IM 2010: Operations Research, Spring 2014 Integer Programming

Ling-Chieh Kung

Department of Information Management
National Taiwan University

March 27, 2014

Scheduling workforce again

- We know that United Airline developed an LP to determine the number of staffs in each of their service locations.
- The same problem is faced by Taco Bell.
- It has more than 6500 restaurants in the US.
- It asks how many staffs to have at each restaurant in each shift.
- Taco Bell developed an Integer Program (i.e., an LP with integer variables) to solve its workforce scheduling problem.
- The number of staffs is typically small! Rounding is very inaccurate.
- $\$ 13$ million are saved per year.
- Read the short story in Section 11.5 and the article on CEIBA.

Integer programming

- We have worked with LP for four weeks.
- In some cases, variables must only take integer values.
- Producing tables and chairs in a big factory: fractional variables.
- Selecting some books to sell (knapsack): integer variables.
- United Airline vs. Taco Bell.
- We will see other reasons to use integer variables.
- The subject of formulating and solving models with integer variables is Integer Programming (IP).
- An IP is typically a linear IP (LIP).
- If the objective function or any functional constraint is nonlinear, it is a nonlinear IP (NLIP).
- We will focus on linear IP in this course.

Integer programming

- First, we will introduce one general algorithm for solving IPs.
- It "decomposes" an IP to multiple LPs, solve all the LPs, and compares those outcomes to reach a conclusion.
- Each LP is solved separately (with the simplex method or other ways).
- In general, solving a large-scale IP can takes a very long time.
- We then demonstrate how to use binary variables to enrich our formulations and model more complicated situations.
- Read Sections 11.1-11.7 in the textbook.

Road map

- Linear relaxation.
- Branch and bound.
- Branch and bound for knapsack.
- Integer programming formulation.

Solving an IP

- Suppose we are given an IP, how may we solve it?

\max	$3 x_{1}+x_{2}$
s.t.	$4 x_{1}+2 x_{2} \leq 11$
	$x_{i} \in \mathbb{Z}_{+} \quad \forall i=1,2$.

- The simplex method does not work!
- The feasible region is not "a region".
- It is discrete.
- There is no way to "move along edges".
- But all we know is how to solve LPs. How about solving a linear relaxation first?

Definition 1 (Linear relaxation)

For a given IP, its linear relaxation is the resulting LP after removing all the integer constraints.

Linear relaxation

- What is the linear relaxation of

$$
\begin{array}{rll}
\max & x_{1} & +x_{2} \\
\text { s.t. } & x_{1} & +3 x_{2} \leq 10 \\
& 2 x_{1} & -x_{2} \geq 5 \\
& x_{i} \in \mathbb{Z}_{+} \quad \forall i=1,2 ?
\end{array}
$$

- \mathbb{Z} is the set of all integers. \mathbb{Z}_{+}is the set of all nonnegative integers.
- The linear relaxation is

$$
\begin{array}{rlrl}
\max & x_{1} & +x_{2} \\
\text { s.t. } & x_{1} & +3 x_{2} \leq & \\
& 2 x_{1} & -x_{2} \geq & 5 \\
& x_{i} \geq 0 \quad \forall i=1,2
\end{array}
$$

Linear relaxation

- For the knapsack problem

$$
\begin{array}{rrl}
\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 10 \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4,
\end{array}
$$

the linear relaxation is

$$
\begin{array}{rr}
\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 10 \\
& x_{i} \in[0,1] \quad \forall i=1, \ldots, 4,
\end{array}
$$

- $x_{i} \in[0,1]$ is equivalent to $x_{i} \geq 0$ and $x_{i} \leq 1$.

Linear relaxation provides a bound

- For a minimization IP, its linear relaxation provides a lower bound.

Proposition 1

Let z^{*} and z^{\prime} be the objective values associated to optimal solutions of a minimization IP and its linear relaxation, respectively, then $z^{\prime} \leq z^{*}$.

