonup "The phase-II LP" is nothing but the original (P).
 - ▶ Phase I for a **feasible** solution and phase II for an **optimal** solution.
- ▶ Regarding those added variables:
 - They are artificial variables and have no physical meaning. They are created only for checking feasibility.
 - If a constraint already has a variable that can be included in a trivial basis, we do not need to add an artificial variable in that constraint.
 - ▶ This happens to those "≤" constraints (if the RHS is nonnegative).
- ► We then **adjust** the tableau according to the initial basis and **continue** applying the simplex method on the phase-II LP.

Example 1: Phase I

▶ Consider an LP

which has no trivial bfs (due to the " \geq " constraint).

▶ Its Phase-I standard form LP is

min
s.t.
$$2x_1 + x_2 - x_3 + x_5 = 6$$

 $x_1 + 2x_2 + x_4 = 6$
 $x_i \ge 0 \quad \forall i = 1, ..., 5.$

• We need only one artificial variable x_5 . x_3 and x_4 are slack variables.

Example 1: preparing the initial tableau

▶ Let's try to solve the Phase-I LP. First, let's prepare the initial tableau:

- ▶ Is this a valid tableau? No!
 - ► For all basic columns (in this case, columns 4 and 5), the 0th row should contain 0.
 - ► So we need to first **adjust the 0th row** with elementary row operations.

Example 1: preparing the initial tableau

▶ Let's adjust row 0 by adding row 1 to row 0.

0	0	0	0	-1	0	adjust	2	1	-1	0	0	6
2	1	-1	0	1	$x_5 = 6$	$\widehat{\rightarrow}$	2	1	-1	0	1	$x_5 = 6$
1	2	0	1	0	$x_4 = 6$		1	2	0	1	0	$x_4 = 6$

- ▶ Now we have a valid initial tableau to start from!
- ▶ The current bfs is $x^0 = (0, 0, 0, 6, 6)$, which corresponds to an **infeasible** solution to the original LP.
 - ▶ We know this because there are positive artificial variables.

Example 1: solving the Phase-I LP

▶ Solving the Phase-I LP takes only one iteration:

2	1	-1	0	0	6		0	0	0	0	0
2	1	-1	0	1	$x_5 = 6$	\rightarrow	1	$\frac{1}{2}$	$-\frac{1}{2}$	0	$x_1 = 3$
1	2	0	1	0	$x_4 = 6$		0	$\frac{3}{2}$	$\frac{1}{2}$	1	$x_4 = 3$

- Whenever an artificial variable leaves the basis, we will not need to enter it again. Therefore, we may remove that column to save calculations.
- ▶ As we can remove all artificial variables, the original LP is feasible.
- ▶ A feasible basis for the original LP is $\{x_1, x_4\}$.

Example 1: solving the Phase-II LP

- ▶ Now let's construct the Phase-II LP.
- ▶ Step 1: put the original objective function "max $x_1 + x_2$ " back:

- ▶ Is this a valid tableau? No!
 - Column 1, which should be basic, contains a nonzero number in the 0th row. It must be adjusted to 0.
- ▶ Before we run iterations, let's adjust the 0th row again.

Example 1: solving the Phase-II LP

▶ Let's fix the 0th row and then run two iterations.

	-1	-1	0	0	0	adjust		0	$-\frac{1}{2}$	_	$\frac{1}{2}$	0	3
-					$x_1 = 3$ $x_4 = 3$	\Rightarrow							$x_1 = 3$ $x_4 = 3$
	0	0	$-\frac{1}{3}$	$\frac{1}{3}$	4		0	1	0	1		6	
\rightarrow					$\begin{vmatrix} x_1 = 2 \\ x_2 = 2 \end{vmatrix}$	\rightarrow	1 0	2 3	0	1 2	$\begin{vmatrix} x_1 \\ x_3 \end{vmatrix}$] = =	6 6

 \blacktriangleright The optimal bfs is (6,0,6,0).

Example 1: visualization

- $\triangleright x^0$ is infeasible (the artificial variable x_5 is positive).
- $\triangleright x^1$ is the initial bfs (as a result of Phase I).
- $ightharpoonup x^3$ is the optimal bfs (as a result of Phase II).

Information on tableaus

Example 2: Phase-I LP

▶ Consider another LP

and its Phase-I LP

- ▶ Please note that there are two artificial variables x_4 and x_5 (why?).
 - \blacktriangleright How about x_3 ?