Proof. They have the same objective function. However, the linear relaxation's feasible region is (weakly) larger than that of the IP.

- For a maximization IP, linear relaxation provides an upper bound.

Linear relaxation may solve the IP

- If we are lucky, the linear relaxation may be infeasible or unbounded.
- The IP is then infeasible or unbounded.
- If we are lucky, an optimal solution to the linear relaxation may be feasible to the original IP. When this happens, the IP is solved:

Proposition 2

Let x^{\prime} be an optimal solutions to the linear relaxation of an IP. If x^{\prime} is feasible to the IP, it is optimal to the IP.

Proof. Suppose x^{\prime} is not optimal to the IP, there must be another feasible solution $x^{\prime \prime}$ that is better. However, as $x^{\prime \prime}$ is feasible to the IP, it is also feasible to the linear relaxation, which implies that x^{\prime} cannot be optimal to the linear relaxation.

- What if we are unlucky?

Rounding a fractional solution

- Suppose we solve a linear relaxation with an LR-optimal solution x^{\prime}.
- "LR-optimal" means x^{\prime} is optimal to the linear relaxation.
- x^{\prime}, however, has at least one variable violating the integer constraint in the original IP.
- We may choose to round the variable.
- Round up or down?
- Is the resulting solution always feasible?
- Will the resulting solution be close to an IP-optimal solution x^{*} ?

Rounding a fractional solution

- Consider the following IP

$$
\begin{array}{rlll}
\max & 8 x_{1} & +5 x_{2} \\
\text { s.t. } & x_{1} & +x_{2} \leq 6 \\
& 9 x_{1} & +5 x_{2} \leq 45 \\
& x_{i} \in \mathbb{Z}_{+} \quad \forall i=1,2 .
\end{array}
$$

- $x^{*}=(5,0)$ is IP-optimal.
- But $x^{1}=\left(\frac{15}{4}, \frac{9}{4}\right)$ is LR-optimal!
- Rounding up any variable results in infeasible solutions.
- None of the four grid points around x^{1} is optimal.
- We need a way that guarantees to find an optimal solution.

Road map

- Linear relaxation.
- Branch and bound.
- Branch and bound for knapsack.
- Integer programming formulation.

Rounding a fractional solution

- $x^{1}=\left(\frac{15}{4}, \frac{9}{4}\right)$ is LR-optimal.
- Rounding up or down x_{1} (i.e., adding $x_{1}=4$ or $x_{1}=3$ into the program) both fail to find the optimal solution.
- Because we eliminate too many feasible points!
- Instead of adding equalities, we should add inequalities.
- What will happen if we add $x_{1} \geq 4$ or $x_{1} \leq 3$ into the program?
- We will branch this problem into two problems, one with an additional constraint.

Rounding a fractional solution

If we add $x_{1} \geq 4$:

- The optimal solution to the IP must be contained in one of the above two feasible regions. Why?

Rounding a fractional solution

- So when we solve the linear relaxation and find any variable violating an integer constraint, we will branch this problem into two problems, one with an additional constraint.
- The two new programs are still linear programs.
- Once we solved them:
- If their LR-optimal solutions are both IP-feasible, compare them and choose the better one.
- If any of them results in a variable violating the integer constraint, branch on that variable recursively.
- Eventually compare all the IP-feasible solutions we obtain.

Example

- Let's illustrate the branch-and-bound algorithm with the following example:

	\max	$3 x_{1} \quad+\quad x_{2}$	
$\left(P_{0}\right) \quad$			
	s.t.	$4 x_{1}$	$+2 x_{2} \leq 11$
		$x_{i} \in \mathbb{Z}_{+} \quad \forall i=1,2$.	

Subproblem 1

- First we solve the linear relaxation:

	\max	$3 x_{1} \quad+\quad x_{2}$
$\left(P_{1}\right) \quad$		
s.t.	$4 x_{1} \quad+\quad 2 x_{2} \leq 11$	
		$x_{i} \geq 0 \quad \forall i=1,2$.