Example 2: solving the Phase-I LP

▶ We first fix the 0th row and then run two iterations to remove all the artificial variables:

Example 2: solving the Phase-II LP

▶ With the initial basis $\{x_1, x_2\}$, we then solve the Phase-II LP in one iteration (do not forget to fix the 0th row).²

 $x^2 = (2, 2, 0)$ is not optimal

²Would you visualize the whole process by yourself?

Example 3: Phase-I LP

► Consider the LP

and its Phase-I LP

1 1 0 0 6

 $x^2 = (0, 4, 0, 2)$ is infeasible

Example 3: solving the Phase-I LP

▶ After adjusting the 0th row, we run two iterations:

0 0 0 1

 $x^{1} = (0, 2, 0, 4)$ is infeasible

	U	U	U	-1		U	adjust	1	1	U	U	О
	2	1	1	0	x	$a_3 = 4$	$\stackrel{\circ}{\Longrightarrow}$					$x_3 = 4$
	1	1	0	1	x	$a_4 = 6$		1	1	0	1	$x_4 = 6$
												infeasible
	0	$\frac{1}{2}$		$-\frac{1}{2}$	0	4		-1	0	-1	L () 2
\rightarrow	1	$\frac{1}{2}$		$\frac{1}{2}$	0	$x_1 = 2$	$_2$ \rightarrow					$x_2 = 4$
	0	$\frac{1}{2}$		$-\frac{1}{2}$	1	$x_1 = 2$ $x_4 = 4$	1	-1	0	-1	1 :	$1 \mid x_4 = 2$

Information on tableaus

Example 3: solving the Phase-I LP

► The final tableau

is optimal (for the Phase-I LP).

- ▶ However, in the Phase-I optimal solution (0, 4, 0, 2), the artificial variable x_4 is still in the basis (and positive).
- ▶ Therefore, we conclude that the original LP is infeasible.³

³Try to visualize this!

Road map

- Information on tableaus.
- Finding an initial bfs.
- Degeneracy and efficiency.
- ▶ The matrix way of doing simplex.

Degeneracy

- ▶ Recall that an LP is **degenerate** if multiple bases correspond to a single basic solution.
- ▶ As an example, consider the following LP

and its standard form

Degeneracy

▶ The six bases of

correspond to four distinct basic solutions.

Basis	Extreme	Basic solution							
Dasis	point	$\overline{x_1}$	x_2	x_3	x_4				
$\{x_1, x_2\}$	A	3	0	0	0				
$\{x_1, x_3\}$	B	3	0	0	0				
$\{x_1, x_4\}$	C	3	0	0	0				
$\{x_2, x_3\}$	D	0	2	1	0				
$\{x_2, x_4\}$	_	0	3	0	-3				
$\{x_3, x_4\}$	E	0	0	3	6				

Impact of degeneracy

- ▶ In a degenerate LP, multiple feasible bases correspond to the same bfs.
- ► For the simplex method, it is possible to move to **another** basis but still at the **same** bfs.
- ► Running an iteration may have **no improvement!**
- ▶ Let's run the simplex method on this example.

Solving degenerate LPs

▶ After three iterations, we find an optimal solution:

- ▶ In the second iteration, there is no improvement!
- ▶ The basis changes but the bfs does not change.

Efficiency of the simplex method

- ▶ In general, when we use the simplex method to solve a degenerate LP, there may be some iterations that have no improvements.
 - ► That may happen when multiple rows win the ratio test at the same time; those basic variables become 0 simultaneously.
- ▶ For some (very strange) instances, the simplex method needs to travel through all the bfs before it can make a conclusion.
- ► Therefore, the simplex method is an **exponential-time** algorithm.⁴
 - ▶ It may take an unacceptable long time to solve an LP.
- ▶ There are polynomial-time algorithms for Linear Programming.
 - ▶ For many practical problems, the simplex method is still faster.
- ▶ The simplex method is the most popular method for LP in industry.

⁴The number of iteration is $O(\binom{n}{m})$.