- The optimal solution is
$x^{1}=\left(\frac{11}{4}, 0\right)$.
- So we need to branch on x_{1}.

Branching tree

- The branch and bound algorithm produces a branching tree.
- Each node represents a subproblem (which is an LP).
- Each time we branch on a variable, we create two child nodes.

Subproblem 2

- When we add $x_{1} \leq 2$:

- An $\left(P_{2}\right)$-optimal solution is $x^{2}=\left(2, \frac{3}{2}\right)$.
- So later we need to branch on x_{2}.
- Before that, let's solve $\left(P_{3}\right)$.

Subproblem 3

- When we add $x_{1} \geq 3$:

$$
\begin{array}{rrrrr}
& \max & 3 x_{1} & + & x_{2} \\
& & \\
\text { s.t. } & 4 x_{1} & + & 2 x_{2} & \leq \\
& & \left.P_{3}\right) \\
& & & \geq & 3 \\
& & x_{i} \geq 0 \quad \forall i=1,2 .
\end{array}
$$

- The problem is infeasible!
- This node is "dead" and does not produce any candidate solution.

Branching tree

- The current progress can be summarized in the branching tree.

- Note that $z_{2}=7.5<8.25=z_{1}$.
- In general, when we branch to the next level, the objective value associated with a subproblem-optimal solution will always be weakly lower (for a maximization problem). Why?

Branching tree

- As $x_{2}=\frac{3}{2}$ in x^{2}, we will branch subproblem 2 on x_{2}.

Subproblem 4

- When we add $x_{2} \leq 1$:

$$
\begin{array}{rrrrrr}
& \max & 3 x_{1} & + & x_{2} \\
& \left.P_{4}\right) \quad & 4 x_{1} & + & 2 x_{2} & \leq \\
\text { s.t. } & x_{1} & & 11 \\
& & & \leq & x_{2} & \leq \\
& & & \\
& x_{i} \geq 0 \quad \forall i=1,2 .
\end{array}
$$

- Note that we add $x_{2} \leq 1$ into subproblem 2 , so $x_{1} \leq 2$ is still there.

Subproblem 5

- When we add $x_{2} \geq 2$:

$$
x_{i} \geq 0 \quad \forall i=1,2 .
$$

Branching tree

- x^{4} satisfies all the integer constraints.
- It is IP-feasible and thus a candidate solution to the original IP.
- But branching subproblem 5 may result in a better solution.

Branching tree

- Let's branch subproblem 5 on x_{1}.

Subproblem 6

- When we add $x_{1} \leq 1$:

\max	$3 x_{1}$	+	x_{2}	
s.t.	$4 x_{1}$	+	$2 x_{2}$	\leq
	x_{1}		11	
			x_{2}	\leq
		2		
	x_{1}			\leq
		$x_{i} \geq 0 \quad$	$\forall i=1,2$.	

- $x^{6}=\left(1, \frac{7}{2}\right)$. We may need to branch on x_{2} again. However, let's solve subproblem 7 first.

Subproblem 7

- When we add $x_{1} \geq 2$:

$\left(P_{7}\right)$	$\begin{array}{r} \max \\ \text { s.t. } \end{array}$	$3 x_{1}$	+	x_{2}		
		$4 x_{1}$	+	$2 x_{2}$	\leq	11
		x_{1}			$<$	2
				x_{2}	\geq	2
		x_{1}			\geq	2
				$\forall i=$		

- The problem is infeasible.
- The node is "dead".

Branching tree

- The only "alive" node is subproblem 6 , with x_{2} fractional.
- Before we branch subproblem 6, consider the following:

Bounding

- $z_{6}=\frac{13}{2}$. If we branch $\left(P_{6}\right)$, all the candidate solutions (if any) under it will be (weakly) worse than $\frac{13}{2}$.
- However, $\frac{13}{2}<7=z_{4}$, and x_{4} is already a candidate!
- So there is no need to branch $\left(P_{6}\right)$. This is the "bounding" situation in the branch-and-bound algorithm.
- This allows us to solve fewer subproblems.

Summary

- In running the branch-and-bound algorithm, we maintain a tree.
- If a subproblem-optimal solution is IP-feasible, set it to the candidate solution if it is currently the best among all IP-feasible solutions. Stop branching this node.
- If a subproblem is infeasible, stop branching this node.
- If a subproblem-optimal solution is not IP-feasible:
- If it is better than the current candidate solution, branch.
- Otherwise, stop branching.

Another example

- Now let's go back to our motivating example:
$\left(Q_{0}\right)$

$$
\begin{array}{rrlr}
\max & 8 x_{1} & +5 x_{2} & \\
\text { s.t. } & x_{1} & +x_{2} \leq & \\
& 9 x_{1} & +5 x_{2} \leq 4 \\
& x_{i} \in \mathbb{Z}_{+} \quad \forall i=1,2 .
\end{array}
$$

- Let's solve it with the branch-and-bound algorithm.

Subproblem 1

- $x^{1}=\left(\frac{15}{4}, \frac{9}{4}\right)$.
- We may branch on either variable. Let's branch on x_{1}.

Subproblems 2 and 3

- Subproblem 2 generates a candidate solution.
- $x^{3}=\left(4, \frac{9}{5}\right)$. As $z_{3}=41>z_{2}=39$, we should branch subproblem 3 .

Subproblems 4 and 5

- $x^{4}=\left(\frac{40}{9}, 1\right)$. As $z_{4}=40.25>z_{2}=39$, we should branch subproblem 4.
- Subproblem 5 is infeasible.

Subproblems 6 and 7

- $x^{6}=(4,1)$ but $z_{6}=37<39=z_{2}$.
- $x^{7}=(5,0)$ and $z_{7}=40>39=z_{2}$. As it is also the last node, x^{7} is an optimal solution.

Remarks

- To select a node to branch:
- Among all alive nodes, there are many different ways of selecting a node to branch.
- One common approach is to branch the node with the highest objective value (for a maximization problem). Why?
- Another popular approach is "once a node is branched, all its descendants are branched before any nondescendant. Why?
- Choosing a variable to branch on is also a challenging task.
- The branch-and-bound algorithm guarantees to find an optimal solution, if one exists.
- However, it is an exponential-time algorithm.
- Roughly speaking, with n integer variables, the number of subproblems solved is approximately proportional to 2^{n}.

Road map

- Linear relaxation.
- Branch and bound.
- Branch and bound for knapsack.
- Integer programming formulation.

Branch and bound for knapsack

- The branch-and-bound algorithm is particularly useful for solving the knapsack problem.
- Because the linear relaxation of a knapsack problem can be solved very easily.
- Consider the example

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6 \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

How to solve its linear relaxation?

Branch and bound for knapsack

- The linear relaxation

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6 \\
& x_{i} \in[0,1] \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

can be solved greedily by sorting the variables according to the benefit-cost ratio.

- The four ratios are $\frac{5}{3} \approx 1.67, \frac{8}{5}=1.6, \frac{3}{2}=1.5$, and $\frac{7}{4}=1.75$.
- x_{4} has the highest priority then x_{1}, then x_{2}, then x_{3}.
- First set $x_{4}=1$. Then set $x_{1}=\frac{2}{3}$ (because setting $x_{1}=1$ violates the constraint). Then $x_{2}=x_{3}=0$.
- Let's now use the branch-and-bound algorithm to solve this knapsack problem. For each node, we can use the above rule (instead of the simplex method) to find an optimal solution.