Efficiency of the simplex method

- ▶ When using the simplex method to solve an (original) LP, the number of **functional constraints** (m) greatly affects the computation time.
 - ▶ The computation time is roughly $O(m^3)$: proportional to the **cube** of the number of functional constraints.
 - ▶ Intuition: Number of iterations is O(m) and number of operations in an iteration is $O(m^2)$.
- ▶ The number of variables, on the contrary, is not so important.
 - We calculate $x_B = A_B^{-1}b$ in each iteration, and $A_B \in \mathbb{R}^{m \times m}$.
- ightharpoonup The sparsity of the coefficient matrix A is also important.
 - ightharpoonup A is sparse means it has many zeros.
 - Practical problems typically have sparse coefficient matrices.
- ▶ For more information, see Chapters 5 and 7 (which will not be covered in this course).

Cycling

- ▶ One thing is even worse than running for a long time.
- ► At a degenerate bfs, the simplex method may enter an infinite loop! This is called **cycling**.
 - ▶ Basis $1 \to \text{basis } 2 \to \text{basis } 3 \to \cdots \to \text{basis } 1$.
- ► This may happen when we use a "not so good" way of selecting entering and leaving variables.
 - If we select the nonbasic variable with the "most significant reduced cost", cycling may occur.
- ▶ There are at least two ways to avoid cycling:
 - Randomize the selection of variables.
 - ▶ Apply an **anti-cycling** variable selection rule.

The smallest index rule

► One anti-cycling rule is the **smallest index rule**:⁵

Proposition 2 (The smallest index rule)

Using the following rule guarantees to solve a minimization LP in finite steps:

- ► Among nonbasic variables with positive reduced costs, pick the one with the smallest index to enter the basis.
- ► Among basic variables that have the smallest valid ratios, pick the one with smallest index to exist.
- ► The smallest index rule may not generate the **least iterations** toward an optimal solution.
 - ▶ No variable selection rule can guarantee to be the most efficient!
- ► The smallest index rule can guarantee no cycling!

⁵Developed by Bland in 1977.

Road map

- ▶ Information on tableaus.
- Finding an initial bfs.
- Degeneracy and efficiency.
- ► The matrix way of doing simplex.

Implementation of the simplex method

- ▶ When one implements the simplex method with computer programs, using tableaus is not the most efficient way.
- ▶ Using **matrices** is the most efficient.
- ▶ Recall that the standard form LP can be expressed as

$$\begin{aligned} & \text{min} & & c_B^T A_B^{-1} b - \left(c_B^T A_B^{-1} A_N - c_N^T \right) x_N \\ & \text{s.t.} & & x_B = A_B^{-1} b - A_B^{-1} A_N x_N \\ & & & x_B, x_N \geq 0 \end{aligned}$$

or

$$z + (c_B^T A_B^{-1} A_N - c_N^T) x_N = c_B^T A_B^{-1} b$$

$$Ix_B + A_B^{-1} A_N x_N = A_B^{-1} b.$$

▶ We may do **matrix operations** to do iterations.

At any feasible basis

$$z$$
 + $(c_B^T A_B^{-1} A_N - c_N) x_N = c_B^T A_B^{-1} b$
 Ix_B + $A_B^{-1} A_N x_N = A_B^{-1} b$.

- \triangleright At any feasible basis B:
 - ▶ The current bfs is $x = (x_B, x_N) = (A_B^{-1}b, 0)$ and the current $z = c_B^T A_B^{-1}b$.
- ► For the entering variable:
 - ▶ The reduced costs are $\bar{c}_N^T = c_B^T A_B^{-1} A_N c_N^T$.
 - ▶ The reduced cost of variable x_j is $\bar{c}_j = c_B^T A_B^{-1} A_j c_j$ for all $j \in N$.
 - ▶ If there exists $j \in N$ such that $\bar{c}_j > 0$, x_j may enter.
- ► For the leaving variable:
 - ▶ If x_j enters, the **ratio test** is to compare the ratios $\frac{(A_B^{-1}b)_i}{(A_B^{-1}A_j)_i}$.
 - ▶ The basic variable corresponding to row i may leave if $(A_B^{-1}A_j)_i > 0$ and

$$\frac{(A_B^{-1}b)_i}{(A_B^{-1}A_j)_i} \le \frac{(A_B^{-1}b)_k}{(A_B^{-1}A_j)_k} \quad \forall k = 1, ..., m \text{ such that } (A_B^{-1}A_j)_k > 0.$$

When we stop

- \triangleright At any optimal basis B, we know that
 - ► The reduced costs $\bar{c}_N^T = c_B^T A_B^{-1} A_N c_N^T \le 0$.
 - ► The optimal bfs is $x^* = (x_B^*, x_N^*) = (A_B^{-1}b, 0)$.
 - ► The current objective value is $z^* = c_B^T \bar{A}_B^{-1} b$.
- ► To detect multiple optimal solutions:
 - $\bar{c}_N^T = c_B^T A_B^{-1} A_N c_N^T \le 0.$
 - ▶ There exists $j \in N$ such that $\bar{c}_j = 0$.
- ► To detect unboundedness:
 - ▶ There exists $j \in N$ such that $\bar{c}_j > 0$.
 - ▶ Moreover, $(A_B^{-1}A_j)_i \le 0$ for all $i \in B$.