Solving the knapsack problem

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6, \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

- We branch subproblem 1 on x_{1} :
- Note that $x_{1} \leq 0$ is equivalent to $x_{1}=0$ when x_{1} is binary.

$$
\begin{aligned}
& x^{2}=\left(0, \frac{2}{5}, 0,1\right) \\
& z_{2}=\frac{51}{5} \approx 10.2
\end{aligned}
$$

$$
\begin{aligned}
& x^{3}=\left(1,0,0, \frac{3}{4}\right) \\
& z_{3}=\frac{41}{4}=10.25
\end{aligned}
$$

Solving the knapsack problem

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6, \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

- We branch subproblem 3 first (why?)

Solving the knapsack problem

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6, \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

- We branch subproblem 2 before we branch subproblem 4 (why?).
- And, luckily, we do not need to branch subproblem 4.

Solving the knapsack problem

$$
\begin{aligned}
\max & 5 x_{1}+8 x_{2}+3 x_{3}+7 x_{4} \\
\text { s.t. } & 3 x_{1}+5 x_{2}+2 x_{3}+4 x_{4} \leq 6, \quad x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{aligned}
$$

- We do not need to branch subproblem 7.
- An IP-optimal solution is found.

Road map

- Linear relaxation.
- Branch and bound.
- Branch and bound for knapsack.
- Integer programming formulation.

The knapsack problem

- We start our illustration with the classic knapsack problem.
- There are four items to select:

Item	1	2	3	4
Value (\$)	16	22	12	8
Weight(kg)	5	7	4	3

- The knapsack capacity is 10 kg .
- We maximize the total value without exceeding the knapsack capacity.
- The complete formulation:

$$
\begin{array}{cc}
\max & 16 x_{1}+22 x_{2}+12 x_{3}+8 x_{4} \\
\text { s.t. } & 5 x_{1}+7 x_{2}+4 x_{3}+3 x_{4} \leq 10 \\
& x_{i} \in\{0,1\} \quad \forall i=1, \ldots, 4 .
\end{array}
$$

Requirements on selecting variables

- Integer programming allows us to implement some selection rules.
- At least/most some items:
- Suppose we must select at least one item among items 2, 3, and 4:

$$
x_{2}+x_{3}+x_{4} \geq 1 .
$$

- Suppose we must select at most two items among items 1,3 , and 4 :

$$
x_{1}+x_{3}+x_{4} \leq 2
$$

Requirements on selecting variables

- Or:
- Select item 2 or item 3:

$$
x_{2}+x_{3} \geq 1
$$

- Select item 2; otherwise, items 3 and 4 togehter:

$$
2 x_{2}+x_{3}+x_{4} \geq 2
$$

- If-else:
- If item 2 is selected, select item 3:

$$
x_{2} \leq x_{3} .
$$

- If item 1 is selected, do not select items 3 and 4:

$$
2\left(1-x_{1}\right) \geq x_{3}+x_{4}
$$

Fixed-charge constraints

- Consider the following example:
- n factories, 1 market, 1 product.
- Capacity of factory $i: K_{i}$.
- Unit production cost at factory i : C_{i}.
- Demand: D.
- We want to satisfy the demand with the minimum cost.
- Setup cost at factory $i: S_{i}$.
- One needs to pay the setup cost as long as any positive amount of products is
 produced.

Basic formulation

- Let the decision variables be
$x_{i}=$ production quantity at factory $i, i=1, \ldots, n$,
$y_{i}= \begin{cases}1 & \text { if some products are produced at factory } i, i=1, \ldots, n . \\ 0 & o / w\end{cases}$
- Objective function:

$$
\min \sum_{i=1}^{n} C_{i} x_{i}+\sum_{i=1}^{n} S_{i} y_{i}
$$

- Capacity limitation:

$$
x_{i} \leq K_{i} \quad \forall i=1, \ldots, n .
$$

- Demand fulfillment:

$$
\sum_{i=1}^{n} x_{i} \geq D
$$

Setup costs

- How may we know whether we need to pay the setup cost at factory i ?
- If $x_{i}>0, y_{i}$ must be 1 ; if $x_{i}=0, y_{i}$ should be 0 .
- So the relationship between x_{i} and y_{i} should be:

$$
x_{i} \leq K_{i} y_{i} \quad \forall i=1, \ldots, n
$$

- If $x_{i}>0, y_{i}$ cannot be 0 .
- If $x_{i}=0, y_{i}$ can be 0 or 1 . Why y_{i} will always be 0 when $x_{i}=0$?
- Finally, binary and nonnegative constraints:

$$
x_{i} \geq 0, y_{i} \in\{0,1\} \quad \forall i=1, \ldots, n .
$$

Fixed-charge constraints

- The constraint $x_{i} \leq K_{i} y_{i}$ is known as a fixed-charge constraint.
- In general, a fixed-charge constraint is

$$
x \leq M y
$$

- Both x and y are decision variables.
- $y \in\{0,1\}$ is determined by x.
- M must be set to be an upper bound of x.
- When x is binary, $x \leq y$ is sufficient.
- We need to make M an upper bound of x.
- For example, K_{i} is an upper bound of x_{i} in the factory example. Why?
- What if there is no capacity limitation?

At least/most some constraints

- Using a similar technique, we may flexibly select constraints.
- Suppose satisfying one of the two constraints

$$
g_{1}(x) \leq b_{1} \quad \text { and } \quad g_{2}(x) \leq b_{2}
$$

is enough. How to formulate this situation?

- Let's define a binary variable

$$
z= \begin{cases}0 & \text { if } g_{1}(x) \leq b_{1} \text { is satisfied, } \\ 1 & \text { if } g_{2}(x) \leq b_{2} \text { is satisfied }\end{cases}
$$

- With M_{i} being an upper bound of each LHS, the following two constraints implement what we need:

$$
\begin{aligned}
& g_{1}(x)-b_{1} \leq M_{1} z \\
& g_{2}(x)-b_{2} \leq M_{2}(1-z) .
\end{aligned}
$$

At least/most some constraints

- Suppose at least two of the three constraints

$$
g_{i}(x) \leq b_{i}, \quad i=1,2,3,
$$

must be satisfied. How to play the same trick?

- Let

$$
z_{i}= \begin{cases}1 & \text { if } g_{i}(x) \leq b_{i} \text { is satisfied } \\ 0 & \text { if } g_{i}(x) \leq b_{i} \text { may be unsatisfied. }\end{cases}
$$

- With M_{i} being an upper bound of each LHS, the following constraints are what we need:

$$
\begin{aligned}
& g_{i}(x)-b_{i} \leq M_{i}\left(1-z_{i}\right) \quad \forall i=1, \ldots, 3 \\
& z_{1}+z_{2}+z_{3} \geq 2
\end{aligned}
$$

If-else constraints

- In some cases, if $g_{1}(x)>b_{1}$ is satisfied, then $g_{2}(x) \leq b_{2}$ must also be satisfied.
- How to model this situation?
- First, note that "if A then B " \Leftrightarrow " $(\operatorname{not} A)$ or B ".
- So what we really want to do is $g_{1}(x) \leq b_{1}$ or $g_{2}(x) \leq b_{2}$.
- So simply select at least one of $g_{1}(x) \leq b_{1}$ and $g_{2}(x) \leq b_{2}$!

Route selection

- Waste Management Inc. operates an recycling network with 293 landfill sites, 16 waste-to-energy plants, 72 gas-to-energy facilities, 146 recycling plants, 346 transfer stations, and 435 collection depots.
- 20000 routes must be go through by its vehicles in each day.
- How to determine a route?
- Construct a network with nodes and edges.
- Give each edge a binary variable: 1 if included and 0 otherwise.
- Constraints are required to make sure that selected edges are really forming a route.
- A huge IP is constructed to save the company $\$ 498$ million in operational expenses over a 5 -year period.
- Read the short story in Section 11.7 and the article on CEIBA.