Information on tableaus

► Consider the example again:

▶ In the matrix representation, we have

$$c^{T} = \begin{bmatrix} -1 & 0 & 0 & 0 & 0 \end{bmatrix},$$

$$A = \begin{bmatrix} 2 & -1 & 1 & 0 & 0 \\ 2 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix}, \text{ and } b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

Information on tableaus

• Given $x_B = (x_1, x_4, x_5)$ and $x_N = (x_2, x_3)$, we have

$$c_B^T = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}, \quad c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix},$$

$$A_B = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, \quad A_N = \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

▶ Given the basis, we have

$$x_{B} = A_{B}^{-1}b = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix} = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = \begin{bmatrix} x_{1} \\ x_{4} \\ x_{5} \end{bmatrix}, \text{ and}$$

$$z = c_{B}^{T}A_{B}^{-1}b = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix} = -2.$$

▶ The current bfs is $x = (x_1, x_2, x_3, x_4, x_5) = (2, 0, 0, 4, 3)$.

A feasible basis

• For $x_N = (x_2, x_3)$, the reduced costs are

$$\begin{split} \overline{c}_N^T &= c_B^T A_B^{-1} A_N - c_N^T \\ &= \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \\ 1 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \end{bmatrix}. \end{split}$$

 \blacktriangleright x_2 enters. For $x_B = (x_1, x_4, x_5)$, we have

$$A_B^{-1} A_2 = \begin{bmatrix} \frac{1}{2} & 0 & 0 \\ -1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{2} \\ 2 \\ 1 \end{bmatrix} \text{ and } A_B^{-1} b = \begin{bmatrix} 2 \\ 4 \\ 3 \end{bmatrix}.$$

 $ightharpoonup rac{4}{2} < rac{3}{1}$, so x_4 leaves.

An optimal basis

• Given $x_B = (x_1, x_2, x_5)$ and $x_N = (x_3, x_4)$ we have

$$c_B^T = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix}, \quad c_N^T = \begin{bmatrix} 0 & 0 \end{bmatrix},$$

$$A_B = \begin{bmatrix} 2 & -1 & 0 \\ 2 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}, \quad A_N = \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix}, \quad b = \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix}.$$

▶ Given the basis, we have

$$x_B = A_B^{-1}b = \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 4 \\ 8 \\ 3 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = \begin{bmatrix} x_1 \\ x_2 \\ x_5 \end{bmatrix}, \text{ and } z = c_B^T A_B^{-1}b = \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 2 \\ 1 \end{bmatrix} = -3.$$

▶ The current bfs is $x = (x_1, x_2, x_3, x_4, x_5) = (3, 2, 0, 0, 1)$.

An optimal basis

For $x_N = (x_3, x_4)$, the reduced costs are

$$\begin{split} \bar{c}_N^T &= c_B^T A_B^{-1} A_N - c_N^T \\ &= \begin{bmatrix} -1 & 0 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{4} & \frac{1}{4} & 0 \\ -\frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & -\frac{1}{2} & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \\ 0 & 0 \end{bmatrix} - \begin{bmatrix} 0 & 0 \end{bmatrix} \\ &= \begin{bmatrix} -\frac{1}{4} & -\frac{1}{4} \end{bmatrix}. \end{split}$$

▶ No variable should enter: This bfs is optimal.

The matrix way

- ▶ In short, the simplex method may be run with matrix calculations.
- ▶ In this way, the bottleneck is the calculation of A_B^{-1} .
- Nevertheless, because the current basis B and the previous one have only **one variable** different, the current A_B and the previous one have only **one column** different.
 - ▶ Calculating A_B^{-1} can be faster with the previous one.⁶
- ▶ In fact, how do you know that *A_B* is still **invertible** after changing one column?

⁶Section 5.4 contains relevant discussion about calculating A_R^{-1} .